PIM Message Type Space Extension and Reserved Bits

draft-ietf-pim-reserved-bits-04

Abstract

The PIM version 2 messages share a common message header format. The common header definition contains eight reserved bits. This document specifies how these bits may be used by individual message types, and creates a registry containing the per-message-type usage. This document also extends the PIM type space by defining three new message types. For each of the new types, four of the previously reserved bits are used to form an extended type range.

This document Updates RFC 7761 and RFC 3973 by defining the use of the currently Reserved field in the PIM common header. This document further updates RFC 7761 and RFC 3973, along with RFC 5015, RFC 5059, RFC 6754 and RFC 8364, by specifying the use of the currently Reserved bits for each PIM message.

This document obsoletes RFC 6166.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 22, 2020.
1. Introduction

The PIM version 2 messages share a common message header format defined in the PIM Sparse Mode [RFC7761] specification. The common header definition contains eight Reserved bits. While all message types use this common header, there is no document formally specifying that these bits are to be used per message type.

This document refers to the bits specified as Reserved in the common PIM header [RFC7761] as PIM message type Flag Bits, or simply Flag Bits, and it specifies that they are to be separately used on a per-message-type basis. It creates a registry containing the per-message-type usage.
This document Updates [RFC7761] and [RFC3973] by defining the use of the currently Reserved field in the PIM common header. This document further updates [RFC7761] and [RFC3973], along with [RFC5015], [RFC5059], [RFC6754] and [RFC8364], by specifying the use of the currently Reserved bits for each PIM message.

The currently defined PIM message types are in the range from 0 to 15. That type space is almost exhausted. Message type 15 was reserved by [RFC6166] for type space extension. In Section 5, this document specifies the use of the Flag Bits for message types 13, 14 and 15 in order to extend the PIM type space. This document Obsoletes [RFC6166].

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. PIM header common format

The common PIM header is defined in section 4.9 of [RFC7761]. This document updates the definition of the Reserved field and refers to that field as PIM message type Flag Bits, or simply Flag Bits. The new common header format is as below.

```
| PIM Ver | Type | Flag Bits | Checksum |
+---------+------|----------+---------+
```

Figure 1: New Common Header

The Flag Bits field is defined in Section 4. All other fields remain unchanged.

4. Flag Bit definitions

Unless otherwise specified, all the Flag Bits for each PIM type are Reserved [RFC8126]. They MUST be set to zero on transmission, and they MUST be ignored upon receipt. The specification of a new PIM type MUST indicate whether the bits should be treated differently.

When defining Flag Bits, it is helpful to have a well-defined way of referring to a particular bit. The most significant of the Flag
Bits, the bit immediately following the type field is referred to as bit 7. The least significant, the bit right in front of the checksum field is referred to as bit 0. This is shown in the diagram below.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PIM Ver| Type |7 6 5 4 3 2 1 0|           Checksum            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2: Flag Bits

4.1. Flag Bits for Type 4 (Bootstrap)

PIM message type 4 (Bootstrap) [RFC5059] defines Flag Bit 7 as No-Forward. The usage of the bit is defined in that document. The remaining Flag Bits are Reserved.

4.2. Flag Bits for Type 10 (DF Election)

PIM message type 10 (DF Election) [RFC5015] specifies that the four most significant Flag Bits (bits 4-7) are to be used as a Subtype. The usage of those bits is defined in that document. The remaining Flag Bits are Reserved.

4.3. Flag Bits for Type 12 (PFM)

PIM message type 12 (PFM) [RFC8364] defines Flag Bit 7 as No-Forward. The usage of the bit is defined in that document. The remaining Flag Bits are Reserved.

4.4. Flag Bits for Types 13, 14 and 15 (Type Space Extension)

These types and the corresponding Flag Bits are defined in Section 5.

