Abstract

This document defines a YANG data model for Network Time Protocol (NTP) implementations. The data model includes configuration data and state data.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 29, 2019.
Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
 1.1. Operational State ... 3
 1.2. Terminology ... 3
 1.3. Tree Diagrams .. 3
 1.4. Prefixes in Data Node Names 3
 1.5. References in the Model 4
2. NTP data model .. 4
3. Relationship with NTPv4-MIB 9
4. Relationship with RFC 7317 9
5. Access Rules .. 10
6. Key Management ... 10
7. NTP YANG Module .. 10
8. Usage Example .. 36
 8.1. Unicast association 36
 8.2. Refclock master .. 37
 8.3. Authentication configuration 38
 8.4. Access configuration 40
 8.5. Multicast configuration 40
 8.6. Manycast configuration 44
 8.7. Clock state .. 47
 8.8. Get all association 47
 8.9. Global statistic .. 49
9. IANA Considerations .. 49
10. Security Considerations 50
11. Acknowledgments .. 51
12. References ... 51
 12.1. Normative References 51
 12.2. Informative References 53
Authors’ Addresses .. 53
1. Introduction

The data model convers configuration of system parameters of NTP, such as access rules, authentication and VPN Routing and Forwarding (VRF) binding, and also associations of NTP in different modes and parameters of per-interface. It also provides information about running state of NTP implementations.

1.1. Operational State

NTP Operational State is included in the same tree as NTP configuration, consistent with Network Management Datastore Architecture [RFC8342]. NTP current state and statistics are also maintained in the operational state. Additionally, the operational state also include the associations state.

1.2. Terminology

The terminology used in this document is aligned to [RFC5905].

1.3. Tree Diagrams

A simplified graphical representation of the data model is used in this document. This document uses the graphical representation of data models defined in [RFC8340].

1.4. Prefixes in Data Node Names

In this document, names of data nodes and other data model objects are often used without a prefix, as long as it is clear from the context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.
Table 1: Prefixes and corresponding YANG modules

<table>
<thead>
<tr>
<th>Prefix</th>
<th>YANG module</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>yang</td>
<td>ietf-yang-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>inet</td>
<td>ietf-inet-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>if</td>
<td>ietf-interfaces</td>
<td>[RFC8343]</td>
</tr>
<tr>
<td>ianach</td>
<td>iana-crypt-hash</td>
<td>[RFC7317]</td>
</tr>
<tr>
<td>key-chain</td>
<td>ietf-key-chain</td>
<td>[RFC8177]</td>
</tr>
<tr>
<td>acl</td>
<td>ietf-access-control-list</td>
<td>[RFC8519]</td>
</tr>
<tr>
<td>rt-types</td>
<td>ietf-routing-types</td>
<td>[RFC8294]</td>
</tr>
<tr>
<td>nacm</td>
<td>ietf-netconf-acm</td>
<td>[RFC8341]</td>
</tr>
</tbody>
</table>

1.5. References in the Model

Following documents are referenced in the model defined in this document:

<table>
<thead>
<tr>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common YANG Data Types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>A YANG Data Model for System Management</td>
<td>[RFC7317]</td>
</tr>
<tr>
<td>YANG Data Model for Key Chains</td>
<td>[RFC8177]</td>
</tr>
<tr>
<td>Common YANG Data Types for the Routing Area</td>
<td>[RFC8294]</td>
</tr>
<tr>
<td>Network Configuration Access Control Model</td>
<td>[RFC8341]</td>
</tr>
<tr>
<td>A YANG Data Model for Interface Management</td>
<td>[RFC8343]</td>
</tr>
<tr>
<td>YANG Data Model for Network Access Control Lists (ACLs)</td>
<td>[RFC8519]</td>
</tr>
</tbody>
</table>

Table 2: References in the YANG modules

2. NTP data model

This document defines the YANG module "ietf-ntp", which has the following condensed structure:
module: ietf-ntp
 +--rw ntp!
 +--rw port? inet:port-number {ntp-port}?
 +--rw refclock-master!
 | +--rw master-stratum? ntp-stratum
 +--rw authentication
 +--rw auth-enabled? boolean
 +--rw authentication-keys* [key-id]
 | +--rw key-id uint32
 | +--...
 +--rw access-rules
 +--rw access-rule* [access-mode]
 | +--rw access-mode access-mode
 | +--rw acl? -> /acl:acls/acl/name
 +--ro clock-state
 +--ro system-status
 | +--ro clock-state ntp-clock-status
 | +--ro clock-stratum ntp-stratum
 | +--ro clock-refid union
 | +--...
 +--rw unicast-configuration* [address type]
 | +--rw address inet:host
 | +--rw type unicast-configuration-type
 | +--...
 +--ro associations* [address local-mode isconfigured]
 | +--...
 +--ro ntp-statistics
 | +--...
 +--rw interfaces
 +--rw interface* [name]
 | +--rw name if:interface-ref
 +--rw broadcast-server!
 | +--...
 +--rw broadcast-client!
 +--rw multicast-server* [address]
 | +--rw address rt-types:ip-multicast-group-address
 | +--...
 +--rw multicast-client* [address]
 | +--rw address rt-types:ip-multicast-group-address
 +--rw manycast-server* [address]
 | +--rw address rt-types:ip-multicast-group-address
 +--rw manycast-client* [address]
 | +--rw address rt-types:ip-multicast-group-address
 +--...
 +--ro ntp-statistics
 | +--...

