Pseudo Wire (PW) Management Information Base
draft-ietf-pwe3-pw-mib-10

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 10, 2007.

Copyright Notice

Copyright (C) The IETF Trust (2007).

Abstract

This memo defines an experimental portion of the Management Information Base for use with network management protocols in the Internet community. In particular, it describes managed objects for
modeling of Pseudo Wire Edge-to-Edge services carried over a general Packet Switched Network.

Table of Contents

1. Introduction ... 3
2. The Internet-Standard Management Framework 3
3. Conventions .. 3
4. Overview ... 3
5. Structure of the MIB Module 4
6. PW-STD-MIB Module Usage 4
7. Relations to Other PWE3 MIB Modules 5
8. Relations to the IF-MIB 5
9. Example of the PW MIB Modules Usage 6
10. IANA PWE3 MIB Module 8
11. Object Definitions .. 10
12. Security Considerations 57
13. IANA Considerations .. 58
 13.1. IANA Considerations for PW-STD-MIB 58
 13.2. IANA Considerations for IANA-PWE3-MIB 59
14. Acknowledgements ... 59
15. References .. 59
 15.1. Normative References 59
 15.2. Informative References 61
Authors' Addresses ... 61
Intellectual Property and Copyright Statements 63
1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines a MIB module that can be used to manage pseudo wire (PW) services for transmission over a packet Switched Network (PSN) [RFC3931][RFC4447]. This MIB module provides generic management of PWs which is common to all types of PSN and PW services defined by the IETF PWE3 Working Group.

Comments should be made directly to the PWE3 mailing list at pwe3@ietf.org.

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, [RFC2578], STD 58, [RFC2579] and STD 58, [RFC2580].

3. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [BCP14].

This document adopts the definitions, acronyms and mechanisms described in [RFC3985] and [RFC3916]. Unless otherwise stated, the mechanisms of [RFC3985] apply and will not be re-described here.

4. Overview

The PWE3 MIB Modules architecture provides a layered modular model into which any supported emulated service can be connected to any supported PSN type. This specific MIB module provides the glue for mapping between the emulated service onto the native PSN service. As such the defining of a PW emulated service requirees the use of at least three types of MIB modules.
Starting from the emulated service, the first type is service-specific module, which is emulated signal type dependent. These modules are defined in other documents.

The second type is this module, the PW-STD-MIB module, which configures general parameters of the PW that are common to all types of emulated services and PSN types.

The third type of modules is PSN-specific module. There is a different module for each type of PSN. These modules associate the PW with one or more "tunnels" that carry the service over the PSN. These modules are defined in other documents.

5. Structure of the MIB Module

The MIB consists of five tables;

- The generic configuration and status monitoring objects which are common to all service types and PSN types (pwTable).
- The PW Performance Current Table (pwPerfCurrentTable) contains PW statistics for the current 15-minute period.
- The PW Performance Interval Table (pwPerfIntervalTable) contains PW statistics for historical intervals (usually 96 15-minute entries to cover a 24 hour period).
- The PW Performance one day Interval Table (pwPerf1DayIntervalTable) contains PW statistics for historical intervals accumulated per day. Usually 30 1-Day entries to cover a monthly period.
- The mapping table (pwIndexMappingTable) enables the reverse mapping of unique PWid parameters [peer IP, PW type and PW ID] and the pwIndex.

This MIB module uses TCs from [RFC2578], [RFC2579], [RFC2580], [RFC2863], [RFC3411], [RFC3593], [RFC3705], [RFC4001] and [PWTC], and reference [RFC3413], [RFC4623] and [RFC4720].

6. PW-STD-MIB Module Usage

An entry in the PW table (pwTable) MUST exist for all PW types (ATM, FR, Ethernet, SONET, etc.). This table holds generic parameters related to the PW creation and monitoring.

A conceptual row can be created in the pwTable in one of the
following ways:

1) The operator creates a row in the PwTable when configuring the node for a new service. This mode MUST be supported by the agent, and MUST be used when creating a non-signaled (manually assigned) PW.

2) The agent MAY create a row in the PwTable if a signaling message has been received from a peer node for a combination of signaling identifications parameters already unknown to the local node. This mode is OPTIONAL.

3) The agent MAY create a row in the PwTable automatically due to some auto discovery application, or based on configuration that is done through non-SNMP applications. This mode is OPTIONAL.

- The agent than creates the rows in the (locally supported) performance tables and reverse mapping tables in PW-STD-MIB module.

7. Relations to Other PWE3 MIB Modules

- Based on the PSN type defined for the PW, a row is created in PSN specific module (for example [PWMLSMIB]) and associated to the PW table by the common pwIndex.

- Based on the PW type defined for the PW, a row is created in service-specific module (for example [CEPMIB]) and associated to the PW table by the common pwIndex.

- Unless all the necessary entries in the applicable tables have been created and all the parameters have been consistently configured in those tables, signaling cannot be performed from the local node, and the pwVcOperStatus should report ‘notPresent’.

8. Relations to the IF-MIB

The PW in general is not an ifIndex [RFC2863] on its own, from agent scalability reasons. The PW is typically associated via the PWE3 MIB modules to an ifIndex the PW is emulating. This ifIndex may represent a physical entity - for example a PW emulating a SONET path as in CEP: The PW itself is not an ifIndex, however the PW-STD-CEP-MIB module associates the PW to the ifIndex of the path to be emulated. In some cases, the PW will be associated to an ifIndex representing a virtual interface. An example is VPLS service where the PW emulates a logical interface of a (logical) bridge. The physical ports association to the VPLS service instance is defined in non-PW MIBs in this case.
Exception to the above MAY exist in some implementations, where it is convenient to manage the PW as an ifIndex in the ifTable. A special ifType to represent a PW virtual interface (exact number to be assigned by IANA) will be used in the ifTable in this case.

When the PW is managed as an ifIndex, there is no requirement that this ifIndex will be layered above the respective PSN tunnel ifIndex or the attachment circuit ifIndex or the interface carrying the attachment circuit.

Note that the ifIndex that carry the PW toward/from the PSN is in general not explicitly configured via PWE3 MIB modules except in rare cases. In most cases the PW is carried inside a PSN tunnel, and the interfaces carrying the tunnel are specified in the related MIBs that control the PSN tunnels.

9. Example of the PW MIB Modules Usage

In this section we provide an example of using the MIB objects described in section 7 to set up a CEP PW over MPLS PSN. While this example is not meant to illustrate every permutation of the MIB, it is intended as an aid to understanding some of the key concepts. It is meant to be read after going through the MIB itself.

In this example a PW service for CEP is configured over an MPLS PSN (MPLS-TE tunnel). It uses LDP as in [RFC4447] for service set-up.

