Using the GOST R 34.10-94, GOST R 34.10-2001 and GOST R 34.11-94 algorithms with the Internet X.509 Public Key Infrastructure Certificate and CRL Profile.

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than a "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on June 21, 2006.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This document supplements RFC 3279. It describes encoding formats, identifiers and parameter formats for the algorithms GOST R 34.10-94, GOST R 34.10-2001 and GOST R 34.11-94 for use in Internet X.509 Public Key Infrastructure (PKI).
1 Introduction

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

This document supplements RFC 3279 [PKALGS]. It describes the conventions for using the GOST R 34.10-94 and GOST R 34.10-2001 signature algorithms, VKO GOST R 34.10-94 and VKO GOST R 34.10-2001 key derivation algorithms, and GOST R 34.11-94 one-way hash function in the Internet X.509 Public Key Infrastructure (PKI) [PROFILE].

This document is a proposal put forward by the CRYPT-PRO Company to provide supplemental information and specifications needed by the "Russian Cryptographic Software Compatibility Agreement" community.

The algorithm identifiers and associated parameters for subject public keys that employ the GOST R 34.10-94 [GOSTR341094] / VKO GOST R 34.10-94 [CPALGS] or the GOST R 34.10-2001 [GOSTR341001] / VKO GOST R 34.10-2001 [CPALGS] algorithms, and the encoding format for the signatures produced by these algorithms are specified. Also, the algorithm identifiers for using the GOST R 34.11-94 one-way hash function with the GOST R 34.10-94 and GOST R 34.10-2001 signature algorithms are specified.

This specification defines the contents of the signatureAlgorithm, signatureValue, signature, and subjectPublicKeyInfo fields within...
Internet X.509 Certificates and CRLs. For each algorithm, the appropriate alternatives for the keyUsage certificate extension are provided.

ASN.1 modules, including all the definitions used in this document can be found in [CPALGS].

2 Algorithm Support

This section is an overview of cryptographic algorithms, that may be used within the Internet X.509 certificates and CRL profile [PROFILE]. It describes one-way hash functions and digital signature algorithms, that may be used to sign certificates and CRLs, and identifies OIDs and ASN.1 encoding for public keys contained in a certificate.

The conforming CAs and/or applications MUST fully support digital signatures and public keys for at least one of the specified algorithms.

2.1 One-way Hash Function

This section identifies the use of one-way, collision free hash function GOST R 34.11-94 - the only one that can be used in digital signature algorithms GOST R 34.10-94/2001. The data that is hashed for certificates and CRL signing is fully described in RFC 3280 [PROFILE].

2.1.1 One-way Hash Function GOST R 34.11-94

GOST R 34.11-94 has been developed by "GUBS of Federal Agency Government Communication and Information" and "All-Russian Scientific and Research Institute of Standardization". The algorithm GOST R 34.11-94 produces a 256-bit hash value of the arbitrary finite bit length input. This document does not contain the full GOST R 34.11-94 specification, which can be found in [GOSTR3411] in Russian. [Schneier95] ch. 18.11, p. 454. contains a brief technical description in English.

This function MUST always be used with parameter set identified by id-GostR3411-94-CryptoProParamSet (see section 8.2 of [CPALGS]).

2.2 Signature Algorithms

Conforming CAs may use GOST R 34.10-94 or GOST R 34.10-2001 signature algorithms to sign certificates and CRLs.

These signature algorithms MUST always be used with a one-way hash
function GOST R 34.11-94 as indicated in [GOSTR341094] and [GOSTR341001].

This section defines algorithm identifiers and parameters to be used in the signatureAlgorithm field in a Certificate or CertificateList.

2.2.1 Signature Algorithm GOST R 34.10-94

GOST R 34.10-94 has been developed by "GUBS of Federal Agency Government Communication and Information" and "All-Russian Scientific and Research Institute of Standardization". This document does not contain the full GOST R 34.10-94 specification, which can be found in [GOSTR341094] in Russian. [Schneier95] ch. 20.3, p. 495 contains a brief technical description in English.