The full data model tree for the YANG module "ietf-ntp" is represented as:

```
module: ietf-ntp
  +--rw ntp!
    +--rw port?                  inet:port-number {ntp-port}?
    +--rw refclock-master!
      |  +--rw master-stratum?    ntp-stratum
    +--rw authentication
      +--rw auth-enabled?        boolean
      +--rw authentication-keys* [key-id]
        |  +--rw key-id           uint32
        |  +--rw algorithm?       identityref
        |  +--rw key?             ianach:crypto-hash
        |  +--rw istrusted?       boolean
      +--rw access-rules
        +--rw access-rule* [access-mode]
          +--rw access-mode      access-mode
          +--rw acl?             -> /acl:acls/acl/name
    +--ro clock-state
      +--ro system-status
        +--ro clock-state       ntp-clock-status
        +--ro clock-stratum     ntp-stratum
        +--ro clock-refid       union
        +--ro associations-address?
          |                      -> /ntp/associations/address
        +--ro associations-local-mode?
          |                      -> /ntp/associations/local-mode
        +--ro associations-isconfigured?
          |                      -> /ntp/associations/isconfigured
        +--ro nominal-freq       decimal64
        +--ro actual-freq        decimal64
        +--ro clock-precision    uint8
        +--ro clock-offset?      decimal64
        +--ro root-delay?        decimal64
        +--ro root-dispersion?   decimal64
        +--ro reference-time?    yang:date-and-time
        +--ro sync-state         ntp-sync-state
      +--rw unicast-configuration* [address type]
        +--rw address            inet:host
        +--rw type               unicast-configuration-type
        +--rw authentication
          +--rw (authentication-type)?
            |                      +--rw key-id?     leafref
        +--rw prefer?            boolean
        +--rw burst?             boolean
        +--rw iburst?            boolean
```
++rw source?	if:interface-ref
++rw minpoll?	ntp-minpoll
++rw maxpoll?	ntp-maxpoll
++rw port?	inet:port-number {ntp-port}?
++rw version?	ntp-version
++ro associations* [address local-mode isconfigured]	
++ro address	inet:host
++ro local-mode	association-mode
++ro isconfigured	boolean
++ro stratum?	ntp-stratum
++ro refid?	union
++ro authentication?	
	-> /ntp/authentication/authentication-keys/key-id
++ro prefer?	boolean
++ro peer-interface?	if:interface-ref
++ro minpoll?	ntp-minpoll
++ro maxpoll?	ntp-maxpoll
++ro port?	inet:port-number {ntp-port}?
++ro version?	ntp-version
++ro reach?	uint8
++ro unreach?	uint8
++ro poll?	uint8
++ro now?	uint32
++ro offset?	decimal64
++ro delay?	decimal64
++ro dispersion?	decimal64
++ro originate-time?	yang:date-and-time
++ro receive-time?	yang:date-and-time
++ro transmit-time?	yang:date-and-time
++ro input-time?	yang:date-and-time
++ro ntp-statistics	
	++ro packet-sent?
	++ro packet-sent-fail?
	++ro packet-received?
	++ro packet-dropped?
++rw interfaces	
++rw interface* [name]	
	++rw name
	++rw broadcast-server!
This data model defines one top-level container which includes both the NTP configuration and the NTP running state including access rules, authentication, associations, unicast configurations, interfaces, system status and associations.
3. Relationship with NTPv4-MIB

If the device implements the NTPv4-MIB [RFC5907], data nodes from YANG module can be mapped to table entries in NTPv4-MIB.

The following tables list the YANG data nodes with corresponding objects in the NTPv4-MIB.

YANG NTP Configuration Data Nodes and Related NTPv4-MIB Objects

<table>
<thead>
<tr>
<th>YANG data nodes in /ntp/clock-state/system-status</th>
<th>NTPv4-MIB objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>clock-state</td>
<td>ntpEntStatusCurrentMode</td>
</tr>
<tr>
<td>clock-stratum</td>
<td>ntpEntStatusStratum</td>
</tr>
<tr>
<td>clock-refid</td>
<td>ntpEntStatusActiveRefSourceId</td>
</tr>
<tr>
<td>clock-precision</td>
<td>ntpEntStatusActiveRefSourceName</td>
</tr>
<tr>
<td>clock-offset</td>
<td>ntpEntTimePrecision</td>
</tr>
<tr>
<td>root-dispersion</td>
<td>ntpEntStatusActiveOffset</td>
</tr>
</tbody>
</table>

YANG data nodes in /ntp/associations/

<table>
<thead>
<tr>
<th>YANG data nodes in /ntp/associations/</th>
<th>NTPv4-MIB objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>ntpAssocAddressType</td>
</tr>
<tr>
<td>stratum</td>
<td>ntpAssocStratum</td>
</tr>
<tr>
<td>refid</td>
<td>ntpAssocRefId</td>
</tr>
<tr>
<td>offset</td>
<td>ntpAssocOffset</td>
</tr>
<tr>
<td>delay</td>
<td>ntpAssocStatusDelay</td>
</tr>
<tr>
<td>dispersion</td>
<td>ntpAssocStatusDispersion</td>
</tr>
<tr>
<td>ntp-statistics/packet-sent</td>
<td>ntpAssocStatOutPkts</td>
</tr>
<tr>
<td>ntp-statistics/packet-received</td>
<td>ntpAssocStatInPkts</td>
</tr>
<tr>
<td>ntp-statistics/packet-dropped</td>
<td>ntpAssocStatProtocolError</td>
</tr>
</tbody>
</table>

YANG NTP State Data Nodes and Related NTPv4-MIB Objects

4. Relationship with RFC 7317

This section describes the relationship with NTP definition in Section 3.2 System Time Management of [RFC7317]. YANG data nodes in /ntp/ also supports per-interface configurations which is not supported in /system/ntp. If the yang model defined in this document is implemented, then /system/ntp SHOULD NOT be used and MUST be ignored.
5. Access Rules

As per [RFC1305] and [RFC5905], NTP could include an access-control feature that prevents unauthorized access and controls which peers are allowed to update the local clock. Further it is useful to differentiate between the various kinds of access (such as peer or server; refer access-mode) and attach different acl-rule to each. For this, the YANG module allow such configuration via /ntp/access-rules. The access-rule itself is configured via [RFC8519].