For the operation in the service specific MIB modules and the PSN specific MIB modules, see the specific MIB module memo. This example is continued in the memo describing the PW-CEP-STD-MIB module (for example [CEPMIB]) and the PW-MPLS-STD-MIB module [PWMPLSMIB]).
In the PW-STD-MIB module:

In pwTable:
{
 pwIndex 5,
 pwType cep,
 pwOwner pwIdFecSignaling,
 pwPsnType mpls,
 pwSetUpPriority 0, -- Highest
 pwHoldingPriority 0, -- Highest
 pwInboundMode loose,
 pwPeerAddrType ipv4,
 pwPeerAddr 192.0.2.5, -- In this case equal to the
 -- peer LDP entity IP addr
 pwID 10,
 pwLocalGroupID 12,
 ...

 pwCwPreference true, -- Actually ignored for CEP
 pwLocalIfMtu 0, -- Do not send ifMtu parameter
 pwLocalIfString false, -- Do not send interface string
 pwCapabAdvert 0, -- Does not support status
 -- report to the peer.
 pwRemoteGroupID 0xFFFF, -- Will be received by
 -- signaling protocol
 pwRemoteCwStatus notKnownYet,
 pwRemoteIfMtu 0,
 pwRemoteIfString "",
 pwRemoteCapabilities notYetKnown,
 ...
 pwOutboundVcLabel 0xFFFF, -- Will be received by
 -- signaling protocol
 pwInboundVcLabel 0xFFFF, -- Will be set by signaling
 -- protocol
 pwName "Example of CEP PW",
 pwDescr "",
 ...
 pwAdminStatus up,
 ...
}
10. IANA PWE3 MIB Module

This section contains the initial version of the IANA-PWE3-MIB. IANA is requested to update this MIB module based on expert review as defined in [RFC2434]. Each new assignment of PW type or PW PSN type made by IANA based on the procedures described in [RFC4446] should be documented in the online version of IANA-PWE3-MIB. The current IANA-PWE3-MIB contains PW types as requested in [RFC4446] and [PWWILDCARD].

IANA-PWE3-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, transmission
 FROM SNMPv2-SMI -- [RFC2578]

 TEXTUAL-CONVENTION
 FROM SNMPv2-TC; -- [RFC2579]

ianaPwe3MIB MODULE-IDENTITY
 LAST-UPDATED "200702041200Z" -- 4 February 2006 12:00:00 GMT
 ORGANIZATION "IANA"
 CONTACT-INFO
 "Internet Assigned Numbers Authority
 Internet Corporation for Assigned Names and Numbers
 4676 Admiralty Way, Suite 330
 Marina del Rey, CA 90292-6601

 Phone: +1 310 823 9358
 EMail: iana@iana.org"
 DESCRIPTION
 "This MIB module defines the IANAPwTypeTC and IANAPwPsnTypeTC textual conventions for use in PWE3 MIB modules.

 Any additions or changes to the contents of this MIB module require either publication of an RFC, Designated Expert Review as defined in RFC 2434, Guidelines for Writing an IANA Considerations Section in RFCs, and should be based on the procedures defined in [RFC4446]. The Designated Expert will be selected by the IESG Area Director(s) of the internet Area.

 Copyright (C) The IETF Trust (2007). The initial version of this MIB module was published in RFC yyyy; for full legal notices see the RFC itself. Supplementary
IANAPwTypeTC ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "Indicates the PW type (i.e. the carried service)."
 SYNTAX INTEGER {
 other(0),
 frameRelayDlciMartiniMode(1),
 atmAal5SduVcc(2),
 atmTransparent(3),
 ethernetTagged(4),
 ethernet(5),
 hdlc(6),
 ppp(7),
 cem(8), -- Malis mode
 atmCellNto1Vcc(9),
 atmCellNto1Vpc(10),
 ipLayer2Transport(11),
 atmCell1to1Vcc(12),
 atmCell1to1Vpc(13),
 atmAal5PduVcc(14),
 frameRelayPortMode(15),
 cep(16),
 e1Satop(17),
 t1Satop(18),
 e3Satop(19),
 t3Satop(20),
 basicCesPsn(21),
 basicTdmIp(22),
 tdmCasCesPsn(23),
 tdmCasTdmIp(24),
 frDlci(25),
 wildcard (32767)
 }

IANAPwPsnTypeTC ::= TEXTUAL-CONVENTION
 STATUS current
DESCRIPTION
"Identifies the PSN type which the PW will use over the network."

SYNTAX INTEGER {
 mpls (1),
 l2tp (2),
 udpOverIp (3),
 mplsOverIp (4),
 mplsOverGre (5),
 other (6)
}

IANAPwCapabilities ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This TC describes a collection of capabilities related to a specific PW.
Values may be added in the future based on new capabilities introduced in IETF documents."

SYNTAX BITS {
 pwStatusIndication (0), -- Applicable only if maintenance protocol is in use.
 pwVCCV (1)
}

11. Object Definitions

PW-STD-MIB DEFINITIONS ::= BEGIN

IMPORTS
 NOTIFICATION-TYPE, MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, Unsigned32, Counter32, Counter64, TimeTicks,
 transmission FROM SNMPv2-SMI -- [RFC2578]

 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF -- [RFC2580]

 TruthValue, RowStatus, StorageType,
TimeStamp
FROM SNMPv2-TC -- [RFC2579]

SnmpAdminString
FROM SNMP-FRAMEWORK-MIB -- [RFC3411]

InterfaceIndexOrZero
FROM IF-MIB -- [RFC2863]

InetAddressType, InetAddress
FROM INET-ADDRESS-MIB -- [RFC4001]

PerfCurrentCount, PerfIntervalCount
FROM PerfHist-TC-MIB -- [RFC3593]

HCPerfCurrentCount, HCPerfIntervalCount, HCPerfTimeElapsed, HCPerfValidIntervals
FROM HC-PerfHist-TC-MIB -- [RFC3705]

PwIndexType, PwIndexOrZeroType, PwGroupId, PwIdType,
PwOperStatusTC, PwAttachmentIdentifierType, PwCwStatusTC,
PwStatus, PwFragSize, PwFragStatus
FROM PW-TC-STD-MIB -- [PWTC]
-- RFC Editor: Please replace [PWTC] with RFC number and remove this
-- note.

IANAPwTypeTC, IANAPwPsnTypeTC, IANAPwCapabilities
FROM IANA-PWE3-MIB -- Reference will be added
-- When IANA will create the
-- MIB module

;
DESCRIPTION

This MIB module enables the use of any underlying packet switched network (PSN). MIB modules that will support PW operations over specific PSN types are defined in separate memos.

The indexes for this MIB module are also used to index the PSN-specific tables and the PW-specific tables. The PW Type dictates which PW-specific MIB module to use.

Copyright (C) The IETF Trust (2007). This version of this MIB module is part of RFC XXX; for full legal notices see the RFC itself or http://www.ietf.org/copyrights/ianamib.html

-- RFC Ed.: replace XXX with actual RFC number & remove this note

-- Revision history.

REVISION

"200702041200Z" -- 4 February 2006 12:00:00 GMT
DESCRIPTION "Initial version published as part of RFC YYYY." -- RFC Editor: please replace YYYY with IANA assigned value, and -- delete this note.

::= { transmission ZZZZ }
-- RFC Editor: please replace ZZZZ with IANA assigned value, and -- delete this note.

-- Top-level components of this MIB.