The ASN.1 object identifier used to identify this signature algorithm is:

```
id-GostR3411-94-with-GostR3410-94 OBJECT IDENTIFIER ::= 
   { iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
      gostR3411-94-with-gostR3410-94(4) }
```

When the id-GostR3411-94-with-GostR3410-94 algorithm identifier appears as the algorithm field in an AlgorithmIdentifier, the encoding SHALL omit the parameters field. That is, the AlgorithmIdentifier SHALL be a SEQUENCE of one component: the OBJECT IDENTIFIER id-GostR3411-94-with-GostR3410-94.

The parameters in the subjectPublicKeyInfo field of the certificate of the issuer SHALL apply to the verification of the signature.

Signature algorithm GOST R 34.10-94 generates digital signature in the form of two 256-bit numbers r' and s. Its octet string representation consists of 64 octets, where first 32 octets contain big endian representation of s and second 32 octets contain big endian representation of r'.

Signature values in CMS [CMS] are represented as octet strings, and the output is used directly. However, signature values in certificates and CRLs [PROFILE] are represented as bit strings, and conversion is needed.

To convert a signature value to a bit string, the most significant bit of the first octet of the signature value SHALL become the first bit of the bit string, and so on through the least significant bit of the last octet of the signature value, which SHALL become the last bit of the bit string.
2.2.2 Signature Algorithm GOST R 34.10-2001

GOST R 34.10-2001 was developed by "GUBS of Federal Agency Government Communication and Information" and "All-Russian Scientific and Research Institute of Standardization". This document does not contain the full GOST R 34.10-2001 specification, which can be found in [GOSTR341001] in Russian.

The ASN.1 object identifier used to identify this signature algorithm is:

id-GostR3411-94-with-GostR3410-2001 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
 gostR3411-94-with-gostR3410-2001(3) }

When the id-GostR3411-94-with-GostR3410-2001 algorithm identifier appears as the algorithm field in an AlgorithmIdentifier, the encoding SHALL omit the parameters field. That is, the AlgorithmIdentifier SHALL be a SEQUENCE of one component: the OBJECT IDENTIFIER id-GostR3411-94-with-GostR3410-2001.

The parameters in the subjectPublicKeyInfo field of the certificate of the issuer SHALL apply to the verification of the signature.

Signature algorithm GOST R 34.10-2001 generates digital signature in the form of two 256-bit numbers r’ and s. Its octet string representation consists of 64 octets, where first 32 octets contain big endian representation of s and second 32 octets contain big endian representation of r’.

Signature values in CMS [CMS] are represented as octet strings, and the output is used directly. However, signature values in certificates and CRLs [PROFILE] are represented as bit strings, and conversion is needed.

To convert a signature value to a bit string, the most significant bit of the first octet of the signature value SHALL become the first bit of the bit string, and so on through the least significant bit of the last octet of the signature value, which SHALL become the last bit of the bit string.

2.3 Subject Public Key Algorithms

This section defines OIDs and public key parameters for public keys that employ the GOST R 34.10-94 [GOSTR341094] / VKO GOST R 34.10-94 [CPALGS] or the GOST R 34.10-2001 [GOSTR341001] / VKO GOST R 34.10-2001 [CPALGS] algorithms.
Use of the same key for both signature and key derivation is NOT RECOMMENDED. The intended application for the key MAY be indicated in the keyUsage certificate extension (see [PROFILE], Section 4.2.1.3).

2.3.1 GOST R 34.10-94 Keys

GOST R 34.10-94 public keys can be used for signature algorithm GOST R 34.10-94 [GOSTR341094] and for key derivation algorithm VKO GOST R 34.10-94 [CPALGS].

GOST R 34.10-94 public keys are identified by the following OID:

{id-GostR3410-94 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
 gostR3410-94(20) }}

SubjectPublicKeyInfo.algorithm.algorithm field (see RFC 3280 [PROFILE]) for GOST R 34.10-94 keys MUST be id-GostR3410-94.