6. Key Management

As per [RFC1305] and [RFC5905], when authentication is enabled, NTP employs a crypto-checksum, computed by the sender and checked by the receiver, together with a set of predistributed algorithms, and cryptographic keys indexed by a key identifier included in the NTP message. This key-id is 32-bits unsigned integer that MUST be configured on the NTP peers before the authentication could be used. For this reason, this YANG modules allow such configuration via /ntp/authentication/authentication-keys/. Further at the time of configuration of NTP association (for example unicast-server), the key-id is specified.

7. NTP YANG Module

<CODE BEGINS> file "ietf-ntp@2019-06-28.yang"
module ietf-ntp {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ntp";
prefix "ntp";

import ietf-yang-types {
 prefix "yang";
 reference "RFC 6991: Common YANG Data Types";
}

import ietf-inet-types {
 prefix "inet";
 reference "RFC 6991: Common YANG Data Types";
}

import ietf-interfaces {
 prefix "if";
 reference "RFC 8343: A YANG Data Model for Interface Management";
}

import iana-crypt-hash {
 prefix "ianach";
 reference "RFC 7317: A YANG Data Model for System Management";
}

import ietf-key-chain {
 prefix "key-chain";
 reference "RFC 8177: YANG Data Model for Key Chains";
}

import ietf-access-control-list {
 prefix "acl";
 reference "RFC 8519: YANG Data Model for Network Access Control Lists (ACLs)";
}

import ietf-routing-types {
 prefix "rt-types";
 reference "RFC 8294: Common YANG Data Types for the Routing Area";
}

import ietf-netconf-acm {
 prefix nacm;
 reference "RFC 8341: Network Configuration Protocol (NETCONF) Access Control Model";
}

organization
 "IETF NTP (Network Time Protocol) Working Group";
This document defines a YANG data model for Network Time Protocol (NTP) implementations. The data model includes configuration data and state data.

Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices.

revision 2019-06-28 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A YANG Data Model for NTP.";
}

/* Note: The RFC Editor will replace XXXX with the number assigned to this document once it becomes an RFC.*/

/* Typedef Definitions */

typedef ntp-stratum {
 type uint8 {
 range "1..16";
 }
 description

"The level of each server in the hierarchy is defined by a stratum. Primary servers are assigned with stratum one; secondary servers at each lower level are assigned with one stratum greater than the preceding level";

reference

typedef ntp-version {
 type uint8;
 default "3";
 description
 "The current NTP version supported by corresponding association.";
}

typedef ntp-minpoll {
 type uint8 {
 range "4..17";
 }
 default "6";
 description
 "The minimum poll exponent for this NTP association.";
 reference
}

typedef ntp-maxpoll {
 type uint8 {
 range "4..17";
 }
 default "10";
 description
 "The maximum poll exponent for this NTP association.";
 reference
}

typedef access-mode {
 type enumeration {
 enum peer {
 value "0";
 description
 "Enables the full access authority. Both time request and control query can be performed";
 }
 }
}
on the local NTP service, and the local clock can be synchronized with the remote server."
}
enum server {
 value "1";
 description
 "Enables the server access and query. Both time requests and control query can be performed on the local NTP service, but the local clock cannot be synchronized with the remote server."
}
enum synchronization {
 value "2";
 description
 "Enables the server to access. Only time request can be performed on the local NTP service."
}
enum query {
 value "3";
 description
 "Enables the maximum access limitation. Control query can be performed only on the local NTP service."
}

description
 "This defines NTP access modes."
}
typedef unicast-configuration-type {
 type enumeration {
 enum server {
 value "0";
 description
 "Use client association mode. This device will not provide synchronization to the configured NTP server."
 }
 enum peer {
 value "1";
 description
 "Use symmetric active association mode. This device may provide synchronization to the configured NTP server."
 }
 }
}
typedef association-mode {
 type enumeration {
 enum client {
 value "0";
 description
 "Use client association mode(mode 3). This device will not provide synchronization to the configured NTP server.";
 }
 enum active {
 value "1";
 description
 "Use symmetric active association mode(mode 1). This device may synchronize with its NTP peer, or provide synchronization to configured NTP peer.";
 }
 enum passive {
 value "2";
 description
 "Use symmetric passive association mode(mode 2). This device has learned this association dynamically. This device may synchronize with its NTP peer.";
 }
 enum broadcast {
 value "3";
 description
 "Use broadcast mode(mode 5). This mode defines that its either working as broadcast-server or multicast-server.";
 }
 enum broadcast-client {
 value "4";
 description
 "This mode defines that its either working as broadcast-client or multicast-client.";
 }
 }
 description
 "The NTP association modes.";
}

typedef ntp-clock-status {
 type enumeration {
 enum synchronized {
 value "0";
 }
 }
 description
 "This defines NTP unicast mode of operation.";
}

description
 "Indicates that the local clock has been
 synchronized with an NTP server or
 the reference clock.";
}
enum unsynchronized {
 value "1";
 description
 "Indicates that the local clock has not been
 synchronized with any NTP server.";
}