5. PIM Type Space Extension

This document defines types 13, 14 and 15, such that each of these types has 16 subtypes, providing a total of 48 subtypes available for future PIM extensions. This is achieved by defining a new SubType field (see Figure 3) using the four most significant Flag Bits (bits 4-7). The notation type.subtype is used to reference these new extended types. The remaining four Flag Bits (bits 0-3) are Reserved to be used by each extended type (abbreviated as FB below).
6. Security Considerations

This document clarifies the use of the Flag Bits in the common PIM header and it extends the PIM type space. As such, there is no impact on security or changes to the considerations in [RFC7761] and [RFC3973].

7. IANA Considerations

This document updates the PIM Message Types registry to indicate which Flag Bits are defined for use by each of the PIM message types. The Registry should now reference this document instead of [RFC6166]. The Registration Policy remains IETF Review [RFC8126]. Assignments into this registry MUST define any non-default usage (see Section 4) of the Flag Bits in addition to defining the Type.

The updated PIM Message Types registry is shown below.
<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Flag Bits</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Hello</td>
<td>0-7: Reserved</td>
<td>[RFC3973][RFC7761]</td>
</tr>
<tr>
<td>1</td>
<td>Register</td>
<td>0-7: Reserved</td>
<td>[RFC7761]</td>
</tr>
<tr>
<td>2</td>
<td>Register Stop</td>
<td>0-7: Reserved</td>
<td>[RFC7761]</td>
</tr>
<tr>
<td>3</td>
<td>Join/Prune</td>
<td>0-7: Reserved</td>
<td>[RFC3973][RFC7761]</td>
</tr>
<tr>
<td>4</td>
<td>Bootstrap</td>
<td>0-6: Reserved</td>
<td>[RFC5059][RFC7761]</td>
</tr>
<tr>
<td></td>
<td>7: No-Forward</td>
<td></td>
<td>[RFC5059]</td>
</tr>
<tr>
<td>5</td>
<td>Assert</td>
<td>0-7: Reserved</td>
<td>[RFC3973][RFC7761]</td>
</tr>
<tr>
<td>6</td>
<td>Graft</td>
<td>0-7: Reserved</td>
<td>[RFC3973]</td>
</tr>
<tr>
<td>7</td>
<td>Graft-Ack</td>
<td>0-7: Reserved</td>
<td>[RFC3973]</td>
</tr>
<tr>
<td>8</td>
<td>Candidate RP Advertisement</td>
<td>0-7: Reserved</td>
<td>[RFC7761]</td>
</tr>
<tr>
<td>9</td>
<td>State Refresh</td>
<td>0-7: Reserved</td>
<td>[RFC3973]</td>
</tr>
<tr>
<td>10</td>
<td>DF Election</td>
<td>0-3: Reserved</td>
<td>[RFC5015]</td>
</tr>
<tr>
<td></td>
<td>4-7: Subtype</td>
<td></td>
<td>[RFC5015]</td>
</tr>
<tr>
<td>11</td>
<td>ECMP Redirect</td>
<td>0-7: Reserved</td>
<td>[RFC6754]</td>
</tr>
<tr>
<td>12</td>
<td>PIM Flooding Mechanism</td>
<td>0-6: Reserved</td>
<td>[RFC8364]</td>
</tr>
<tr>
<td></td>
<td>7: No-Forward</td>
<td></td>
<td>[RFC8364]</td>
</tr>
<tr>
<td></td>
<td>13.0-15.15 Unassigned</td>
<td>0-3: Unassigned</td>
<td>[this document]</td>
</tr>
</tbody>
</table>

8. References

8.1. Normative References
8.2. Informative References

Authors’ Addresses

Stig Venaas
Cisco Systems, Inc.
Tasman Drive
San Jose CA 95134
USA

Email: stig@cisco.com

Alvaro Retana
Futurewei Technologies, Inc.
2330 Central Expressway
Santa Clara CA 95050
USA

Email: alvaro.retana@futurewei.com