Encapsulation Methods for Transport of Frame Relay Over MPLS Networks

draft-ietf-pwe3-frame-relay-06.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Abstract

A frame relay pseudo wire is a mechanism that exists between a provider's edge network nodes and support as faithfully as possible frame relay services over MPLS packet switched network (PSN). This document describes the detailed encapsulation necessary to transport frame relay packets over an MPLS network.
1. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119. Below are the definitions for the terms used throughout the document. PWE3 definitions can be found in [PWE3REQ, RFC3985]. This section defines terms specific to frame relay.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Specification of Requirements</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Co-authors</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Acronyms and Abbreviations</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Applicability Statement</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>General encapsulation method</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Frame Relay over MPLS PSN for the One-to-One Mode</td>
<td>7</td>
</tr>
<tr>
<td>7.1</td>
<td>MPLS PSN Tunnel and PW</td>
<td>7</td>
</tr>
<tr>
<td>7.2</td>
<td>Packet Format over MPLS PSN</td>
<td>7</td>
</tr>
<tr>
<td>7.3</td>
<td>The Control Word</td>
<td>8</td>
</tr>
<tr>
<td>7.4</td>
<td>The Martini Legacy Mode Control Word</td>
<td>10</td>
</tr>
<tr>
<td>7.5</td>
<td>PW packet processing</td>
<td>10</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Encapsulation of Frame relay frames</td>
<td>10</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Setting the sequence number</td>
<td>11</td>
</tr>
<tr>
<td>7.6</td>
<td>Decapsulation of PW packets</td>
<td>11</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Processing the sequence number</td>
<td>12</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Processing of the Length Field by the Receiver</td>
<td>12</td>
</tr>
<tr>
<td>7.7</td>
<td>MPLS Shim EXP Bit Values</td>
<td>12</td>
</tr>
<tr>
<td>7.8</td>
<td>MPLS Shim S Bit Value</td>
<td>12</td>
</tr>
<tr>
<td>7.9</td>
<td>Control Plane Details for Frame Relay Service</td>
<td>12</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Frame Relay Specific Interface Parameter sub-TLV</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Frame Relay Port Mode</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>IANA Considerations</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Security Considerations</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>Full Copyright Statement</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>Intellectual Property Statement</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>Normative References</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>Informative References</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>Author Information</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>Contributing Author Information</td>
<td>17</td>
</tr>
</tbody>
</table>
- **Forward direction.**

 The forward direction is the direction taken by the frame being forwarded.

- **Backward direction.**

 In frame relay it is the direction opposite to the direction taken by a frame being forwarded (see also forward direction).

2. Co-authors

 The following are co-authors of this document:

 Nasser El-Aawar Level 3 Communications, LLC
 Eric C. Rosen Cisco Systems
 Daniel Tappan Cisco Systems
 Thomas K. Johnson Litchfield Communications
 Kireeti Kompella Juniper Networks, Inc.
 Steve Vogelsang Laurel Networks, Inc.
 Vinai Sirkay Reliance Infocomm
 Ravi Bhat Nokia
 Nishit Vasavada Nokia
 Giles Heron Tellabs
 Dimitri Stratton Vlachos Mazu Networks, Inc.
 Chris Liljenstolpe Cable & Wireless
 Prayson Pate Overture Networks, Inc

3. Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BECN</td>
<td>Backward Explicit Congestion Notification</td>
</tr>
<tr>
<td>CE</td>
<td>Customer Edge</td>
</tr>
<tr>
<td>C/R</td>
<td>Command/Response</td>
</tr>
<tr>
<td>DE</td>
<td>Discard Eligibility</td>
</tr>
<tr>
<td>DLCI</td>
<td>Data Link Connection identifier</td>
</tr>
<tr>
<td>FCS</td>
<td>Frame Check Sequence</td>
</tr>
<tr>
<td>FECN</td>
<td>Forward Explicit Congestion Notification</td>
</tr>
<tr>
<td>FR</td>
<td>Frame Relay</td>
</tr>
<tr>
<td>LSP</td>
<td>Label Switched Path</td>
</tr>
<tr>
<td>LSR</td>
<td>Label Switching Router</td>
</tr>
<tr>
<td>MPLS</td>
<td>Multiprotocol Label Switching</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum Transfer Unit</td>
</tr>
<tr>
<td>NNI</td>
<td>Network-Network Interface</td>
</tr>
<tr>
<td>PE</td>
<td>Provider Edge</td>
</tr>
<tr>
<td>PSN</td>
<td>Packet Switched Network</td>
</tr>
</tbody>
</table>
4. Introduction