typedef ntp-sync-state {
type enumeration {
 enum clock-not-set {
 value "0";
 description
 "Indicates the clock is not updated.";
 }
 enum freq-set-by-cfg {
 value "1";
 description
 "Indicates the clock frequency is set by
 NTP configuration.";
 }
 enum clock-set {
 value "2";
 description
 "Indicates the clock is set.";
 }
 enum freq-not-determined {
 value "3";
 description
 "Indicates the clock is set but the frequency
 is not determined.";
 }
 enum clock-synchronized {
 value "4";
 description
 "Indicates that the clock is synchronized";
 }
 enum spike {
 value "5";
 description
 "Indicates that the local clock has not been
 synchronized with any NTP server.";
 }
}

typedef ntp-sync-state {
 enum unsynchronized {
 value "1";
 description
 "Indicates that the local clock has not been
 synchronized with any NTP server.";
 }
 enum clock-set {
 value "2";
 description
 "Indicates the clock is set.";
 }
 enum freq-not-determined {
 value "3";
 description
 "Indicates the clock is set but the frequency
 is not determined.";
 }
 enum clock-synchronized {
 value "4";
 description
 "Indicates that the clock is synchronized";
 }
 enum spike {
 value "5";
 description

"Indicates a time difference of more than 128 milliseconds is detected between NTP server and client clock. The clock change will take effect in XXX seconds.");
}
}
description
"This defines NTP clock sync states."
}

/* features */
feature ntp-port {
 description
 "Support for NTP port configuration"
 reference
}

feature authentication {
 description
 "Support for NTP symmetric key authentication"
 reference
}

feature access-rules {
 description
 "Support for NTP access control"
 reference
}

feature unicast-configuration {
 description
 "Support for NTP client/server or active/passive in unicast"
 reference
}

feature broadcast-server {
 description
 "Support for broadcast server"
 reference
}

feature broadcast-client {
 description
 "Support for broadcast client";
 reference
}

feature multicast-server {
 description
 "Support for multicast server";
 reference
}

feature multicast-client {
 description
 "Support for multicast client";
 reference
}

feature manycast-server {
 description
 "Support for manycast server";
 reference
}

feature manycast-client {
 description
 "Support for manycast client";
 reference
}

/* Groupings */
grouping authentication-key {
 description

"To define an authentication key for a Network Time Protocol (NTP) time source."

leaf key-id {
 type uint32 {
 range "1..max";
 }
 description "Authentication key identifier.";
}

leaf algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description "Authentication algorithm.";
}

leaf key {
 nacm:default-deny-all;
 type ianach:crypt-hash;
 description "The key";
}

leaf istrusted {
 type boolean;
 description "Key-id is trusted or not";
}

grouping authentication {
 description "Authentication.";
 choice authentication-type {
 description "Type of authentication.";
 case symmetric-key {
 leaf key-id {
 type leafref {
 path "/ntp:ntp/ntp:authentication/
 + "ntp:authentication-keys/ntp:key-id";
 }
 description "Authentication key id referenced in this association.";
 }
 }
 }
}
grouping statistics {
 description "NTP packet statistic.";
 leaf packet-sent {
 type yang:counter32;
 description "The total number of NTP packets delivered to the transport service by this NTP entity for this association. Discontinuities in the value of this counter can occur upon cold start or reinitialization of the NTP entity, the management system and at other times as indicated by discontinuities in the value of sysUpTime.";
 }
 leaf packet-sent-fail {
 type yang:counter32;
 description "The number of times NTP packets sending failed.";
 }
 leaf packet-received {
 type yang:counter32;
 description "The total number of NTP packets delivered to the NTP entity from this association. Discontinuities in the value of this counter can occur upon cold start or reinitialization of the NTP entity, the management system and at other times as indicated by discontinuities in the value of sysUpTime.";
 }
 leaf packet-dropped {
 type yang:counter32;
 description "The total number of NTP packets that were delivered to this NTP entity from this association and this entity was not able to process due to an NTP protocol error. Discontinuities in the value of this counter can occur upon cold start or reinitialization of the NTP entity, the management system and at other times as indicated by discontinuities in the value of sysUpTime.";
 }
}

grouping common-attributes {
 description
"NTP common attributes for configuration.");
leaf minpoll {
 type ntp-minpoll;
 description
 "The minimum poll interval used in this association.";
}
leaf maxpoll {
 type ntp-maxpoll;
 description
 "The maximum poll interval used in this association.";
}
leaf port {
 if-feature ntp-port;
 type inet:port-number {
 range "123 | 1025..max";
 }
 default "123";
 description
 "Specify the port used to send NTP packets.";
}
leaf version {
 type ntp-version;
 description
 "NTP version.";
}
reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
}
grouping association-ref {
 description
 "Reference to NTP association mode";
 leaf associations-address {
 type leafref {
 path "/ntp:ntp/ntp:associations/ntp:address";
 }
 description
 "Indicates the association’s address
 which result in clock synchronization.";
 }
 leaf associations-local-mode {
 type leafref {
 path "/ntp:ntp/ntp:associations/ntp:local-mode";
 }
 description
 "Indicates the association’s local-mode
which result in clock synchronization.

leaf associations-isconfigured {
 type leafref {
 path "/ntp:ntp/ntp:associations/
 + "ntp:isconfigured";
 }
 description
 "The association was configured or dynamic
 which result in clock synchronization."
}