When the id-GostR3410-94 algorithm identifier appears as the algorithm field in an AlgorithmIdentifier, the encoding MAY completely omit the parameters field or set it to null. Otherwise this field MUST have the following structure:

GostR3410-94-PublicKeyParameters ::=
 SEQUENCE {
 publicKeyParamSet
 OBJECT IDENTIFIER,
 digestParamSet
 OBJECT IDENTIFIER,
 encryptionParamSet
 OBJECT IDENTIFIER DEFAULT
 id-Gost28147-89-CryptoPro-A-ParamSet
 }

where:
* publicKeyParamSet - public key parameters identifier for GOST R 34.10-94 (see section 8.3 of [CPALGS])
* digestParamSet - parameters identifier for GOST R 34.11-94 (see section 8.2 of [CPALGS])
* encryptionParamSet - parameters identifier for GOST 28147-89 (see section 8.1 of [CPALGS])

Absence of parameters SHALL be processed as described in RFC 3280 [PROFILE], section 6.1, that is, parameters are inherited from the issuer certificate if possible.

The GOST R 34.10-94 public key MUST be ASN.1 DER encoded as an OCTET
STRING; this encoding shall be used as the contents (i.e., the value) of the subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo data element.

GostR3410-94-PublicKey ::= OCTET STRING -- public key, Y

GostR3410-94-PublicKey MUST must contain 128 octets of the little-endian representation of the public key Y = a^x (mod p), where a and p - parameters.

If the keyUsage extension is present in an end-entity certificate, which contains a GOST R 34.10-94 public key, the following values MAY be present:

digitalSignature;
nonRepudiation.
keyEncipherment;
keyAgreement.

If the keyAgreement or keyEncipherment extension is present in a certificate GOST R 34.10-94 public key, the following values MAY be present as well:

cipherOnly;
decipherOnly.

The keyUsage extension MUST NOT assert both encipherOnly and decipherOnly.

If the keyUsage extension is present in an CA or CRL signer certificate which contains a GOST R 34.10-94 public key, the following values MAY be present:

digitalSignature;
nonRepudiation;
keyCertSign;
cRLSign.

2.3.2 GOST R 34.10-2001 Keys

GOST R 34.10-2001 public keys can be used for signature algorithm GOST R 34.10-2001 [GOSTR341001] and for key derivation algorithm VKO GOST R 34.10-2001 [CPALGS].

GOST R 34.10-2001 public keys are identified by the following OID:

id-GostR3410-2001 OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) ru(643) rans(2) cryptopro(2) }
SubjectPublicKeyInfo.algorithm.algorithm field (see RFC 3280 [PROFILE]) for GOST R 34.10-2001 keys MUST be id-GostR3410-2001.

When the id-GostR3410-2001 algorithm identifier appears as the algorithm field in an AlgorithmIdentifier, the encoding MAY completely omit the parameters field or set it to null. Otherwise this field MUST have the following structure:

GostR3410-2001-PublicKeyParameters ::= SEQUENCE {
 publicKeyParamSet
 OBJECT IDENTIFIER,
 digestParamSet
 OBJECT IDENTIFIER,
 encryptionParamSet
 OBJECT IDENTIFIER DEFAULT id-Gost28147-89-CryptoPro-A-ParamSet
}

where:
- publicKeyParamSet - public key parameters identifier for GOST R 34.10-2001 (see section 8.4 of [CPALGS])
- digestParamSet - parameters identifier for GOST R 34.11-94 (see section 8.2 of [CPALGS])
- encryptionParamSet - parameters identifier for GOST 28147-89 (see section 8.1 of [CPALGS])

Absence of parameters SHALL be processed as described in RFC 3280 [PROFILE], section 6.1, that is, parameters are inherited from the issuer certificate if possible.

The GOST R 34.10-2001 public key MUST be ASN.1 DER encoded as an OCTET STRING; this encoding shall be used as the contents (i.e., the value) of the subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo data element.