-- Notifications
pwNotifications OBJECT IDENTIFIER
::= { pwStdMIB 0 }

-- Tables, Scalars
pwObjects OBJECT IDENTIFIER
::= { pwStdMIB 1 }

-- Conformance
pwConformance OBJECT IDENTIFIER
::= { pwStdMIB 2 }
-- PW Virtual Connection Table

pwIndexNext OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object contains an appropriate value to be used for pwIndex when creating entries in the
pwTable. The value 0 indicates that no unassigned entries are available. To obtain the
value of pwIndex for a new entry in the
pwTable, the manager issues a management
protocol retrieval operation. The agent will determine
through its local policy when this index value will be made
available for reuse."
::= { pwObjects 1 }

pwTable OBJECT-TYPE
SYNTAX SEQUENCE OF PwEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table specifies information for configuring and
status monitoring which are common to all service types
and PSN types."
::= { pwObjects 2 }

pwEntry OBJECT-TYPE
SYNTAX PwEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A row in this table represents a pseudo-wire (PW) virtual
connection across a packet network. It is indexed by
pwIndex, which uniquely identifies a singular
connection.
A row can be created by an operator command from a
management plan of a PE, by signaling or due to autodiscovery
process. Operator’s command can be issued via non SNMP
application; in such case a row will be created implicitly
by the agent.
The read-create objects in this tables are divided into
three categories:
1) Objects that MUST NOT be changed after row creation.
These are objects that define basic properties of the
PW (for example type, destination, etc.).
2) Objects that MAY be changed when the PW is
defined as not active. A change of these objects involves re-signaling of the PW or it might be traffic affecting. PW not active is defined as one of the following conditions:
 a) The pwRowStatus is notInService(2).
 b) The pwRowStatus is notReady(3).
 c) The pwAdminStatus is down(2).

If the operator needs to change one of the values for an active row, the operator can either set the pwRowStatus to notInService(2) or set pwAdminStatus to down(2). Signaling (or traffic) is initiated again upon setting the pwRowStatus to active(1) or setting the pwAdminStatus to up(1) or testing(3) respectively.

3) Objects that MAY be changed at any time.

By default, all the read-create objects MUST NOT be changed after row creation, unless specifically indicated in the individual object description.

Manual entries in this table SHOULD be preserved after a re-boot, the agent MUST ensure the integrity of those entries. If the set of entires of a specific row are found to be non consistent after reboot, the PW pwOperStatus MUST be declared as down(2).

"INDEX { pwIndex }

 ::= { pwTable 1 }

PwEntry ::= SEQUENCE {
 pwIndex PwIndexType,
 pwType IANAPwTypeTC,
 pwOwner INTEGER,
 pwPsnType IANAPwPsnTypeTC,
 pwSetUpPriority Integer32,
 pwHoldingPriority Integer32,
 pwPeerAddrType InetAddressType,
 pwPeerAddr InetAddress,
 pwAttachedPwIndex PwIndexOrZeroType,
 pwIfIndex InterfaceIndexOrZero,
 pwID PwIDType,
 pwLocalGroupId PwGroupID,
 pwGroupAttachmentID PwAttachmentIdentifierType,
 pwLocalAttachmentID PwAttachmentIdentifierType,
 pwPeerAttachmentID PwAttachmentIdentifierType,
 pwCwPreference TruthValue,
}
Internet-Draft PW MIB February 2007

pwLocalIfMtu Unsigned32,
pwLocalIfString TruthValue,
pwLocalCapabAdvert IANAPwCapabilities,
pwRemoteGroupID PwGroupID,
pwCwStatus PwCwStatusTC,
pwRemoteIfMtu Unsigned32,
pwRemoteIfString SnmpAdminString,
pwRemoteCapabilities IANAPwCapabilities,
pwFragmentCfgSize PwFragSize,
pwRmtFragCapability PwFragStatus,
pwFcsRetentionCfg INTEGER,
pwFcsRetentionStatus BITS,
pwOutboundLabel Unsigned32,
pwInboundLabel Unsigned32,
pwName SnmpAdminString,
pwDescr SnmpAdminString,
pwCreateTime TimeStamp,
pwUpTime TimeTicks,
pwLastChange TimeTicks,
pwAdminStatus INTEGER,
pwOperStatus PwOperStatusTC,
pwLocalStatus PwStatus,
pwRemoteStatusCapable INTEGER,
pwRemoteStatus PwStatus,
pwTimeElapsed HCPerfTimeElapsed,
pwValidIntervals HCPerfValidIntervals,
pwRowStatus RowStatus,
pwStorageType StorageType,
pwOamEnable TruthValue

}
STATUS current
DESCRIPTION "This value indicates the emulated service to be carried over this PW.
"
 ::= { pwEntry 2 }

pwOwner OBJECT-TYPE
SYNTAX INTEGER {
 manual (1),
 pwIdFecSignaling (2), -- PW signaling with PW ID FEC
 genFecSignaling (3), -- Generalized attachment FEC
 l2tpControlProtocol (4),
 other (5)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION "This object is set by the operator to indicate the protocol responsible for establishing this PW. 'manual' is used in all cases where no maintenance protocol (PW signaling) is used to set-up the PW, i.e. require configuration of entries in the PW tables including PW labels, etc. 'pwIdFecSignaling' is used in case of signaling with the Pwid FEC element with LDP signaling. 'genFecSignaling' is used in case of LDP signaling with the generalized FEC. 'l2tpControlProtocol' indicates the use of L2TP control protocol. 'other' is used for other types of signaling."
 ::= { pwEntry 3 }

pwPsnType OBJECT-TYPE
SYNTAX IANAPwPsnTypeTC
MAX-ACCESS read-create
STATUS current
DESCRIPTION "This object is set by the operator to indicate the PSN type. Based on this object, the relevant PSN table’s entry is created in the PSN specific MIB modules."
 ::= { pwEntry 4 }

pwSetUpPriority OBJECT-TYPE
SYNTAX Integer32 (0..7)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object defines the relative priority of the PW during set-up in a lowest-to-highest fashion, where 0 is the highest priority. PWs with the same priority are treated with equal priority. PW that have not yet succeeded to set-up will report 'dormant' in the pwOperStatus. This value is significant if there are competing resources among PWs and the implementation support this feature. Equal priority handling with competing resources is implementation specific. This object MAY be changed at any time."
DEFVAL { 0 }
::= { pwEntry 5 }

pwHoldingPriority OBJECT-TYPE
SYNTAX Integer32 (0..7)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object defines the relative holding priority of the PW in a lowest-to-highest fashion, where 0 is the highest priority. PWs with the same priority are treated equally. This value is significant if there are competing resources among PWs and the implementation support this feature. Equal priority handling with competing resources is implementation specific. This object MAY be changed only if the PW is not active."
DEFVAL { 0 }
::= { pwEntry 6 }

pwPeerAddrType OBJECT-TYPE
SYNTAX InetSocketAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Denotes the address type of the peer node. It should be set to 'unknown' if PE/PW maintenance protocol is not used and the address is unknown."
DEFVAL { ipv4 }
::= { pwEntry 8 }

pwPeerAddr OBJECT-TYPE
SYNTAX InetSocketAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object contains the value of the peer node address
of the PW/PE maintenance protocol entity. This object
SHOULD contain a value of all zeroes if not applicable
(pwPeerAddrType is 'unknown')."
::= { pwEntry 9 }

pwAttachedPwIndex OBJECT-TYPE
SYNTAX PwIndexOrZeroType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If the PW is attached to another PW instead of a local
native service, this item indicates the pwIndex of the
attached PW. Otherwise, this object MUST
be set to zero. Attachment to another PW will have no
PW specific entry in any of the service MIB modules."
DEFVAL { 0 }
::= { pwEntry 10 }

pwIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object indicates the ifIndex of the PW if the PW is
represented in the ifTable. Otherwise, it MUST be set
to zero."
DEFVAL { 0 }
::= { pwEntry 11 }

pwID OBJECT-TYPE
SYNTAX PwIDType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Used in the outgoing PW ID field within the ‘Virtual
Circuit FEC Element’. Applicable if pwOwner equal ‘pwIdFecSignaling’ or
‘l2tpControlProtocol’, otherwise it SHOULD be set to zero."
REFERENCE
the Label Distribution Protocol’, RFC 4447."
::= { pwEntry 12 }

pwLocalGroupID OBJECT-TYPE
SYNTAX PwGroupID
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Used in the Group ID field sent to the peer PWES within the maintenance protocol used for PW setup. It SHOULD be set to zero if maintenance protocol is not used."