In an MPLS or IP network, it is possible to use control protocols such as those specified in [CONTROL] to set up "Pseudo Wires" that carry the Protocol Data Units of layer 2 protocols across the network. A number of these emulated Pseudo Wires (PW) may be carried in a single tunnel. The main functions required to support frame relay PW by a PE include:

- Encapsulation of frame relay specific information in a suitable pseudo wire (PW) packet,
- Transfer of a PW packet across an MPLS network for delivery to a peer PE,
- Extraction of frame relay specific information from a PW packet by the remote peer PE,
- Regeneration of native frame relay frames for forwarding across an egress port of the remote peer PE,
- Execution of any other operations as required to support frame relay service.

This document specifies the encapsulation for the emulated frame relay VC over an MPLS PSN. Although different layer 2 protocols require different information to be carried in this encapsulation, an attempt has been made to make the encapsulation as common as possible for all layer 2 protocols. Other layer 2 protocols are described in separate documents. [ATM] [ETH] [PPP]

The following figure describes the reference models which are derived from [RFC3985] to support the frame relay PW emulated services.
Two mapping modes can be defined between frame relay VCs and pseudo wires: The first one is called "one-to-one" mapping, because there is a one-to-one correspondence between a frame relay VC and one Pseudo Wire. The second mapping is called "many-to-one" mapping or "port mode" because multiple frame relay VCs assigned to a port are mapped to one pseudo wire. The "port mode" encapsulation is identical to HDLC pseudo wire encapsulation which is described in [PPP].

5. Applicability Statement

Frame Relay over PW service is not intended to perfectly emulate the traditional frame relay service, but it can be used for applications that need frame relay transport service.

The following are notable differences between traditional frame relay service, and the protocol described in this document:

- Frame ordering can be preserved using the OPTIONAL sequence field in the control word, however implementations are not required to support this feature.
- The Quality of Service model for traditional frame relay can be emulated, however this is outside the scope of this document.

- A Frame Relay Port mode PW, does not process any frame relay status messages or alarms as described in [Q922] [Q933]

- The frame relay BECN, and FECN bit are transparent to the MPLS network, and cannot reflect the status of the MPLS network.

- Support for frame relay SVC and SPVC is outside the scope of this document.

- Frame relay LMI is terminated locally in the PE connected to the frame relay attachment circuit.

- The support of PVC link integrity check is outside the scope of this document.

6. General encapsulation method

The general frame relay pseudo wire packet format for carrying frame relay information (user’s payload and frame relay control information) between two PEs is shown in Figure 2.

```
+-------------------------------+
<p>| |
|                               |
|    MPLS Transport header      |</p>
<table>
<thead>
<tr>
<th>(As required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo Wire (PW) Header</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Control Word</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>FR Service</td>
</tr>
<tr>
<td>Payload</td>
</tr>
</tbody>
</table>
+-------------------------------+
```

Figure 2 - General format of frame relay encapsulation over PSN

The PW packet consists of the following fields: Control word, and Payload preceded by the MPLS Transport and pseudo wire header. The meaning of the different fields is as follows:
-i. MPLS Transport header is specific to the MPLS network. This header is used to switch the PW packet through the MPLS core.

-ii. PW header contains an identifier for multiplexing PWs within an MPLS tunnel.

-iii. Control Word contains protocol control information for providing a frame relay service. Its structure is provided in the following sections.

-iv. The contents of the frame relay service payload field depends on the mapping mode. In general it contains the layer 2 frame relay frame.

7. Frame Relay over MPLS PSN for the One-to-One Mode

7.1. MPLS PSN Tunnel and PW

MPLS label switched paths (LSPs) called "MPLS Tunnels" are used between PEs and within the MPLS core network for forwarding purposes of PW packets. An MPLS tunnel corresponds to "PSN Tunnel" of Figure 1.

Several "Pseudo Wires" may be nested inside one MPLS tunnel. Each PW carries the traffic of a single frame relay VC. In this case the PW header is an MPLS label called the PW label.