GostR3410-2001-PublicKey ::= OCTET STRING -- public key vector, Q

According to [GOSTR341001], public key is a point on the elliptic curve \(Q = (x,y) \).

GostR3410-2001-PublicKey MUST contain 64 octets, where first 32 octets contain little endian representation of \(x \) and second 32 octets contain little endian representation of \(y \). This corresponds to the binary representation of \(\langle y \rangle_{256} | \langle x \rangle_{256} \) from [GOSTR341001], ch. 5.3.
If the keyUsage extension is present in an end-entity certificate, which contains a GOST R 34.10-2001 public key, the following values MAY be present:

- digitalSignature,
- nonRepudiation,
- keyEncipherment,
- keyAgreement.

If the keyAgreement or keyEncipherment extension is present in a certificate, the following values MAY be present:

- encipherOnly,
- decipherOnly.

The keyUsage extension MUST NOT assert both encipherOnly and decipherOnly.

If the keyUsage extension is present in an CA or CRL signer certificate which contains a GOST R 34.10-2001 public key, the following values MAY be present:

- digitalSignature,
- nonRepudiation,
- keyCertSign,
- cRLSign.

3 Security Considerations

It is RECOMMENDED, that applications verify signature values and subject public keys to conform to [GOSTR341001] [GOSTR341094] standards prior to their use.

When certificate is used as analogue to a manual signing, in the context of Russian Federal Digital Signature Law [RFDSL], certificate MUST contain keyUsage extension, it MUST be critical, and keyUsage MUST NOT include keyEncipherment and keyAgreement.

When certificate validity period (typically 5 years for end entities and 7 years for CAs in Russia) is not equal to the private key validity period (typically 15 months in Russia) it is RECOMMENDED to use private key usage period extension.

For security discussion concerning use of algorithm parameters, see section Security Considerations from [CPALGS].

4 Appendix Examples
4.1 GOST R 34.10-94 Certificate

-----BEGIN CERTIFICATE-----
MIICCzCCAb0CECMOC42BG1xST0xwvk1BgfuswCAYGKoUDAgIEMGkxHTAbBgNVBAMM
FEdv3RSxMqXMC05NCqleGFtGc6xM1RiWdEAYDVQQKDA1DcnlwG9Qcm8xCzAJBgNV
BAYTAkJVMScwJQYjKoZIhvcNAQkBFhhHb3NUOjM0MTAtOTA2NTwhXbEBsZ25j20w
HhcNMUDwODE2MTizMjUwMhccNCMTUwODE2MTizMjUwMjBpMR0wGwYDVQQDDBRHB3N0
UjM0MTAtOUTgZxhhbXBeZTESMBAAGA1UgwjQ3J5cHRvUHJvMQswCQQyDVQQGEwJS
VTEnMCUGCSqGSIb3QEJARYYRY29zdFizNDEwLTk0QGV4Y1wbGUuY29tMIG1MBwG
BiFAwIFQDASBgcIcqhpQMCAIAgBwcgqMBQGCCsGCCsGAQUFBwIcHjckggYDAgEB
-----END CERTIFICATE-----

0 30 523: SEQUENCE {
4 30 442: SEQUENCE {
8 02 16: INTEGER : 23 0E E3 60 46 95 24 CE C7 0E E4 94 18 2E 7E EB
26 30 8: SEQUENCE {
28 06 6: OBJECT IDENTIFIER : id-GostR3411-94-with-GostR3410-94 (1 2 643 2 2 4)
 : }
36 30 105: SEQUENCE {
38 31 29: SET {
40 30 27: SEQUENCE {
42 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
47 0C 20: UTF8String 'GostR3410-94 example'
 : }
 : }
69 31 18: SET {
71 30 16: SEQUENCE {
73 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
78 0C 9: UTF8String 'CryptoPro'
 : }
89 31 11: SET {
91 30 9: SEQUENCE {
93 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
98 13 2: PrintableString 'RU'
 : }
 : }
102 31 39: SET {
104 30 37: SEQUENCE {
106 06 9: OBJECT IDENTIFIER emailAddress (1 2 840 113549 1 9 1)
117 16 24: IA5String 'GostR3410-94@example.com'
 : }

