Secure Transport for PCEP
draft-ietf-pce-pceps-14

Abstract

The Path Computation Element Communication Protocol (PCEP) defines the mechanisms for the communication between a Path Computation Client (PCC) and a Path Computation Element (PCE), or among PCEs. This document describes the usage of Transport Layer Security (TLS) to enhance PCEP security, hence the PCEPS acronym proposed for it. The additional security mechanisms are provided by the transport protocol supporting PCEP, and therefore they do not affect the flexibility and extensibility of PCEP.

This document updates RFC 5440 regarding the PCEP initialization phase specification.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 23, 2017.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Table of Contents

1. Introduction ... 3
2. Requirements Language 4
3. Applying PCEPS .. 4
 3.1. Overview .. 4
 3.2. Initiating the TLS Procedures 4
 3.3. The StartTLS Message 6
 3.4. TLS Connection Establishment 8
 3.5. Peer Identity ... 10
 3.6. Connection Establishment Failure 11
4. Discovery Mechanisms ... 11
 4.1. DANE Applicability 12
5. Backward Compatibility .. 12
6. IANA Considerations .. 12
 6.1. New PCEP Message 12
 6.2. New Error-Values 13
7. Security Considerations 13
8. Manageability Considerations 14
 8.1. Control of Function and Policy 14
 8.2. Information and Data Models 15
 8.3. Liveness Detection and Monitoring 15
 8.4. Verify Correct Operations 15
 8.5. Requirements on Other Protocols 15
 8.6. Impact on Network Operation 16
9. Acknowledgements .. 16
1. Introduction

The Path Computation Element Communication Protocol (PCEP) \[RFC5440\] defines the mechanisms for the communication between a Path Computation Client (PCC) and a Path Computation Element (PCE), or between two PCEs. These interactions include requests and replies that can be critical for a sustainable network operation and adequate resource allocation, and therefore appropriate security becomes a key element in the PCE infrastructure. As the applications of the PCE framework evolves, and more complex service patterns emerge, the definition of a secure mode of operation becomes more relevant.

\[RFC5440\] analyzes in its section on security considerations the potential threats to PCEP and their consequences, and discusses several mechanisms for protecting PCEP against security attacks, without making a specific recommendation on a particular one or defining their application in depth. Moreover, \[RFC6952\] remarks the importance of ensuring PCEP communication privacy, especially when PCEP communication endpoints do not reside in the same Autonomous System (AS), as the interception of PCEP messages could leak sensitive information related to computed paths and resources.

Among the possible solutions mentioned in these documents, Transport Layer Security (TLS) \[RFC5246\] provides support for peer authentication, and message encryption and integrity. TLS supports the usage of well-known mechanisms to support key configuration and exchange, and means to perform security checks on the results of PCE discovery procedures via Interior Gateway Protocol (IGP) \([\text{RFC5088}]\) and \([\text{RFC5089}]\).

This document describes a security container for the transport of PCEP messages, and therefore they do not affect the flexibility and extensibility of PCEP.

This document describes how to apply TLS in securing PCE interactions, including initiation of the TLS procedures, the TLS handshake mechanisms, the TLS methods for peer authentication, the applicable TLS ciphersuites for data exchange, and the handling of errors in the security checks. In the rest of the document we will refer to this usage of TLS to provide a secure transport for PCEP as "PCEPS".
2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Applying PCEPS

3.1. Overview

The steps involved in establishing a PCEPS session are as follows:

1. Establishment of a TCP connection.

2. Initiating the TLS procedures by the StartTLS message from PCE to PCC and from PCC to PCE.

3. Establishment of TLS connection.

4. Start exchanging PCEP messages as per [RFC5440].

Implementations SHOULD follow the best practices and recommendations for using TLS, as per [RFC7525].

It should be noted that this procedure updates what is defined in section 4.2.1 and section 6.7 of [RFC5440] regarding the initialization phase and the processing of messages prior to the Open message. The details of processing including backward compatibility are discussed in the following sections.

3.2. Initiating the TLS Procedures

Since PCEP can operate either with or without TLS, it is necessary for the PCEP speaker to indicate whether it wants to set up a TLS connection or not. For this purpose, this document specifies a new PCEP message called StartTLS. Thus the PCEP session is secured via TLS from the start before exchange of any other PCEP message (that includes the Open message). This document thus updates [RFC5440], which required the Open message to be the first PCEP message. In the case of a PCEP session using TLS the StartTLS message will be sent first.