7.2. Packet Format over MPLS PSN

For the one-to-one mapping mode for frame relay over an MPLS network, the PW packet format is shown in Figure 3.

```
+-------------------------------+
|      MPLS Tunnel label(s)     | n*4 octets (four octets per label)
+-------------------------------+
|      PW label                 | 4 octets
+-------------------------------+
|      Control Word             | 4 octets
|      (See Figure 4)           | 4 octets
+-------------------------------+
|      Payload                  | n octets
|      (Frame relay frame       | 4 octets
|       information field)      | 4 octets
+-------------------------------+
```

Figure 3 - frame relay Over MPLS PSN Packet for the One-to-One
Mapping

The meaning of the different fields is as follows:

- **MPLS Tunnel label(s)**

 The MPLS Tunnel label(s) corresponds to the MPLS transport header of Figure 2. The label(s) is/are used by MPLS LSRs to forward a PW packet from one PE to the other.

- **PW Label**

 The PW label identifies one PW (i.e. one LSP) assigned to a frame relay VC in one direction. It corresponds to the PW header of Figure 2. Together the MPLS Tunnel label(s) and PW label form an MPLS label stack [RFC3032].

- **Control Word**

 The Control Word contains protocol control information. Its structure is shown in Figure 4.

- **Payload**

 The payload field corresponds to X.36/X.76 frame relay frame information field with bit/byte stuffing, frame relay header removed, and FCS removed. It is RECOMMENDED to support a frame size of at least 1600 bytes. The maximum length of the payload field MUST be agreed upon by the two PEs. This can be achieved by using the MTU interface parameter when the PW is established.

7.3. The Control Word

The control word defined below is REQUIRED for frame relay one-to-one mode. The control word carries certain frame relay specific information that is necessary to regenerate the frame relay frame on the egress PE. Additionally, the control word also carries a sequence number that can be used to preserve sequentiality when carrying frame relay over an MPLS network. Its structure is as follows:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0|F|B|D|C|Res|  Length   | Sequence Number               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Martini, et al. [Page 8]
The meaning of the Control Word fields (Figure 4) is as follows (see also [X36 and X76] for frame relay bits):

- bits 0 to 3

 In the above diagram the first 4 bits MUST be set to 0 to indicate PW data.

- F (bit 4) FR FECN (Forward Explicit Congestion Notification) bit.

- B (bit 5) FR BECN (Backward Explicit Congestion Notification) bit.

- D (bit 6) FR DE bit (Discard Eligibility) bit.

- C (bit 7) FR frame C/R (Command/Response) bit.

- Res (bits 8 and 9): These bits are reserved and MUST be set to 0 upon transmission and ignored upon reception.

- Length (bits 10 to 15)

 If the Pseudo Wire traverses a network link that requires a minimum frame size (a notable example is Ethernet), padding is required to reach its minimum frame size. If the frame’s length (defined as the length of the layer 2 payload plus the length of the control word) is less than 64 octets, the length field MUST be set to the PW payload length. Otherwise the length field MUST be set to zero. The value of the length field, if non-zero, is used to remove the padding characters by the egress PE.

- Sequence number (Bit 16 to 31)

 Sequence numbers provide one possible mechanism to ensure the ordered delivery of PW packets. The processing of the sequence number field is OPTIONAL. The sequence number space is a 16 bit, unsigned circular space. The sequence number value 0 is used to indicate that the sequence number check algorithm is not used.
7.4. The Martini Legacy Mode Control Word

For backward compatibility to existing implementations the following version of the control word is defined as the "martini mode CW" for frame relay.

```
+-------------------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1                   |
| +-------------------------------------------------------------+ |
| |0 0 0 0 B|F|D|C|Res| Length | Sequence Number | |
| +-------------------------------------------------------------+ |
```

Figure 4 - Control Word structure for the frame relay martini mode

Note that the "B" and "F" bits are reversed.