/* Configuration data nodes */
container ntp {
 presence
 "NTP is enabled and system should attempt to
 synchronize the system clock with an NTP server
 from the 'ntp/associations' list.";
 description
 "Configuration parameters for NTP."
 leaf port {
 if-feature ntp-port;
 type inet:port-number {
 range "123 | 1025..max";
 }
 default "123";
 description
 "Specify the port used to send and receive NTP packets."
 }
 container refclock-master {
 presence
 "NTP master clock is enabled.";
 description
 "Configures the local clock of this device as NTP server.";
 leaf master-stratum {
 type ntp-stratum;
 default "16";
 description
 "Stratum level from which NTP
 clients get their time synchronized.";
 }
 }
 container authentication {
 description
 "Configuration of authentication.";
 leaf auth-enabled {
 type boolean;
 }
 }
}
default false;
description
 "Controls whether NTP authentication is enabled
 or disabled on this device.";
}
list authentication-keys {
 key "key-id";
 uses authentication-key;
 description
 "List of authentication keys.";
}
}

container access-rules {
 description
 "Configuration to control access to NTP service
 by using NTP access-group feature.
 The access-mode identifies how the acl is
 applied with NTP.";
 list access-rule {
 key "access-mode";
 description
 "List of access rules.";
 leaf access-mode {
 type access-mode;
 description
 "NTP access mode. The definition of each possible values:
 peer(0): Both time request and control query can be
 performed.
 server(1): Enables the server access and query.
 synchronization(2): Enables the server access only.
 query(3): Enables control query only.";
 }
 leaf acl {
 type leafref {
 path "/acl:acls/acl:acl/acl:name";
 }
 description
 "Control access configuration to be used.";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
 }
}

container clock-state {
 config "false";
}
description
 "Clock operational state of the NTP.";

container system-status {
 description
 "System status of NTP.";
 leaf clock-state {
 type ntp-clock-status;
 mandatory true;
 description
 "The state of system clock. The definition of each
 possible value is:
 synchronized(0): Indicates local clock is synchronized.
 unsynchronized(1): Indicates local clock is not
 synchronized.";
 }
 leaf clock-stratum {
 type ntp-stratum;
 mandatory true;
 description
 "The NTP entity’s own stratum value. Should be a stratum
 of syspeer + 1 (or 16 if no syspeer).";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
 }
 leaf clock-refid {
 type union {
 type inet:ipv4-address;
 type binary {
 length "4";
 }
 type string {
 length "4";
 }
 }
 mandatory true;
 description
 "IPv4 address or first 32 bits of the MD5 hash of
 the IPv6 address or reference clock of the peer to
 which clock is synchronized.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
 }
}

uses association-ref {
 description
leaf nominal-freq {
 type decimal64 {
 fraction-digits 4;
 }
 units Hz;
 mandatory true;
 description
 "The nominal frequency of the local clock."
 reference
}

leaf actual-freq {
 type decimal64 {
 fraction-digits 4;
 }
 units Hz;
 mandatory true;
 description
 "The actual frequency of the local clock."
 reference
}

leaf clock-precision {
 type uint8;
 units Hz;
 mandatory true;
 description
 "Clock precision of this system in integer format (prec=2^(-n)). A value of 5 would mean 2^-5 = 31.25 ms."
 reference
}

leaf clock-offset {
 type decimal64 {
 fraction-digits 3;
 }
 units milliseconds;
 description
 "The time offset to the current selected reference time source e.g., '0.032' or '1.232'."
leaf root-delay {
 type decimal64 {
 fraction-digits 3;
 }
 units milliseconds;
 description "Total delay along the path to root clock.";
}
leaf root-dispersion {
 type decimal64 {
 fraction-digits 3;
 }
 units milliseconds;
 description "The dispersion between the local clock and the root clock, e.g., '6.927'.";
}
leaf reference-time {
 type yang:date-and-time;
 description "The reference timestamp.";
}
leaf sync-state {
 type ntp-sync-state;
 mandatory true;
 description "The synchronization status of the local clock.";
}
list unicast-configuration {
 key "address type";
 description "List of NTP unicast-configurations.";
 leaf address {
 type inet:host;
 description
"Address of this association."
}
leaf type {
 type unicast-configuration-type;
 description
 "Use client association mode. This device
 will not provide synchronization to the
 configured NTP server."
}
container authentication{
 description
 "Authentication used for this association.";
 uses authentication;
}
leaf prefer {
 type boolean;
 default "false";
 description
 "Whether this association is preferred or not.";
}
leaf burst {
 type boolean;
 default "false";
 description
 "If set, a series of packets are sent instead of a single
 packet within each synchronization interval to achieve
 faster synchronization.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
}
leaf iburst {
 type boolean;
 default "false";
 description
 "If set, a series of packets are sent instead of a single
 packet within the initial synchronization interval to
 achieve faster initial synchronization.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
}
leaf source {
 type if:interface-ref;
 description
 "The interface whose IP address is used by this association
 as the source address.";
}
uses common-attributes {
 description
 "Common attributes like port, version, min and max poll.";
}

list associations {
 key "address local-mode isconfigured";
 config "false";
 description
 "List of NTP associations. Here address, local-mode and isconfigured is required to uniquely identify a particular association. Lets take following examples -

1) If RT1 acting as broadcast server, and RT2 acting as broadcast client, then RT2 will form dynamic association with address as RT1, local-mode as client and isconfigured as false.

2) When RT2 is configured with unicast-server RT1, then RT2 will form association with address as RT1, local-mode as client and isconfigured as true.