The PCEP speaker MAY discover that the PCEP peer supports PCEPS or can be preconfigured to use PCEPS for a given peer (see Section 4 for more details). Securing via TLS of an existing PCEP session is not permitted, the session MUST be closed and re-established with TLS as per the procedure described in this document.
The StartTLS message is a PCEP message sent by a PCC to a PCE and by a PCE to a PCC in order to initiate the TLS procedure for PCEP. The Message-Type field of the PCEP common header for the StartTLS message is set to [TBA1 by IANA].

Once the TCP connection has been successfully established, the first message sent by the PCC to the PCE and by the PCE to the PCC MUST be a StartTLS message for the PCEPS. Note this is a significant change from [RFC5440] where the first PCEP message is the Open message.

A PCEP speaker receiving a StartTLS message, after any other PCEP exchange has taken place (by receiving or sending any other messages from either side) MUST treat it as an unexpected message and reply with a PCErr message with Error-Type set to [TBA2 by IANA] (PCEP StartTLS failure) and Error-value set to 1 (reception of StartTLS after any PCEP exchange), and MUST close the TCP connection. A PCEP speaker receiving any other message apart from StartTLS, Open, or PCErr as the first message, MUST treat it as an unexpected message and reply with a PCErr message with Error-Type set to [TBA2 by IANA] (PCEP StartTLS failure) and Error-value set to 2 (reception of any other message apart from StartTLS, Open, or PCErr message), and MUST close the TCP connection.

If the PCEP speaker that does not support PCEPS, receives a StartTLS message, it MUST behave according to the existing error mechanism described in section 6.2 of [RFC5440] (in case message is received prior to an Open message) or section 6.9 of [RFC5440] (for the case of reception of unknown message).

After the exchange of startTLS messages, if a PCEP speaker cannot establish a TLS connection for some reason (e.g. the required mechanisms for certificate revocation checking are not available), it MUST return a PCErr message (in clear) with Error-Type set to [TBA2 by IANA] (PCEP StartTLS failure) and Error-value set to:

- 3 (not without TLS) if it is not willing to exchange PCEP messages without the solicited TLS connection, and it MUST close the TCP session.
- 4 (ok without TLS) if it is willing to exchange PCEP messages without the solicited TLS connection, and it MUST close the TCP session. The peer MAY choose to re-establish the PCEP session without TLS next.

If the PCEP speaker supports PCEPS and can establish a TLS connection it MUST start the TLS connection establishment steps described in Section 3.4 before the PCEP initialization procedure (section 4.2.1 of [RFC5440]).
A PCEP speaker that does not support PCEPS or has learned the peer willingness to reestablish session without TLS, can send the Open message directly, as per [RFC5440].

Given the asymmetric nature of TLS for connection establishment it is relevant to identify the roles of each of the PCEP peers in it. The PCC SHALL act as TLS client, and the PCE SHALL act as TLS server, according to [RFC5246].

These procedures minimize the impact of PCEPS support in PCEP implementations without requiring additional dedicated ports for running PCEP with TLS.

As per the recommendation from [RFC7525] to avoid downgrade attacks, PCEP peers that support PCEPS, SHOULD default to strict TLS configuration i.e. do not allow non-TLS PCEP sessions to be established. PCEPS implementations MAY provide an option to allow the operator to manually override strict TLS configuration and allow unsecured connections. Execution of this override SHOULD trigger a warning about the security implications of permitting unsecured connections.

3.3. The StartTLS Message

The StartTLS message is used to initiate the TLS procedure for a PCEPS session between the PCEP peers. A PCEP speaker sends the StartTLS message to request negotiation and establishment of TLS connection for PCEP. On receiving a StartTLS message from the PCEP peer (i.e. when the PCEP speaker has sent and received StartTLS message) it is ready to start TLS negotiation and establishment and move to steps described in Section 3.4.

The collision resolution procedures described in [RFC5440] for the exchange of Open messages MUST be applied by the PCEP peers during the exchange of StartTLS messages.

The format of a StartTLS message is as follows:

```
<StartTLS Message>::= <Common Header>
```

The StartTLS message MUST contain only the PCEP common header with Message-Type field set to [TBA1 by IANA].