This control word format is used for PW type "Frame Relay DLCI (Martini Mode)"

7.5. PW packet processing

7.5.1. Encapsulation of Frame relay frames

The encapsulation process of a frame relay frame is initiated when a PE receives a frame relay frame from one of its frame relay UNI or NNI interfaces. The PE generates the following fields of the control word from the corresponding fields of the frame relay frame as follows:

- Command/Response (C/R or C) bit: The C bit is copied unchanged in the PW Control Word.
- The DE bit of the frame relay frame is copied into the D bit field. However if the D bit is not already set, it MAY be set as a result of ingress frame policing. If not already set by the copy operation, setting of this bit by a PE is OPTIONAL. The PE MUST NOT clear this bit (set it to 0 if it was received with the value of 1).
- The FECN bit of the frame relay frame is copied into the F bit field. However if the F bit is not already set, it MAY be set to reflect a congestion situation detected by the PE. If not already set by the copy operation, setting of this bit by a PE is OPTIONAL. The PE MUST NOT clear this bit (set it to 0 if it was received with the value of 1).
- The BECN bit of the frame relay frame is copied into the B bit field. However if the B bit is not already set, it MAY be set to reflect a congestion situation detected by the PE. If not already set by the copy operation, setting of this bit by a PE is
OPTIONAL. The PE MUST NOT clear this bit (set it to 0 if it was received with the value of 1).
- If the PW packet length (defined as the length of the payload plus the length of the control word) is less than 64 octets, the length field MUST be set to the packet’s length. Otherwise the length field MUST be set to zero.
- The sequence number field is processed if the PW uses sequence numbers. [CW]
- The payload of the PW packet is the contents of ITU-T Recommendations X.36/X.76 [X36] [X76] frame relay frame information field stripped from any bit or byte stuffing.

7.5.2. Setting the sequence number

For a given PW, and a pair of routers PE1 and PE2, if PE1 supports packet sequencing then the procedures in [CW] section 4.1 MUST be followed.

7.6. Decapsulation of PW packets

When a PE receives a PW packet, it processes the different fields of the control word in order to decapsulate the frame relay frame for transmission to a CE on a frame relay UNI or NNI. The PE performs the following actions (not necessarily in the order shown):

- It generates the following frame relay frame header fields from the corresponding fields of the PW packet.
- The C/R bit MUST be copied in the frame relay header.
- The D bit MUST be copied into the frame relay header DE bit.
- The F bit MUST be copied into the frame relay header FECN bit. If the F bit is set to zero, the FECN bit may be set to one, depending on the congestion state of the PE device in the forward direction. Changing the state of this bit by a PE is OPTIONAL.
- The B bit MUST be copied into the frame relay header BECN bit. If the B bit is set to zero, the BECN bit may be set to one, depending on the congestion state of the PE device in the backward direction. Changing the state of this bit by a PE is OPTIONAL.
- It processes the length and sequence field, the details of which are in the following sub-sections.
- It copies the frame relay information field from the contents of the PW packet payload after removing any padding.

Once the above fields of a FR frame have been processed, the standard HDLC operations are performed on the frame relay frame: the HDLC header is added, any bit or byte stuffing is added as required, and
the FCS is also appended to the frame. The FR frame is then queued for transmission on the selected frame relay UNI or NNI interface.

7.6.1. Processing the sequence number

If a router PE2 supports receive sequence number processing, then the procedures in [CW] section 4.2 MUST be used.

7.6.2. Processing of the Length Field by the Receiver

Any padding octet, if present, in the payload field of a PW packet received MUST be removed before forwarding the data.

- If the Length field is set to zero then there are no padding octets following the payload field.
- Else if the payload is longer then the length specified in the control word padding characters are removed based on the length field.

7.7. MPLS Shim EXP Bit Values

If it is desired to carry Quality of Service information, the Quality of Service information SHOULD be represented in the EXP field of the PW MPLS label. If more than one MPLS label is imposed by the ingress LSR, the EXP field of any labels higher in the stack SHOULD also carry the same value.

7.8. MPLS Shim S Bit Value

The ingress LSR, PE1, MUST set the S bit of the PW label to a value of 1 to denote that the PW label is at the bottom of the stack.

7.9. Control Plane Details for Frame Relay Service

The PE MUST provide frame relay PVC status signaling to the frame relay network. If the PE detects a service-affecting condition for a particular DLCI, as defined in [Q933] Q.933 Annex A5 sited in IA FRF1.1, the PE MUST communicate to the remote PE the status of the PW that corresponds to the frame relay DLCI status. The Egress PE SHOULD generate the corresponding errors and alarms as defined in [Q922] [Q933] on the egress Frame relay PVC.

There are two frame relay flags to control word bit mappings.
described below. The legacy bit ordering scheme will be used for a PW of type 0x0001 "Frame Relay DLCI (Martini Mode)", while the new bit ordering scheme will be used for a PW of type 0x0019 "Frame Relay DLCI". The IANA allocation registry of "Pseudowire Type" is defined in [IANA] along with initial allocated values.