REFERENCE

::= { pwEntry 13 }

pwGroupAttachmentID OBJECT-TYPE
SYNTAX PwAttachmentIdentifierType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is an octet string representing the attachment group identifier (AGI) that this PW belongs too, which typically identifies the VPN ID. Applicable if pwOwner equal 'genFecSignaling'."

REFERENCE

::= { pwEntry 14 }

pwLocalAttachmentID OBJECT-TYPE
SYNTAX PwAttachmentIdentifierType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is an octet string representing the local forwarder attachment individual identifier (AII) to be used by this PW. It is used as the SAI for outgoing signaling messages and the TAI in the incoming messages from the peer. Applicable if pwOwner equal 'genFecSignaling'."

REFERENCE

::= { pwEntry 15 }

pwPeerAttachmentID OBJECT-TYPE
SYNTAX PwAttachmentIdentifierType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object is an octet string representing the peer forwarder attachment individual identifier (AII) to be used by this PW. It is used as the TAI for outgoing signaling messages and the SAI in the incoming messages
from the peer.
Applicable if pwOwner equal 'genFecSignaling'."
REFERENCE
"Martini, et al, 'Pseudowire Setup and Maintenance using
the Label Distribution Protocol', RFC 4447."
::= { pwEntry 16 }

pwCwPreference OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Defines if the control word will be sent with each packet
by the local node. Some PW types mandate the use of a
control word, and in such cases the value configured for
this object has no effect on the existence of the control
word.
This object MAY be changed only if the PW is not active."
REFERENCE
"Martini, et al, 'Pseudowire Setup and Maintenance using
the Label Distribution Protocol.', RFC 4447."
DEFVAL { false }
::= { pwEntry 17 }

pwLocalIfMtu OBJECT-TYPE
SYNTAX Unsigned32 (0..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If not equal to zero, the optional IfMtu object in the
signaling protocol will be sent with this value, which
represents the locally-supported MTU size over the
interface (or the virtual interface) associated with the
PW.
This object MAY be changed only if the PW is not active."
REFERENCE
"Martini, et al, 'Pseudowire Setup and Maintenance using
the Label Distribution Protocol', RFC 4447."
DEFVAL { 0 }
::= { pwEntry 18 }

pwLocalIfString OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A PW MAY be associated to an interface (or a virtual
interface) in the ifTable of the node as part of the
service configuration. This object defines if the
maintenance protocol will send the interface’s name
(ifAlias) as appears in the ifTable. If set to false,
the optional element will not be sent.

This object MAY be changed only if the PW is not active.

REFERENCE

the Label Distribution Protocol’, RFC 4447, section 5.5."

DEFVAL { false }

::= { pwEntry 19 }

pwLocalCapabAdvert OBJECT-TYPE
SYNTAX IANAPwCapabilities
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"If maintenance protocol is used, it indicates the
capabilities the local node will advertise to the
peer. The operator MAY selectively assign partial set
of capabilities. In case of manual configuration of the PW,
the operator SHOULD set non conflicting options (for example
only a single type of OAM) out of the available options
in the implementation.
It is possible to change the value of this object when the
PW is not active. The agent MUST reject any attempt to set
a capability that is not supported.

The default value MUST be the full set of local node
capabilities."

REFERENCE

the Label Distribution Protocol’, RFC 4447."

 ::= { pwEntry 20 }

pwRemoteGroupID OBJECT-TYPE
SYNTAX PwGroupID
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is obtained from the Group ID field as
received via the maintenance protocol used for PW setup.
Value zero will be reported if not used.
Value of 0xFFFF shall be used if the object is yet to be
defined by the PW maintenance protocol."

REFERENCE

the Label Distribution Protocol’, RFC 4447."

 ::= { pwEntry 21 }
pwCwStatus OBJECT-TYPE
SYNTAX PwCwStatusTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION "If signaling is used for PW establishment, this object indicates the status of the control word negotiation, and in both; signaling or manual configuration it indicates if CW is to be present for this PW."
REFERENCE
::= { pwEntry 22 }

pwRemoteIfMtu OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The remote interface MTU as (optionally) received from the remote node via the maintenance protocol. The object SHOULD report zero if MTU is not available."
REFERENCE
::= { pwEntry 23 }

pwRemoteIfString OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..80))
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates the interface description string as received by the maintenance protocol. It MUST be a NULL string if maintenance protocol is not used or the value is not known yet."
REFERENCE
::= { pwEntry 24 }

pwRemoteCapabilities OBJECT-TYPE
SYNTAX IANAPwCapabilities
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates the capabilities as recieved from the peer."
REFERENCE
::= { pwEntry 25 }

pwFragmentCfgSize OBJECT-TYPE
SYNTAX PwFragSize
UNITS "bytes"
MAX-ACCESS read-create
STATUS current
DESCRIPTION "If set to a value other than zero, indicates that fragmentation is desired for this PW. This object MAY be changed only if the PW is not active."
REFERENCE "Malis A., Townsley M., 'PWE3 Fragmentation and Reassembly', RFC 4623."
DEFVAL { 0 } -- i.e. fragmentation not desired
::= { pwEntry 26 }

pwRmtFragCapability OBJECT-TYPE
SYNTAX PwFragStatus
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The status of the fragmentation based on the local configuration and the peer capabilities as received from the peer when control protocol is used."
REFERENCE "Malis A., Townsley M., 'PWE3 Fragmentation and Reassembly', RFC 4623."
::= { pwEntry 27 }

pwFcsRetentionCfg OBJECT-TYPE
SYNTAX INTEGER {
 fcsRetentionDisable (1),
 fcsRetentionEnable (2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The local configuration of FCS retention for this PW. FCS retention can be configured for PW types HDLC, PPP and Ethernet only. If the implementation does not support FCS retention, error MUST be reported in pwFcsRetentionStatus. This object MAY be changed only if the PW is not active."
REFERENCE "Malis A., et al., 'PWE3 Frame Check Sequence Retention', RFC 4720."
DEFVAL { fcsRetentionDisable }
::= { pwEntry 28 }

pwFcsRetentionStatus OBJECT-TYPE
SYNTAX BITS {
 remoteIndicationUnknown (0),
 remoteRequestFcsRetention (1),
 fcsRetentionEnabled (2),
 fcsRetentionDisabled (3),
 localFcsRetentionCfgErr (4),
 fcsRetentionFcsSizeMismatch (5)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The status of the FCS retention negotiation process based on local configuration and the remote advertisement.

remoteIndicationUnknown - set if a FEC has not been received from the remote.

remoteRequestFcsRetention - indicates that the peer has requested for FCS retention. FCS retention will be used if the local node is capable and configured to use it for this PW.

fcsRetentionEnabled - FCS retention is enabled (both peers were configured for FCS retention for signaled PW, or the local node is configured and capable for FCS retention for manually assigned PW).

fcsRetentionDisabled - FCS retention is disabled (not configured locally or not advertised by the peer).

localFcsRetentionCfgErr - Set if the local node has been configured for FCS retention but is not capable to support it.

fcsRetentionFcsSizeMismatch - Set if there is an FCS size mismatch between the local and the peer node.
"