Once the TCP connection has been successfully established and the StartTLS message sent, the sender MUST start a timer called StartTLSWait timer, after the expiration of which, if no StartTLS
message has been received, it MUST send a PCErr message and releases
the TCP connection with Error-Type set to [TBA2 by IANA] and Error-
value set to 5 (no StartTLS message received before the expiration of
the StartTLSWait timer). A RECOMMENDED value for StartTLSWait timer
is 60 seconds.

```
|--|--|--        |--|--|--
|   PCC       |    |    PCE   |
|--|--|--        |--|--|--
     StartTLS  
msg
-------
   \    StartTLS
   \  msg
   \   --------
   /   /
   /   -->
<------
:-------TLS:-------
: Establishment:

:-------PCEP:-------

Figure 1: Both PCEP Speaker supports PCEPS
```

```
|--|--|--        |--|--|--
|   PCC       |    |    PCE   |
|--|--|--        |--|--|--
     StartTLS  
msg
-------
   \    StartTLS
   \  msg
   \   --------
   /   /
   /   -->
<------
:-------PCEPS:-------
: ESTABLISHMENT:::

STRU:TLS:

:-------PCEP:-------

Figure 2: Both PCEP Speaker supports PCEPS, But cannot establish TLS

```
3.4. TLS Connection Establishment

Once the establishment of TLS has been agreed by the PCEP peers, the connection establishment SHALL follow the following steps:

1. Immediately negotiate TLS sessions according to [RFC5246]. The following restrictions apply:

 * Support for TLS v1.2 [RFC5246] or later is REQUIRED.
 * Support for certificate-based mutual authentication is REQUIRED.
 * Negotiation of mutual authentication is REQUIRED.
 * Negotiation of a ciphersuite providing for integrity protection is REQUIRED.
 * Negotiation of a ciphersuite providing for confidentiality is RECOMMENDED.
 * Support for and negotiation of compression is OPTIONAL.
* PCEPS implementations MUST, at a minimum, support negotiation of the TLS_RSA_WITH_AES_128_GCM_SHA256, and SHOULD support TLS_RSA_WITH_AES_256_GCM_SHA384 as well [RFC5288]. In addition, PCEPS implementations MUST support negotiation of the mandatory-to-implement ciphersuites required by the versions of TLS that they support.

2. Peer authentication can be performed in any of the following two REQUIRED operation models:

* TLS with X.509 certificates using Public-Key Infrastructure Exchange (PKIX) trust models:

 + Implementations MUST allow the configuration of a list of trusted Certification Authorities (CAs) for incoming connections.

 + Certificate validation MUST include the verification rules as per [RFC5280].

 + PCEPS implementations SHOULD incorporate revocation methods (CRL downloading, OCSP...) according to the trusted CA policies.

 + Implementations SHOULD indicate their trusted CAs. For TLS 1.2, this is done using [RFC5246], Section 7.4.4, "certificateAuthorities" (server side) and [RFC6066], Section 6 "Trusted CA Indication" (client side).

 + Peer validation always SHOULD include a check on whether the locally configured expected DNS name or IP address of the peer that is contacted matches its presented certificate. DNS names and IP addresses can be contained in the Common Name (CN) or subjectAltName entries. For verification, only one of these entries is to be considered. The following precedence applies: for DNS name validation, subjectAltName:DNS has precedence over CN; for IP address validation, subjectAltName:iPAddr has precedence over CN.

 + Implementations MAY allow the configuration of a set of additional properties of the certificate to check for a peer’s authorization to communicate (e.g., a set of allowed values in subjectAltName:URI or a set of allowed X509v3 Certificate Policies)

* TLS with X.509 certificates using certificate fingerprints: Implementations MUST allow the configuration of a list of
trusted certificates, identified via fingerprint of the Distinguished Encoding Rules (DER) encoded certificate octets. Implementations MUST support SHA-256 as defined by [SHS] as the hash algorithm for the fingerprint.

3. Start exchanging PCEP messages.

To support TLS re-negotiation both peers MUST support the mechanism described in [RFC5746]. Any attempt to initiate a TLS handshake to establish new cryptographic parameters not aligned with [RFC5746] SHALL be considered a TLS negotiation failure.

3.5. Peer Identity

Depending on the peer authentication method in use, PCEPS supports different operation modes to establish peer’s identity and whether it is entitled to perform requests or can be considered authoritative in its replies. PCEPS implementations SHOULD provide mechanisms for associating peer identities with different levels of access and/or authoritativeness, and they MUST provide a mechanism for establishing a default level for properly identified peers. Any connection established with a peer that cannot be properly identified SHALL be terminated before any PCEP exchange takes place.

In TLS-X.509 mode using fingerprints, a peer is uniquely identified by the fingerprint of the presented certificate.