Thus all 3 leaves are needed as key to unique identify the association."

leaf address {
 type inet:host;
 description
 "The address of this association. Represents the IP address of a unicast/multicast/broadcast address."
}

leaf local-mode {
 type association-mode;
 description
 "Local mode of this NTP association."
}

leaf isconfigured {
 type boolean;
 description
 "Indicates if this association is configured or dynamically learned."
}

leaf stratum {
 type ntp-stratum;
 description
 "The association stratum value."
 reference
}
leaf refid {
 type union {
 type inet:ipv4-address;
 type binary {
 length "4";
 }
 type string {
 length "4";
 }
 }
 description
 "The refclock driver ID, if available.
 -- a refclock driver ID like '127.127.1.0' for local clock sync
 -- uni/multi/broadcast associations will look like '20.1.1.1'
 -- sync with primary source will look like 'DCN', 'NIST', 'ATOM'";
 reference
}
leaf authentication{
 type leafref {
 path "/ntp:ntp/ntp:authentication/" + "ntp:authentication-keys/ntp:key-id";
 }
 description
 "Authentication Key used for this association.";
}
leaf prefer {
 type boolean;
 default "false";
 description
 "Indicates if this association is preferred.";
}
leaf peer-interface {
 type if:interface-ref;
 description
 "The interface which is used for communication.";
}
uses common-attributes {
 description
 "Common attributes like port, version, min and max poll.";
leaf reach {
 type uint8;
 description "The reachability of the configured server or peer.";
}

leaf unreach {
 type uint8;
 description "The unreachability of the configured server or peer.";
}

leaf poll {
 type uint8;
 units seconds;
 description "The polling interval for current association";
}

leaf now {
 type uint32;
 units seconds;
 description "The time since the NTP packet was not received or last synchronized.";
}

leaf offset {
 type decimal64 {
 fraction-digits 3;
 }
 units milliseconds;
 description "The offset between the local clock and the peer clock, e.g., ‘0.032’ or ‘1.232’";
 reference "RFC 5905: Network Time Protocol Version 4: Protocol and
leaf delay {
 type decimal64 {
 fraction-digits 3;
 }
 units milliseconds;
 description
 "The network delay between the local clock
 and the peer clock.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
}

leaf dispersion {
 type decimal64 {
 fraction-digits 3;
 }
 units milliseconds;
 description
 "The root dispersion between the local clock
 and the peer clock.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
}

leaf originate-time {
 type yang:date-and-time;
 description
 "This is the local time, in timestamp format,
 when latest NTP packet was sent to peer(T1).";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
}

leaf receive-time {
 type yang:date-and-time;
 description
 "This is the local time, in timestamp format,
 when latest NTP packet arrived at peer(T2).
 If the peer becomes unreachable the value is set to zero.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
}

leaf transmit-time {
 type yang:date-and-time;
 description
"This is the local time, in timestamp format, at which the NTP packet departed the peer (T3). If the peer becomes unreachable the value is set to zero.";

reference
}
leaf input-time {

type yang:date-and-time;

description
"This is the local time, in timestamp format, when the latest NTP message from the peer arrived (T4). If the peer becomes unreachable the value is set to zero.";

reference
}

container ntp-statistics {

description
"Per Peer packet send and receive statistics.";

uses statistics {

description
"NTP send and receive packet statistics.";
}
}

container interfaces {

description
"Configuration parameters for NTP interfaces.";

list interface {

type if:interface-ref;

description
"The interface name.";
}

container broadcast-server {

presence
"NTP broadcast-server is configured";

leaf ttl {

type uint8;

description
"Configuration of broadcast server.";
}
"Specifies the time to live (TTL) for a broadcast packet."
}
container authentication{
 description
 "Authentication used for this association.";
 uses authentication;
}
uses common-attributes {
 description
 "Common attribute like port, version, min and max poll.";
}
reference
}

container broadcast-client {
 presence
 "NTP broadcast-client is configured.";
 description
 "Configuration of broadcast-client.";
 reference
}

list multicast-server {
 key "address";
 description
 "Configuration of multicast server.";
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The IP address to send NTP multicast packets.";
 }
 leaf ttl {
 type uint8;
 description
 "Specifies the time to live (TTL) for a multicast packet.";
 }
 container authentication{
 description
 "Authentication used for this association.";
 uses authentication;
 }
}
uses common-attributes {
 description
 "Common attributes like port, version, min and max poll.";
}
reference
}
list multicast-client {
 key "address";
 description
 "Configuration of multicast-client.";
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The IP address of the multicast group to join.";
 }
}
list manycast-server {
 key "address";
 description
 "Configuration of manycast server.";
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The multicast group IP address to receive manycast client messages.";
 }
 reference
}
list manycast-client {
 key "address";
 description
 "Configuration of manycast-client.";
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The group IP address that the manycast client broadcasts the request message to.";
 }
 container authentication{
 description
 "Authentication used for this association.";
 uses authentication;
leaf ttl {
 type uint8;
 description
 "Specifies the maximum time to live (TTL) for
 the expanding ring search.";
}
leaf minclock {
 type uint8;
 description
 "The minimum multicast survivors in this
 association.";
}
leaf maxclock {
 type uint8;
 description
 "The maximum multicast candidates in this
 association.";
}
leaf beacon {
 type uint8;
 description
 "The maximum interval between beacons in this
 association.";
}
uses common-attributes {
 description
 "Common attributes like port, version, min and
 max poll.";
}
reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification";
}
container ntp-statistics {
 config "false";
 description
 "Total NTP packet statistics.";
 uses statistics {
 description
 "NTP send and receive packet statistics.";
 }
}
8. Usage Example

This section includes examples for illustration purposes.