REFERENCE
 "Malis A., et al., 'PWE3 Frame Check Sequence Retention',
 RFC 4720"
::= { pwEntry 29 }

pwOutboundLabel OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The PW label used in the outbound direction (i.e. toward
 the PSN). It might be set manually if pwOwner is ‘manual’,
 otherwise setting done automatically.
 For MPLS, MPLS over IP or MPLS over GRE PSN, it represents
 the 20 bits of PW tag, for L2TP it represents the 32 bits
 Session ID and for IP PSN it represents the destination
 UDP port number.
 If the label is not yet known (signaling in process), the
 object SHOULD return a value of 0xFFFF.
 For manual configuration, this object MAY be changed only
 if the PW is not active."
 ::= { pwEntry 30 }

pwInboundLabel OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The PW label used in the inbound direction (i.e. packets
 received from the PSN). It may be set manually if pwOwner
 is ‘manual’, otherwise setting done automatically.
 For MPLS, MPLS over IP or MPLS over GRE PSN, it represents
 the 20 bits of PW tag, for L2TP it represents the 32 bits
 Session ID and for IP PSN it represents the source
 UDP port number.
 If the label is not yet known (signaling in process), the
 object SHOULD return a value of 0xFFFF.
 For manual configuration, this object MAY be changed only
 if the PW is not active."
 ::= { pwEntry 31 }

pwName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
 "The canonical name assigned to the PW. This object MAY be
 changed at any time."
 ::= { pwEntry 32 }

pwDescr OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A textual string containing information about the PW. If there is no description this object contains a zero length string. This object MAY be changed at any time."

::= { pwEntry 33 }

pwCreateTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of sysUpTime at the time this PW was created."

::= { pwEntry 34 }

pwUpTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Specifies the time since last change of pwOperStatus to Up(1)."

::= { pwEntry 35 }

pwLastChange OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of sysUpTime at the time the PW entered its current operational state. If the current state was entered prior to the last re-initialization of the local network management subsystem, then this object contains a zero value."

::= { pwEntry 36 }

pwAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
 up(1), -- ready to pass packets
down(2),
testing(3) -- in a test mode
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION "The desired operational status of this PW. This object MAY be set at any time."

::= { pwEntry 37 }

pwOperStatus OBJECT-TYPE
SYNTAX PwOperStatusTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This object indicates the operational status of the PW, it
does not reflect the status of the CE bound interface.
It is set to down only if pwNotForwarding,
pasnFacingPwRxFault, or psnFacingPwTxFault indications are
set in pwLocalStatus or pwRemoteStatus.
It indicates ‘lowerLayerDown’ if the only reason for
not being in the ‘up’ state is either outer tunnel
or physical layer down of the network side is in the down
state.
All other states are declared based on the description in
the textual convention.
"
 ::= { pwEntry 38 }

pwLocalStatus OBJECT-TYPE
SYNTAX PwStatus
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "Indicates the status of the PW in the local node.
The various indications in this object SHOULD be
available independent of the ability of the local node to
advertise them or the remote node to accept these status
indications through the control protocol.
"
 ::= { pwEntry 39 }

pwRemoteStatusCapable OBJECT-TYPE
SYNTAX INTEGER {
 notApplicable (1),
 notYetKnown (2),
 remoteCapable (3),
 remoteNotCapable (4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "Indicates the remote node capability to advertise the
PW status notification.
notApplicable SHOULD be reported for manually set PW, or
if the local node is not capable of accepting the status
notification object.
notYetKnown SHOULD be reported if the signaling protocol
has not yet finished the process of capability
remoteCapable and remoteNotcapable SHOULD be reported based on the initial signaling exchange that has determined the remote node capability.

::= { pwEntry 40 }

pwRemoteStatus OBJECT-TYPE
SYNTAX PwStatus
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Indicates the status of the PW as was advertised by the remote. If the remote is not capable of advertising the status object, or the local node is not able to accept the status object through signaling, then the applicable bit is 'pwNotForwarding' which is set if the remote has sent label release or label withdraw for this PW."

::= { pwEntry 41 }

pwTimeElapsed OBJECT-TYPE
SYNTAX HCPerfTimeElapsed
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of seconds, including partial seconds, that have elapsed since the beginning of the current interval measurement period."

::= { pwEntry 42 }

pwValidIntervals OBJECT-TYPE
SYNTAX HCPerfValidIntervals
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of previous 15-minute intervals for which data was collected."

::= { pwEntry 43 }

pwRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION "For creating, modifying, and deleting this row. This object MAY be changed at any time."

::= { pwEntry 44 }
pwStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION "This variable indicates the storage type for this object."
DEFVAL { nonVolatile }
::= { pwEntry 45 }

pwOamEnable OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION "This variable indicates if OAM is enabled for this PW. It MAY be changed at any time."
DEFVAL { true }
::= { pwEntry 46 }

-- End of PW Virtual Connection Table

-- PW Performance Table.

pwPerfCurrentTable OBJECT-TYPE
SYNTAX SEQUENCE OF PwPerfCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table provides per-PW performance information for the current interval."
::= { pwObjects 3 }

PwPerfCurrentEntry OBJECT-TYPE
SYNTAX PwPerfCurrentEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in this table is created by the agent for every PW."
INDEX { pwIndex }
::= { pwPerfCurrentTable 1 }

PwPerfCurrentEntry ::= SEQUENCE {
 pwPerfCurrentInHCPackets HCPerfCurrentCount,
pwPerfCurrentInHCBytes HCPerfCurrentCount,
pwPerfCurrentOutHCPackets HCPerfCurrentCount,
pwPerfCurrentOutHCBytes HCPerfCurrentCount,
}
Internet-Draft PW MIB February 2007

pwPerfCurrentInPackets PerfCurrentCount,
pwPerfCurrentInBytes PerfCurrentCount,
pwPerfCurrentOutPackets PerfCurrentCount,
pwPerfCurrentOutBytes PerfCurrentCount
}

pwPerfCurrentInHCPackets OBJECT-TYPE
SYNTAX HCPerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "High capacity counter for number of packets received by
 the PW (from the PSN) in the current 15-minute interval.
 This is the 64 bit version of pwPerfCurrentInPackets,
 if pwPerfCurrentInHCPackets is supported according to
 the rules spelled out in RFC2863."
 ::= { pwPerfCurrentEntry 1 }

pwPerfCurrentInHCBytes OBJECT-TYPE
SYNTAX HCPerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "High capacity counter for number of bytes received by the
 PW (from the PSN) in the current 15-minute interval.
 This is the 64 bit version of pwPerfCurrentInBytes, if
 pwPerfCurrentInHCBytes is supported according to the
 rules spelled out in RFC2863."
 ::= { pwPerfCurrentEntry 2 }

pwPerfCurrentOutHCPackets OBJECT-TYPE
SYNTAX HCPerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "High capacity counter for number of packets forwarded by
 the PW (to the PSN) in the current 15-minute interval.
 This is the 64 bit version of pwPerfCurrentOutPackets,
 if pwPerfCurrentOutHCPackets is supported according to
 the rules spelled out in RFC2863."
 ::= { pwPerfCurrentEntry 3 }

pwPerfCurrentOutHCBytes OBJECT-TYPE
SYNTAX HCPerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "High capacity counter for number of bytes forwarded by
the PW (to the PSN) in the current 15-minute interval. This is the 64 bit version of pwPerfCurrentOutBytes, if pwPerfCurrentOutHCBytes is supported according to the rules spelled out in RFC2863.