7.9.1. Frame Relay Specific Interface Parameter sub-TLV

A separate document [CONTROL], describes the PW control, and maintenance protocol in detail including generic interface parameter sub-TLVs. The interface parameter information, when applicable, MUST be used to validate that the PEs, and the ingress and egress ports at the edges of the circuit, have the necessary capabilities to interoperate with each other. The Interface parameter TLV is defined in [CONTROL], the IANA registry with initial values for interface parameter sub-TLV types is defined in [IANA], but the frame relay specific interface parameter sub-TLV types are specified as follows:

- 0x08 Frame Relay Header Length Sub-TLV.

 An optional 16 bit value indicating the length of the FR Header expressed in octets. This OPTIONAL interface parameter Sub-TLV can have value of 2, 3, or 4, with the default being equal to 2. If this Sub-TLV is not present the default value of 2 is assumed.

8. Frame Relay Port Mode

Frame relay port mode PW shares the same encapsulation as the HDLC PW, and is described in the respective document. [PPP]

9. IANA Considerations

This document has no IANA Actions.

10. Security Considerations

PWE3 provides no means of protecting the contents or delivery of the PW packets on behalf of the native service. PWE3 may, however, leverage security mechanisms provided by the MPLS Tunnel Layer. A more detailed discussion of PW security is given in [RFC3985, CONTROL, PWE3REQ].
11. Full Copyright Statement

Copyright (C) The Internet Society (2005).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

12. Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
13. Normative References

[IANA] "IANA Allocations for pseudo Wire Edge to Edge Emulation (PWE3)" Martini, Townsley, draft-ietf-pwe3-iana-allocation-09.txt (work in progress), April 2004

14. Informative References

[RFC3985] Stewart Bryant, et al., Internet draft, PWE3 Architecture, RFC3985

15. Author Information

Luca Martini
Cisco Systems, Inc.
9155 East Nichols Avenue, Suite 400
Englewood, CO, 80112
e-mail: lmartini@cisco.com
Claude Kawa
OZ Communications
Windsor Station
1100, de la Gauchetie’re St West
Montreal QC Canada
H3B 2S2
e-mail: claude.kawa@oz.com

Andrew G. Malis
Tellabs
90 Rio Robles Dr.
San Jose, CA 95134
e-mail: Andy.Malis@tellabs.com

16. Contributing Author Information

Kireeti Kompella
Juniper Networks
1194 N. Mathilda Ave
Sunnyvale, CA 94089
e-mail: kireeti@juniper.net

Giles Heron
Tellabs
Abbey Place
24-28 Easton Street
High Wycombe
Bucks
HP11 1NT
UK
e-mail: giles.heron@tellabs.com

Rao Cherukuri
Juniper Networks
1194 N. Mathilda Ave
Sunnyvale, CA 94089
Dimitri Stratton Vlachos
Mazu Networks, Inc.
125 Cambridgepark Drive
Cambridge, MA 02140
e-mail: d@mazunetworks.com

Chris Liljenstolpe
Cable & Wireless
11700 Plaza America Drive
Reston, VA 20190
e-mail: chris@cw.net

Nasser El-Aawar
Level 3 Communications, LLC.
1025 Eldorado Blvd.
Broomfield, CO, 80021
e-mail: nna@level3.net

Eric C. Rosen
Cisco Systems, Inc.
1414 Massachusetts Avenue
Boxborough, MA 01719
e-mail: erosen@cisco.com

Dan Tappan
Cisco Systems, Inc.
1414 Massachusetts Avenue
Boxborough, MA 01719
e-mail: tappan@cisco.com

Prayson Pate
Overture Networks, Inc.
507 Airport Boulevard
Morrisville, NC, USA 27560
e-mail: prayson.pate@overturenetworks.com

David Sinicrope
Ericsson IPI
e-mail: david.sinicrope@ericsson.com
Ravi Bhat
Nokia
e-mail: ravi.bhat@nokia.com

Nishit Vasavada
Nokia
e-mail: nishit.vasavada@nokia.com

Steve Vogelsang
Laurel Networks, Inc.
Omega Corporate Center
1300 Omega Drive
Pittsburgh, PA 15205
e-mail: sjv@laurelnetworks.com

Vinai Sirkay
Redback Networks
300 Holger Way,
San Jose, CA 95134
e-mail: sirkay@technologist.com