Leontiev & Shefanovski Standards Track [Page 10]
::
::
143 30 30: SEQUENCE {
145 17 13: UTCTime '050816123250Z'
160 17 13: UTCTime '150816123250Z'
::
175 30 105: SEQUENCE {
177 31 29: SET {
179 30 27: SEQUENCE {
181 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
186 0C 20: UTF8String 'GostR3410-94 example'
::
208 31 18: SET {
210 30 16: SEQUENCE {
212 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
217 0C 9: UTF8String 'CryptoPro'
::
228 31 11: SET {
230 30 9: SET {
232 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
237 13 2: PrintableString 'RU'
::
241 31 39: SET {
243 30 37: SET {
245 06 9: OBJECT IDENTIFIER emailAddress (1 2 840 113549 1 9 1)
256 16 24: IA5String 'GostR3410-94@example.com'
::
282 30 165: SEQUENCE {
285 30 28: SEQUENCE {
287 06 6: OBJECT IDENTIFIER id-GostR3410-94 (1 2 643 2 2 20)
295 30 18: SEQUENCE {
297 06 7: OBJECT IDENTIFIER
:: id-GostR3410-94-CryptoPro-A-ParamSet
:: (1 2 643 2 2 32 2)
306 06 7: OBJECT IDENTIFIER
:: id-GostR3411-94-CryptoProParamSet
:: (1 2 643 2 2 30 1)
::
315 03 132: BIT STRING 0 unused bits, encapsulates {
319 04 128: OCTET STRING
:: BB 84 66 E1 79 9E 5B 34 D8 2C 80 7F 13 A8 19 66
:: 71 57 FE 8C 54 25 21 47 6F 30 0B 27 77 46 98 C6
In the signature of the above certificate, r' equals to
0x22F785F355BD94EC663F7D73803FBCD43
and s equals to
0x11C7087E12DC02F102232947768F472A818350E307CCF2E431238942C873E1DE

4.2 GOST R 34.10-2001 Certificate

-----BEGIN CERTIFICATE-----
MIIB0DCCAX8CECv1xh7CEboXx9zUYma0LiEwCAYGKoUDAgIDMG0xHzAdBgNVBAMM
Fkdvc3RSMzQxMC0yMDAxIGV4YW1wbGUxEjAQBgNVBAoMCUNyeXB0b1BybzEJMKAkG
A1UEBhMCUk1xKuXk7b0Xx9zUYma0LiEwCAYGKoUDAgIDMG0xHzAdBgNVBAMM

-----END CERTIFICATE-----

Leontiev & Shefanovski Standards Track [Page 12]
36 30 109: SEQUENCE {
38 31 31: SET {
40 30 29: SEQUENCE {
42 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
47 0C 22: UTF8String 'GostR3410-2001 example'
 :
 :
71 31 18: SET {
73 30 16: SEQUENCE {
75 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
80 0C 9: UTF8String 'CryptoPro'
 :
 :
91 31 11: SET {
93 30 9: SEQUENCE {
95 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
100 13 2: PrintableString 'RU'
 :
 :
104 31 41: SET {
106 30 39: SEQUENCE {
108 06 9: OBJECT IDENTIFIER emailAddress (1 2 840 113549 1 9 1)
119 16 26: IA5String 'GostR3410-2001@example.com'
 :
 :
147 30 30: SEQUENCE {
149 17 13: UTCTime '050816141820Z'
164 17 13: UTCTime '150816141820Z'
 :
 :
179 30 109: SEQUENCE {
181 31 31: SET {
183 30 29: SEQUENCE {
185 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
190 0C 22: UTF8String 'GostR3410-2001 example'
 :
 :
214 31 18: SET {
216 30 16: SEQUENCE {
218 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
223 0C 9: UTF8String 'CryptoPro'
 :
 :
234 31 11: SET {
236 30 9: SEQUENCE {
238 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
243 13 2: PrintableString 'RU'
In the public key of the above certificate, x equals to
0x577E324FE70F26DF45C437A0305E5FD2C89318C13CD0875401A026075689584
and y equals to
0x601AEACBC660FDFB0C87567EBBA6EA8DE40FAE857C9AD0038895B916CCEB8F
Corresponding private key d equals to
0x0B293BE050D0082BDAE785631A6BAB68F35B42786D6DDA56AFAF169891040F77
In the signature of the above certificate, \(r' \) equals to 0xC1DE176E8D1BEC71B593F3DD36935577688989176220F4DAB131D5B51C33DEE2 and \(s \) equals to 0x3C2FC90944B727A9ECA7D5E9FB536DD2C3AA647C442EDEED3116454FBC543FDD