::= { pwPerfCurrentEntry 4 }

pwPerfCurrentInPackets OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The counter for number of packets received by the PW (from the PSN) in the current 15-minute interval. This is the 32 bit version of pwPerfCurrentInHCPackets, if pwPerfCurrentInHCPackets is supported according to the rules spelled out in RFC2863."

::= { pwPerfCurrentEntry 5 }

pwPerfCurrentInBytes OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The counter for number of bytes received by the PW (from the PSN) in the current 15-minute interval. It MUST be equal to the least significant 32 bits of pwPerfCurrentInHCBytes, if pwPerfCurrentInHCBytes is supported according to the rules spelled out in RFC2863."

::= { pwPerfCurrentEntry 6 }

pwPerfCurrentOutPackets OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The counter for number of packets forwarded by the PW (to the PSN) in the current 15-minute interval. It MUST be equal to the least significant 32 bits of pwPerfCurrentOutHCPackets, if pwPerfCurrentOutHCPackets is supported according to the rules spelled out in RFC2863."

::= { pwPerfCurrentEntry 7 }

pwPerfCurrentOutBytes OBJECT-TYPE
SYNTAX PerfCurrentCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The counter for number of bytes forwarded by
the PW (to the PSN) in the current 15-minute interval.
It MUST be equal to the least significant 32 bits of
pwPerfCurrentOutHCBytes, if pwPerfCurrentOutHCBytes is
supported according to the rules spelled out in RFC2863."
::= { pwPerfCurrentEntry 8 }

-- End of PW Perf current Table

-- PW Performance Interval Table.

pwPerfIntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF PwPerfIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table provides per-PW performance information for
each interval."
::= { pwObjects 4 }

PwPerfIntervalEntry OBJECT-TYPE
SYNTAX PwPerfIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry in this table is created by the agent for every
PW."
INDEX { pwIndex, pwPerfIntervalNumber }
::= { pwPerfIntervalTable 1 }

PwPerfIntervalEntry ::= SEQUENCE {
 pwPerfIntervalNumber Integer32,
pwPerfIntervalValidData TruthValue,
pwPerfIntervalTimeElapsed HCPerfTimeElapsed,
pwPerfIntervalInHCPackets HCPerfIntervalCount,
pwPerfIntervalInHCBytes HCPerfIntervalCount,
pwPerfIntervalOutHCPackets HCPerfIntervalCount,
pwPerfIntervalOutHCBytes HCPerfIntervalCount,
pwPerfIntervalInPackets PerfIntervalCount,
pwPerfIntervalInBytes PerfIntervalCount,
pwPerfIntervalOutPackets PerfIntervalCount,
pwPerfIntervalOutBytes PerfIntervalCount
 }

pwPerfIntervalNumber OBJECT-TYPE
SYNTAX Integer32 (1..96)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A number N, between 1 and 96, which identifies the
interval for which the set of statistics is available.
The interval identified by 1 is the most recently
completed 15 minute interval, and the interval identified
by N is the interval immediately preceding the one
identified by N-1.
The minimum range of N is 1 through 4. The default range
is 1 to 32. The maximum range of N is 1 through 96."

REFERENCE
"Tesink, K. ‘Definitions of Managed Objects for the
SONET/SDH Interface Type’, RFC 2558"
::= { pwPerfIntervalEntry 1 }

pwPerfIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates if the data for this interval
is valid."
::= { pwPerfIntervalEntry 2 }

pwPerfIntervalTimeElapsed OBJECT-TYPE
SYNTAX HCPerfTimeElapsed
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The duration of this interval in seconds."
::= { pwPerfIntervalEntry 3 }

pwPerfIntervalInHCPackets OBJECT-TYPE
SYNTAX HCPerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"High capacity counter for number of packets received by
the PW (from the PSN) during the interval. This is the 64
bit version of pwPerfIntervalInPackets, if
pwPerfIntervalInHCPackets is supported according to the
rules spelled out in RFC2863."
::= { pwPerfIntervalEntry 4 }

pwPerfIntervalInHCBytes OBJECT-TYPE
SYNTAX HCPerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"High capacity counter for number of bytes received by the PW (from the PSN) during the interval. This is the 64 bit version of pwPerfIntervalInBytes, if pwPerfIntervalInHCBYBytes is supported according to the rules spelled out in RFC2863."

::= { pwPerfIntervalEntry 5 }

pwPerfIntervalOutHCPackets OBJECT-TYPE
SYNTAX HCPerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION "High capacity counter for number of packets forwarded by the PW (to the PSN) during the interval. This is the 64 bit version of pwPerfIntervalOutPackets, if pwPerfIntervalOutHCPackets is supported according to the rules spelled out in RFC2863."

::= { pwPerfIntervalEntry 6 }

pwPerfIntervalOutHCBytes OBJECT-TYPE
SYNTAX HCPerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION "High capacity counter for number of bytes forwarded by the PW (to the PSN) during the interval. This is the 64 bit version of pwPerfIntervalOutBytes, if pwPerfIntervalOutHCBYBytes is supported according to the rules spelled out in RFC2863."

::= { pwPerfIntervalEntry 7 }

pwPerfIntervalInPackets OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION "This value represents the number of packets received by this PW during the interval. It MUST be equal to the least significant 32 bits of pwPerfIntervalInHCPackets if pwPerfIntervalInHCPackets is supported according to the rules spelled out in RFC2863."

::= { pwPerfIntervalEntry 8 }

pwPerfIntervalInBytes OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This value represents the number of bytes received by this PW during the interval.
It MUST be equal to the least significant 32 bits of pwPerfIntervalInHCBytes if supported according to the rules spelled out in RFC2863."
::= { pwPerfIntervalEntry 9 }

pwPerfIntervalOutPackets OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This value represents the number of packets sent by this PW during the interval.
It MUST be equal to the least significant 32 bits of pwPerfIntervalOutHCPackets if supported according to the rules spelled out in RFC2863."
::= { pwPerfIntervalEntry 10 }

pwPerfIntervalOutBytes OBJECT-TYPE
SYNTAX PerfIntervalCount
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This value represents the number of bytes sent by this PW during the interval.
It MUST be equal to the least significant 32 bits of pwPerfIntervalOutHCBytes if supported according to the rules spelled out in RFC2863."
::= { pwPerfIntervalEntry 11 }

-- End of PW Performance Interval Table

-- PW Performance 1 Day Interval Table.

pwPerf1DayIntervalTable OBJECT-TYPE
SYNTAX SEQUENCE OF PwPerf1DayIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table provides per-PW Performance information for the current day measurement and the previous day's interval."
::= { pwObjects 5 }
pwPerf1DayIntervalEntry OBJECT-TYPE
SYNTAX PwPerf1DayIntervalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry in this table is created by the agent for every
 PW."
INDEX { pwIndex, pwPerf1DayIntervalNumber }

 ::= { pwPerf1DayIntervalTable 1 }

PwPerf1DayIntervalEntry ::= SEQUENCE {
 pwPerf1DayIntervalNumber Unsigned32,
 pwPerf1DayIntervalValidData TruthValue,
 pwPerf1DayIntervalTimeElapsed HCPerfTimeElapsed,
 pwPerf1DayIntervalInHCPackets Counter64,
 pwPerf1DayIntervalInHCBytes Counter64,
 pwPerf1DayIntervalOutHCPackets Counter64,
 pwPerf1DayIntervalOutHCBytes Counter64
}

pwPerf1DayIntervalNumber OBJECT-TYPE
SYNTAX Unsigned32(1..31)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "History Data Interval number. Interval 1 is the current day
 measurement period, interval 2 is the most recent previous
 day, and interval 30 is 31 days ago. Intervals 3..31 are
 optional."
 ::= { pwPerf1DayIntervalEntry 1 }

pwPerf1DayIntervalValidData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "This variable indicates if the data for this interval
 is valid."
 ::= { pwPerf1DayIntervalEntry 2 }

pwPerf1DayIntervalTimeElapsed OBJECT-TYPE
SYNTAX HCPerfTimeElapsed
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "The number of seconds in the 1-day interval over which the

performance monitoring information is actually counted. This value will be the same as the interval duration except in a situation where performance monitoring data could not be collected for any reason or agent clock adjustments."