There are numerous trust models in PKIX environments, and it is beyond the scope of this document to define how a particular deployment determines whether a peer is trustworthy. Implementations that want to support a wide variety of trust models SHOULD expose as many details of the presented certificate to the administrator as possible so that the trust model can be implemented by the administrator. At least the following parameters of the X.509 certificate SHOULD be exposed:

- Peer’s IP address
- Peer’s fully qualified domain name (FQDN)
- Certificate Fingerprint
- Issuer
- Subject
- All X509v3 Extended Key Usage
o All X509v3 Subject Alternative Name

o All X509v3 Certificate Policies

[I-D.ietf-pce-stateful-sync-optimizations] specify a Speaker Entity Identifier TLV (SPEAKER-ENTITY-ID), as an optional TLV that MAY be included in the OPEN Object. It contains a unique identifier for the node that does not change during the lifetime of the PCEP speaker. An implementation would thus expose the speaker entity identifier as part of the X509v3 certificate, so that an implementation could use this identifier for the peer identification trust model.

In addition, a PCC MAY apply the procedures described in [RFC6698] DNS-Based Authentication of Named Entities (DANE) to verify its peer identity when using DNS discovery. See section Section 4.1 for further details.

3.6. Connection Establishment Failure

In case the initial TLS negotiation or the peer identity check fails, according to the procedures listed in this document, the peer MUST first send a PCErr message as per Section 3.2 and then terminate the session. It SHOULD follow the procedure listed in [RFC5440] to retry session setup along with an exponential back-off session establishment retry procedure.

4. Discovery Mechanisms

A PCE can advertise its capability to support PCEPS using the IGP advertisement and discovery mechanism. The PCE-CAP-FLAGS sub-TLV is an optional sub-TLV used to advertise PCE capabilities. It MAY be present within the PCE Discovery (PCED) sub-TLV carried by OSPF or IS-IS. [RFC5088] and [RFC5089] provide the description and processing rules for this sub-TLV when carried within OSPF and IS-IS, respectively. PCE capability bits are defined in [RFC5088]. A new capability flag bit for the PCE-CAP-FLAGS sub-TLV that can be announced as attribute to distribute PCEP security support information is proposed in [I-D.wu-pce-discovery-pceps-support]

When DNS is used by a PCC (or a PCE acting as a client, for the rest of the section, PCC refers to both) willing to use PCEPS to locate an appropriate PCE [I-D.wu-pce-dns-pce-discovery], the PCC as an initiating entity, chooses at least one of the returned FQDNs to resolve, which it does by performing DNS "A" or "AAAA" lookups on the FQDN. This will eventually result in an IPv4 or IPv6 address. The PCC SHALL use the IP address(es) from the successfully resolved FQDN (with the corresponding port number returned by the DNS Service
Record (SRV) lookup) as the connection address(es) for the receiving entity.

If the PCC fails to connect using an IP address but the "A" or "AAAA" lookups returned more than one IP address, then the PCC SHOULD use the next resolved IP address for that FDQN as the connection address.

If the PCC fails to connect using all resolved IP addresses for a given FDQN, then it SHOULD repeat the process of resolution and connection for the next FQDN returned by the SRV lookup based on the priority and weight.

If the PCC receives a response to its SRV query but it is not able to establish a PCEPS connection using the data received in the response, as initiating entity it MAY fall back to lookup a PCE that uses TCP as transport.

4.1. DANE Applicability

DANE [RFC6698] defines a secure method to associate the certificate that is obtained from a TLS server with a domain name using DNS, i.e., using the TLSA DNS resource record (RR) to associate a TLS server certificate or public key with the domain name where the record is found, thus forming a "TLSA certificate association". The DNS information needs to be protected by DNS Security (DNSSEC). A PCC willing to apply DANE to verify server identity MUST conform to the rules defined in section 4 of [RFC6698]. The server’s domain name must be authorized separately, as TLSA does not provide any useful authorization guarantees.

5. Backward Compatibility

The procedures described in this document define a security container for the transport of PCEP requests and replies carried by a TLS connection initiated by means of a specific extended message (StartTLS) that does not interfere with PCEP speaker implementations not supporting it.

If a PCEP implementation that does not support PCEPS receives a StartTLS message, it would behave according to the existing error mechanism of [RFC5440].

6. IANA Considerations

6.1. New PCEP Message

IANA is requested to allocate new message types within the "PCEP Messages" sub-registry of the PCEP Numbers registry, as follows:
6.2. New Error-Values

IANA is requested to allocate new Error Types and Error Values within the "PCEP-ERROR Object Error Types and Values" sub-registry of the PCEP Numbers registry, as follows:

<table>
<thead>
<tr>
<th>Error-</th>
<th>Meaning</th>
<th>Error-value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA2</td>
<td>StartTLS Failure</td>
<td>0:Unassigned</td>
<td>This document</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:Reception of StartTLS after any PCEP exchange</td>
<td>This document</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2:Reception of any other message apart from StartTLS, Open or PCErr</td>
<td>This document</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3:Failure, connection without TLS not possible</td>
<td>This document</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4:Failure, connection without TLS possible</td>
<td>This document</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5:No StartTLS message before StartTLSWait timer expiry</td>
<td>This document</td>
</tr>
</tbody>
</table>