5 References

Normative references:

Informative references:

[RFDSL] Russian Federal Digital Signature Law, 10 Jan 2002 N1-FZ

Acknowledgments

This document was created in accordance with "Russian Cryptographic Software Compatibility Agreement", signed by FGUE STC "Atlas", CRYPTO-PRO, Factor-TS, MD PREI, Infotecs GmbH, SPRCIS (SPbRCZI), Cryptocom, R-Alpha. The goal of this agreement is to achieve mutual compatibility of the products and solutions.

The authors wish to thank:

Microsoft Corporation Russia for provided information about company products and solutions, and also for technical consulting in PKI.

RSA Security Russia and Demos Co Ltd for active colaboration and critical help in creation of this document.

RSA Security Inc for compatibility testing of the proposed data formats while incorporating them into RSA Keon product.

Baltimore Technology plc for compatibility testing of the proposed data formats while incorporating them into UniCERT product.

Russ Hously (Vigil Security, LLC, housley@vigilsec.com) and Vasilij Sakharov (DEMOS Co Ltd, svp@dol.ru) for initiative
creating this document.

Grigorij Chudov for navigating the IETF process for this document.

Author’s Addresses

Sergei Leontiev
CRYPTO-PRO
38, Obraztsova,
Moscow, 127018, Russian Federation
EMail: lse@cryptopro.ru

Dennis Shefanovski
DEMONS Co Ltd
6/1, Ovchinnikovskaja naberezhnaya,
Moscow, 113035, Russian Federation
EMail: sdb@dol.ru

Grigorij Chudov
CRYPTO-PRO
38, Obraztsova,
Moscow, 127018, Russian Federation
EMail: chudov@cryptopro.ru

Alexandr Afanasiev
Factor-TS
office 711, 14, Presnenskij val,
Moscow, 123557, Russian Federation
EMail: afa1@factor-ts.ru

Nikolaj Nikishin
Infotecs GmbH
p/b 35, 80-5, Leningradskij prospekt,
Moscow, 125315, Russian Federation
EMail: nikishin@infotecs.ru

Boleslav Izotov
FGUE STC "Atlas"
38, Obraztsova,
Moscow, 127018, Russian Federation
EMail: izotov@niivoskhod.ru

Elena Minaeva
MD PREI
build 3, 6A, Vtoroj Troitskij per.,
Moscow, Russian Federation
EMail: evminaeva@mail.ru
Serguei Murugov
R-Alpha
4/1, Raspletina,
Moscow, 123060, Russian Federation
EMail: msm@top-cross.ru

Igor Ustinov
Cryptocom
office 239, 51, Leninskij prospekt,
Moscow, 119991, Russian Federation
EMail: igus@cryptocom.ru

Anatolij Erkin
SPRCIS (SPbRCZI)
1, Obrucheva,
St.Petersburg, 195220, Russian Federation
EMail: erkin@nevsky.net

Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Full Copyright Statement

Copyright (C) The Internet Society (2005). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.