8.1. Unicast association

This example describes how to configure a preferred unicast server present at 192.0.2.1 running at port 1025 with authentication-key 10 and version 4

```
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <target>
    <running/>
  </target>
  <config>
    <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
      <unicast-configuration>
        <address>192.0.2.1</address>
        <type>server</type>
        <prefer>true</prefer>
        <version>4</version>
        <port>1025</port>
        <authentication>
          <symmetric-key>
            <key-id>10</key-id>
          </symmetric-key>
        </authentication>
      </unicast-configuration>
    </ntp>
  </config>
</edit-config>
```

An example with IPv6 would use an IPv6 address (say 2001:DB8::1) in the "address" leaf with no change in any other data tree.

This example is for retrieving unicast configurations -

```
<get>
  <filter type="subtree">
      <sys:unicast-configuration>
        </sys:unicast-configuration>
    </sys:ntp>
  </filter>
</get>
```

```
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
```


8.2. Refclock master

This example describes how to configure reference clock with stratum 8 -
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <refclock-master>
 <master-stratum>8</master-stratum>
 </refclock-master>
 </ntp>
 </config>
</edit-config>

This example describes how to get reference clock configuration -

<get>
 <filter type="subtree">
 <sys:refclock-master/>
 </sys:ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <refclock-master>
 <master-stratum>8</master-stratum>
 </refclock-master>
 </ntp>
</data>

8.3. Authentication configuration

This example describes how to enable authentication and configure trusted authentication key 10 with mode as md5 and key as ‘abcd’ -
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <authentication>
 <auth-enabled>true</auth-enabled>
 <authentication-keys>
 <key-id>10</key-id>
 <algorithm>md5</algorithm>
 <key>abcd</key>
 <istrusted>true</istrusted>
 </authentication-keys>
 </authentication>
 </ntp>
 </config>
</edit-config>

This example describes how to get authentication related configuration -

<get>
 <filter type="subtree">
 <sys:authentication/>
 </sys:ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <authentication>
 <auth-enabled>false</auth-enabled>
 <trusted-keys/>
 <authentication-keys>
 <key-id>10</key-id>
 <algorithm>md5</algorithm>
 <key>abcd</key>
 <istrusted>true</istrusted>
 </authentication-keys>
 </authentication>
 </ntp>
</data>
8.4. Access configuration

This example describes how to configure access mode "peer" associated with acl 2000 -

<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <access-rules>
 <access-rule>
 <access-mode>peer</access-mode>
 <acl>2000</acl>
 </access-rule>
 </access-rules>
 </ntp>
 </config>
</edit-config>

This example describes how to get access related configuration -

<get>
 <filter type="subtree">
 <sys:access-rules/>
 </sys:ntp>
 </filter>
</get>

8.5. Multicast configuration

This example describes how to configure multicast-server with address as "224.1.1.1", port as 1025 and authentication keyid as 10 -
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-server>
 <address>224.1.1.1</address>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <port>1025</port>
 </multicast-server>
 </interface>
 </interfaces>
 </ntp>
 </config>
</edit-config>

This example describes how to get multicast-server related configuration -
<get>
 <filter type="subtree">
 <sys:interfaces>
 <sys:interface>
 <sys:multicast-server>
 </sys:multicast-server>
 </sys:interface>
 </sys:interfaces>
 </sys:ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-server>
 <address>224.1.1.1</address>
 <ttl>224.1.1.1</ttl>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <minpoll>6</minpoll>
 <maxpoll>10</maxpoll>
 <port>1025</port>
 <version>3</version>
 </multicast-server>
 </interface>
 </interfaces>
 </ntp>
</data>

This example describes how to configure multicast-client with address as "224.1.1.1" -
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-client>
 <address>224.1.1.1</address>
 </multicast-client>
 </interface>
 </interfaces>
 </ntp>
 </config>
</edit-config>

This example describes how to get multicast-client related configuration -

<get>
 <filter type="subtree">
 <sys:interfaces>
 <sys:interface>
 <sys:multicast-client>
 </sys:multicast-client>
 </sys:interface>
 </sys:interfaces>
 </sys:ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-client>
 <address>224.1.1.1</address>
 </multicast-client>
 </interface>
 </interfaces>
 </ntp>
</data>
This example describes how to configure manycast-client with address as "224.1.1.1", port as 1025 and authentication keyid as 10 -

```xml
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <target>
    <running/>
  </target>
  <config>
    <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
      <interfaces>
        <interface>
          <name>Ethernet3/0/0</name>
          <manycast-client>
            <address>224.1.1.1</address>
            <authentication>
              <symmetric-key>
                <key-id>10</key-id>
              </symmetric-key>
            </authentication>
            <port>1025</port>
          </manycast-client>
        </interface>
      </interfaces>
    </ntp>
  </config>
</edit-config>
```

This example describes how to get manycast-client related configuration -
<get>
 <filter type="subtree">
 <sys:interfaces>
 <sys:interface>
 <sys:manycast-client />
 </sys:interface>
 </sys:interfaces>
 </sys:ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-client>
 <address>224.1.1.1</address>
 </manycast-client>
 </interface>
 </interfaces>
 </ntp>
</data>

This example describes how to configure manycast-server with address as "224.1.1.1" -
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-server>
 <address>224.1.1.1</address>
 </manycast-server>
 </interface>
 </interfaces>
 </ntp>
 </config>
</edit-config>

This example describes how to get manycast-server related configuration -

<get>
 <filter type="subtree">
 <sys:interfaces>
 <sys:interface>
 <sys:manycast-server/>
 </sys:interface>
 </sys:interfaces>
 </sys:ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-server>
 <address>224.1.1.1</address>
 </manycast-server>
 </interface>
 </interfaces>
 </ntp>
</data>
8.7. Clock state