7. Security Considerations

While the application of TLS satisfies the requirement on privacy as well as fine-grained, policy-based peer authentication, there are security threats that it cannot address. It may be advisable to apply additional protection measures, in particular in what relates to attacks specifically addressed to forging the TCP connection underpinning TLS, especially in the case of long-lived connections. One of these measures is the application of TCP-AO (TCP Authentication Option [RFC5925]), which is fully compatible with and deemed as complementary to TLS. The mechanisms to configure the requirements to use TCP-AO and other lower-layer protection measures with a particular peer are outside the scope of this document.

Since computational resources required by TLS handshake and ciphersuite are higher than unencrypted TCP, clients connecting to a PCEPS server can more easily create high load conditions and a malicious client might create a Denial-of-Service attack more easily.
Some TLS ciphersuites only provide integrity validation of their payload, and provide no encryption. This specification does not forbid the use of such ciphersuites, but administrators must weight carefully the risk of relevant internal data leakage that can occur in such a case, as explicitly stated by [RFC6952].

When using certificate fingerprints to identify PCEPS peers, any two certificates that produce the same hash value will be considered the same peer. Therefore, it is important to make sure that the hash function used is cryptographically uncompromised so that attackers are very unlikely to be able to produce a hash collision with a certificate of their choice. This document mandates support for SHA-256 as defined by [SHS], but a later revision may demand support for stronger functions if suitable attacks on it are known.

The guidance given in [RFC7525] SHOULD be followed to avoid attacks on TLS.

8. Manageability Considerations

All manageability requirements and considerations listed in [RFC5440] apply to PCEP protocol extensions defined in this document. In addition, requirements and considerations listed in this section apply.

8.1. Control of Function and Policy

A PCE or PCC implementation MUST allow configuring the PCEP security via TLS capabilities as described in this document.

A PCE or PCC implementation supporting PCEP security via TLS MUST support general TLS configuration as per [RFC5246]. At least the configuration of one of the trust models and its corresponding parameters, as described in Section 3.4 and Section 3.5, MUST be supported by the implementation.

A PCEP implementation SHOULD allow configuring the following PCEP security parameters:

- StartTLSWait timer value

PCEPS implementations MAY provide an option to allow the operator to manually override strict TLS configuration and allow unsecure connections. Execution of this override SHOULD trigger a warning about the security implications of permitting unsecure connections.
Further, the operator needs to develop suitable security policies around PCEP within his network. Further the PCEP peers SHOULD provide ways for the operator to complete the following tasks:

- Determine if a PCEP session is protected via PCEPS.
- Determine the version of TLS, the mechanism used for authentication, and the ciphersuite in use.
- Determine if the certificate could not be verified, and the reason for this circumstance.
- Inspect the certificate offered by the PCEP peer.
- Be warned if StartTLS procedure fails for the PCEP peers, that are known to support PCEPS, via configurations or capability advertisements.

8.2. Information and Data Models

The PCEP MIB module SHOULD be extended to include PCEPS capabilities, information, and status.

An implementation SHOULD allow the operator to configure the PCEPS capability and various TLS related parameters, as well as allow to view the current TLS status for a PCEP session. To serve this purpose, the PCEP YANG module [I-D.ietf-pce-pcep-yang] can be extended to include TLS related configuration and state.

8.3. Liveness Detection and Monitoring

Mechanisms defined in this document do not imply any new liveness detection and monitoring requirements in addition to those already listed in [RFC5440] and [RFC5246].

8.4. Verify Correct Operations

A PCEPS implementation SHOULD log error events and provide PCEPS failure statistics with reasons.

8.5. Requirements on Other Protocols

Mechanisms defined in this document do not imply any new requirements on other protocols.
8.6. Impact on Network Operation

Mechanisms defined in this document do not have any significant impact on network operations in addition to those already listed in [RFC5440], and the policy and management implications discussed above.

9. Acknowledgements

This specification relies on the analysis and profiling of TLS included in [RFC6614] and the procedures described for the STARTTLS command in [RFC4513].

We would like to thank Joe Touch for his suggestions and support regarding the TLS start mechanisms.

Thanks to Dan King for reminding the authors about manageability considerations.

Thanks to Cyril Margaria for shepherding this document.

Thanks to Dan Frost for the RTGDIR review.

10. References

10.1. Normative References

10.2. Informative References

Authors’ Addresses