::= { pwPerf1DayIntervalEntry 3 }

pwPerf1DayIntervalInHCPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "High capacity counter for the total number of packets received by the PW (from the PSN)."
::= { pwPerf1DayIntervalEntry 4 }

pwPerf1DayIntervalInHCBytes OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "High capacity counter for the total number of bytes received by the PW (from the PSN)."
::= { pwPerf1DayIntervalEntry 5 }

pwPerf1DayIntervalOutHCPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "High capacity counter for the total number of packets forwarded by the PW (to the PSN)."
::= { pwPerf1DayIntervalEntry 6 }

pwPerf1DayIntervalOutHCBytes OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
 "High capacity counter for the total number of bytes forwarded by the PW (to the PSN)."
::= { pwPerf1DayIntervalEntry 7 }

-- End of PW Perf 1 Day Interval Table

-- Error counter scalar

pwPerfTotalErrorPackets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION "Counter for number of error at the PW processing level, for example packets received with unknown PW label."
::= { pwObjects 6 }

-- Reverse mapping tables

-- The PW ID mapping table

pwIndexMappingTable OBJECT-TYPE
SYNTAX SEQUENCE OF PwIndexMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table enables the reverse mapping the unique PWid parameters [peer IP, PW type and PW ID] and the pwIndex. The table is not applicable for PW created manually or by using the generalized FEC."
::= { pwObjects 7 }

PwIndexMappingEntry OBJECT-TYPE
SYNTAX PwIndexMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry in this table MUST be created by the agent for every PW created by the pwTable for which pwOwner equals pwIdFecSignaling.

Implementors need to be aware that if the value of the pwIndexMappingPeerAddr (an OID) or pwIndexMappingPwID (an OID) (or both combined) has more than 111 sub-identifiers, then OIDs of column instances in this table will have more than 128 sub-identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3."
INDEX { pwIndexMappingPwType, pwIndexMappingPwID, pwIndexMappingPeerAddrType, pwIndexMappingPeerAddr } ::= { pwIndexMappingTable 1 }

PwIndexMappingEntry ::= SEQUENCE {
pwIndexMappingPwType IANA PWType TC,
pwIndexMappingPwID PwID Type,
pwIndexMappingPeerAddrType InetAddressType,
pwIndexMappingPeerAddr InetAddress,
pwIndexMappingPwIndex PwIndexType
}
pwIndexMappingPwType OBJECT-TYPE
SYNTAX IANA-PwTypeTC
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The PW type (indicates the service) of this PW."
::= { pwIndexMappingEntry 1 }

pwIndexMappingPwID OBJECT-TYPE
SYNTAX PwIDType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The PW ID of this PW. Zero if the PW is configured manually."
::= { pwIndexMappingEntry 2 }

pwIndexMappingPeerAddrType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "IP address type of the peer node."
::= { pwIndexMappingEntry 3 }

pwIndexMappingPeerAddr OBJECT-TYPE
SYNTAX InetAddress
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "IP address type of the peer node."
::= { pwIndexMappingEntry 4 }

pwIndexMappingPwIndex OBJECT-TYPE
SYNTAX PwIndexType
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value that represents the PW in the pwTable."
::= { pwIndexMappingEntry 5 }

-- End of the PW ID mapping table

-- The peer mapping table

pwPeerMappingTable OBJECT-TYPE
This table provides reverse mapping of the existing PW based on PW type and PW ID ordering. This table is typically useful for EMS ordered query of existing PWs.

```
::= { pwObjects 8 }
```

An entry in this table is created by the agent for every PW entry in pwTable.

Implementors need to be aware that if the value of the pwPeerMappingPeerAddr (an OID) or pwPeerMappingPwID (an OID) (or both combined) has more than 111 sub-identifiers, then OIDs of column instances in this table will have more than 128 sub-identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3.

```
INDEX  { pwPeerMappingPeerAddrType, pwPeerMappingPeerAddr, pwPeerMappingPwType, pwPeerMappingPwID }
```
STATUS current
DESCRIPTION "IP address of the peer node."
::= { pwPeerMappingEntry 2 }

pwPeerMappingPwType OBJECT-TYPE
SYNTAX IANAPwTypeTC
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The PW type (indicates the emulated service) of this PW."
::= { pwPeerMappingEntry 3 }

pwPeerMappingPwID OBJECT-TYPE
SYNTAX PwIDType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The PW ID of this PW. Zero if the PW is configured manually."
::= { pwPeerMappingEntry 4 }

pwPeerMappingPwIndex OBJECT-TYPE
SYNTAX PwIndexType
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value that represents the PW in the pwTable."
::= { pwPeerMappingEntry 5 }

-- End of the peer mapping table

-- End of reverse mapping tables

pwUpDownNotifEnable OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION "If this object is set to true(1), then it enables the emission of pwUp and pwDown notifications; otherwise these notifications are not emitted."
REFERENCE "See also [RFC3413] for explanation that notifications are under the ultimate control of the MIB module in this document."
DEFVAL { false }
pwDeletedNotifEnable OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"If this object is set to true(1), then it enables the
emission of pwDeleted notification; otherwise this
notification is not emitted."
REFERENCE
"See also [RFC3413] for explanation that
notifications are under the ultimate control of the
MIB module in this document."
DEFVAL { false }
::= { pwObjects 10 }

pwNotifRate OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object defines the maximum number of PW notifications
that can be emitted from the device per second."
::= { pwObjects 11 }

-- Notifications - PW

pwDown NOTIFICATION-TYPE
OBJECTS { pwOperStatus, --start of range
 pwOperStatus --end of range
}
STATUS current
DESCRIPTION
"This notification is generated when the
pwOperStatus object for one or more contiguous
entries in pwTable are about to enter the
down(2) state from some other state. The included values
of pwOperStatus MUST all be set equal to this
down(2) state. The two instances of pwOperStatus
in this notification indicate the range of indexes
that are affected. Note that all the indexes of the
two ends of the range can be derived from the
instance identifiers of these two objects. For
cases where a contiguous range of cross-connects
have transitioned into the down(2) state at roughly
the same time, the device SHOULD issue a single
notification for each range of contiguous indexes in
an effort to minimize the emission of a large number
of notifications. If a notification has to be
issued for just a single cross-connect entry, then
the instance identifier (and values) of the two
pwOperStatus objects MUST be identical.
::= { pwNotifications 1 }

pwUp NOTIFICATION-TYPE
OBJECTS { pwOperStatus, --start of range
 pwOperStatus --end of range
}
STATUS current
DESCRIPTION
"This notification is generated when the
pwOperStatus object for one or more contiguous
entries in pwTable are about to enter the up(1)
state from some other state. The included values of
pwOperStatus MUST both be set equal to this
new state (i.e: up(1)). The two instances of
pwOperStatus in this notification indicate the range
of indexes that are affected. Note that all the indexes
of the two ends of the range can be derived from the
instance identifiers of these two objects. For
cases where a contiguous range of cross-connects
have transitioned into the up(1) state at roughly
the same time, the device SHOULD issue a single
notification for each range of contiguous indexes in
an effort to minimize the emission of a large number
of notifications. If a notification has to be
issued for just a single cross-connect entry, then
the instance identifier (and values) of the two
pwOperStatus objects MUST be the identical."
::= { pwNotifications 2 }

pwDeleted NOTIFICATION-TYPE
OBJECTS { pwType,
 pwID,
 pwPeerAddrType,
 pwPeerAddr
}
STATUS current
DESCRIPTION
"This notification is generated when the PW has been
deleted, i.e. when the pwRowStatus has been set to
destroy(6), the PW has been deleted by a non-MIB
application or due to auto-discovery process."
::= { pwNotifications 3 }

-- End of notifications.