This example describes how to get clock current state -

```xml
<get>
  <filter type="subtree">
      <sys:clock-state/>
    </sys:ntp>
  </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
    <clock-state>
      <system-status>
        <clock-state>synchronized</clock-state>
        <clock-stratum>7</clock-stratum>
        <clock-refid>192.0.2.1</clock-refid>
        <associations-address>192.0.2.1</associations-address>
        <associations-local-mode>client</associations-local-mode>
        <associations-isconfigured>yes</associations-isconfigured>
        <nominal-freq>100.0</nominal-freq>
        <actual-freq>100.0</actual-freq>
        <clock-precision>18</clock-precision>
        <clock-offset>0.025</clock-offset>
        <root-delay>0.5</root-delay>
        <root-dispersion>0.8</root-dispersion>
        <reference-time>10-10-2017 07:33:55.258 Z+05:30</reference-time>
      </system-status>
      <sync-state>clock-synchronized</sync-state>
    </clock-state>
  </ntp>
</data>
```

8.8. Get all association

This example describes how to get all association present in the system -

```xml
<get>
  <filter type="subtree">
      <sys:clock-state/>
    </sys:ntp>
  </filter>
</get>
```
<get>
 <filter type="subtree">
 <sys:associations>
 </sys:associations>
 </sys:ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <associations>
 <address>192.0.2.1</address>
 <stratum>9</stratum>
 <refid>20.1.1.1</refid>
 <local-mode>client</local-mode>
 <isconfigured>true</isconfigured>
 <authentication-key>10</authentication-key>
 <prefer>true</prefer>
 <peer-interface>Ethernet3/0/0</peer-interface>
 <minpoll>6</minpoll>
 <maxpoll>10</maxpoll>
 <port>1025</port>
 <version>4</version>
 <reach>255</reach>
 <unreach>0</unreach>
 <poll>128</poll>
 <now>10</now>
 <offset>0.025</offset>
 <delay>0.5</delay>
 <dispersion>0.6</dispersion>
 <originate-time>10-10-2017 07:33:55.253 Z+05:30</originate-time>
 <receive-time>10-10-2017 07:33:55.258 Z+05:30</receive-time>
 <transmit-time>10-10-2017 07:33:55.300 Z+05:30</transmit-time>
 <input-time>10-10-2017 07:33:55.305 Z+05:30</input-time>
 <ntp-statistics>
 <packet-sent>20</packet-sent>
 <packet-sent-fail>0</packet-sent-fail>
 <packet-received>20</packet-received>
 <packet-dropped>0</packet-dropped>
 </ntp-statistics>
 </associations>
 </ntp>
</data>
8.9. Global statistic

This example describes how to get clock current state -

```xml
<get>
  <filter type="subtree">
      <sys:ntp-statistics>
        </sys:ntp-statistics>
    </sys:ntp>
  </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
    <ntp-statistics>
      <packet-sent>30</packet-sent>
      <packet-sent-fail>5</packet-sent-fail>
      <packet-received>20</packet-received>
      <packet-dropped>2</packet-dropped>
    </ntp-statistics>
  </ntp>
</data>
```

9. IANA Considerations

This document registers a URI in the "IETF XML Registry" [RFC3688]. Following the format in RFC 3688, the following registration has been made.

Registrant Contact: The IESG.

XML: N/A; the requested URI is an XML namespace.

This document registers a YANG module in the "YANG Module Names" registry [RFC6020].

Name: ietf-ntp

Prefix: ntp

Reference: RFC XXXX
10. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

/ntp/port - This data node specify the port number to be used to send NTP packets. Unexpected changes could lead to disruption and/or network misbehavior.

/ntp/authentication and /ntp/access-rules - The entries in the list include the authentication and access control configurations. Care should be taken while setting these parameters.

/ntp/unicast-configuration - The entries in the list include all unicast configurations (server or peer mode), and indirectly creates or modify the NTP associations. Unexpected changes could lead to disruption and/or network misbehavior.

/ntp/interfaces/interface - The entries in the list inclode all per-interface configurations related to broadcast, multicast and manycast mode, and indirectly creates or modify the NTP associations. Unexpected changes could lead to disruption and/or network misbehavior.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or
notification) to these data nodes. These are the subtrees and data
nodes and their sensitivity/vulnerability:

/ntp/authentication/authentication-keys - The entries in the list
includes all the NTP authentication keys. This information is
sensitive and can be exploited and thus unauthorized access to
this needs to be curtailed.

/ntp/associations - The entries in the list includes all active
NTP associations of all modes. Unauthorized access to this also
needs to be curtailed.

11. Acknowledgments

The authors would like to express their thanks to Sladjana Zoric,
Danny Mayer, Harlan Stenn, Ulrich Windl, Miroslav Lichvar, Maurice
Angermann, and Watson Ladd for their review and suggestions.

12. References

12.1. Normative References

Specification, Implementation and Analysis", RFC 1305,
DOI 10.17487/RFC1305, March 1992,

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,

Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

"Definitions of Managed Objects for Network Time Protocol

12.2. Informative References

Authors’ Addresses

Nan Wu
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

Email: eric.wu@huawei.com

Dhruv Dhody
Huawei
Divyashree Techno Park, Whitefield
Bangalore, Kanataka 560066
India

Email: dhruv.ietf@gmail.com
Ankit kumar Sinha
RtBrick Inc.
Bangalore, Kanataka
India

Email: ankit.ietf@gmail.com

Anil Kumar S N
RtBrick Inc.
Bangalore, Kanataka
India

Email: anil.ietf@gmail.com

Yi Zhao
Ericsson
China Digital Kingdom Bld., No.1 WangJing North Rd.
Beijing 100102
China

Email: yi.z.zhao@ericsson.com