-- Conformance information

pwGroups OBJECT IDENTIFIER ::= { pwConformance 1 }
pwCompliances OBJECT IDENTIFIER ::= { pwConformance 2 }

-- Compliance requirement for fully compliant implementations.

pwModuleFullCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for agents that provide full
 support for PW MIB Module. Such devices can
 then be monitored and configured using
 this MIB module."

MODULE -- this module
 MANDATORY-GROUPS { pwBasicGroup,
 pwPerformanceGeneralGroup
 }

GROUP pwNotificationGroup
 DESCRIPTION "This group is only mandatory for implementations
 which can efficiently implement the notifications
 contained in this group.
 "

GROUP pwPwIdGroup
 DESCRIPTION "This group is only mandatory for implementations
 that support the PW ID FEC.
 "

GROUP pwGeneralizedFecGroup
 DESCRIPTION "This group is only mandatory for implementations
 that support the generalized PW FEC.
 "

GROUP pwFcsGroup
 DESCRIPTION "This group is only mandatory for implementations
 that support FCS retention."

GROUP pwFragGroup
 DESCRIPTION "This group is only mandatory for implementations
 that support PW fragmentation."
GROUP pwPwStatusGroup
DESCRIPTION "This group is only mandatory for implementations that support PW status notification."

GROUP pwGetNextGroup
DESCRIPTION "This group is only mandatory for implementations where the pwIndex may be any arbitrary value and the EMS would require retrieval of the next free index."

GROUP pwPriorityGroup
DESCRIPTION "This group is only mandatory for implementations that support controlling the PW setup and holding priority."

GROUP pwAttachmentGroup
DESCRIPTION "This group is only mandatory for implementations that support attachment of two PWs (PW stitching)."

GROUP pwPeformance1DayIntervalGroup
DESCRIPTION "This group is only mandatory for implementations that support PW performance gathering in 1 day intervals."

GROUP pwPerformanceIntervalGeneralGroup
DESCRIPTION "This group is only mandatory for implementations that support PW performance gathering in 15 minute intervals."

GROUP pwPerformanceIntervalGroup
DESCRIPTION "This group is only mandatory for implementations that support PW performance gathering in 15 minute intervals."

GROUP pwHCPeformanceIntervalGroup
DESCRIPTION "This group is only mandatory for implementations where at least one of the interval performance counters wraps around too quickly based on the criteria specified in RFC 2863 for high-capacity counters."

GROUP pwMappingTablesGroup
DESCRIPTION "This group is only mandatory for implementations that support reverse mapping of PW indexes to the pwIndex and the peer mapping table."

GROUP pwSignalingGroup
DESCRIPTION "This group is only mandatory for implementations that support the PW signaling."

GROUP pwNotificationControlGroup
DESCRIPTION "This group is only mandatory for implementations that support the PW notifications."

OBJECT pwAdminStatus
SYNTAX INTEGER { up(1), down(2) }
DESCRIPTION "The support of the value testing(3) is not required."

OBJECT pwOperStatus
SYNTAX INTEGER { up(1), down(2), notPresent(5), lowerLayerDown(6) }
DESCRIPTION "The support of the values testing(3) and dormant(4) is not required."

OBJECT pwRowStatus
SYNTAX RowStatus { active(1), notInService(2), notReady(3) }
WRITE-SYNTAX RowStatus { active(1), notInService(2), createAndGo(4), destroy(6) }
DESCRIPTION "Support for createAndWait is not required. Support of notReady is not required for implementations that do not support signaling, or if it is guaranteed that the conceptual row has all the required information to create the PW when the row has been created by the agent or written by the operator."

OBJECT pwPeerAddrType
SYNTAX InetAddressType { unknown(0), ipv4(1) }
MIN-ACCESS read-only
DESCRIPTION "Only unknown(0) and ipv4(1) is required. Implementation that support only IPv4 MAY support read-only access."

OBJECT pwPeerAddr
SYNTAX InetAddress (SIZE(0|4))
DESCRIPTION "An implementation is only required to support 0, 4 address sizes."

OBJECT pwStorageType
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."
OBJECT pwNotifRate
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."
::= { pwCompliances 1 }

-- Compliance requirement for read-only compliant implementations.
pwModuleReadOnlyCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for agents that provide read-only support for PW MIB Module. Such devices can then be monitored but cannot be configured using this MIB module."

MODULE -- this module
MANDATORY-GROUPS { pwBasicGroup }

GROUP pwNotificationGroup
DESCRIPTION "This group is only mandatory for implementations which can efficiently implement the notifications contained in this group."

GROUP pwPwIdGroup
DESCRIPTION "This group is only mandatory for implementations that support the PW ID FEC."

GROUP pwGeneralizedFecGroup
DESCRIPTION "This group is only mandatory for implementations that support the generalized PW FEC."

GROUP pwFcsGroup
DESCRIPTION "This group is only mandatory for implementations that support FCS retention."

GROUP pwFragGroup

DESCRIPTION "This group is only mandatory for implementations that support PW fragmentation."

GROUP pwPwStatusGroup
DESCRIPTION "This group is only mandatory for implementations..."
that support PW status notification.

GROUP pwGetNextGroup
DESCRIPTION "This group is only mandatory for implementations where the pwIndex may be any arbitrary value and the EMS would require retrieval of the next free index."

GROUP pwPriorityGroup
DESCRIPTION "This group is only mandatory for implementations that support the controlling the PW setup and holding priority."

GROUP pwAttachmentGroup
DESCRIPTION "This group is only mandatory for implementations that support attachment of two PWs (PW stitching)."

GROUP pwPeformance1DayIntervalGroup
DESCRIPTION "This group is only mandatory for implementations that support PW performance gathering in 1 Day intervals."

GROUP pwPerformanceIntervalGeneralGroup
DESCRIPTION "This group is only mandatory for implementations that support PW performance gathering in 15 minute intervals."

GROUP pwPerformanceIntervalGroup
DESCRIPTION "This group is only mandatory for implementations that support PW performance gathering in 15 minute intervals."

GROUP pwHCPeformanceIntervalGroup
DESCRIPTION "This group is only mandatory for implementations where at least one of the interval performance counters wraps around too quickly based on the criteria specified in RFC 2863 for high-capacity counters."

GROUP pwMappingTablesGroup
DESCRIPTION "This group is only mandatory for implementations that support reverse mapping of PW indexes to the pwIndex and the peer mapping table."

GROUP pwSignalingGroup
DESCRIPTION "This group is only mandatory for implementations that support the PW signaling."
GROUP pwNotificationControlGroup
DESCRIPTION "This group is only mandatory for implementations that support the PW notifications."

OBJECT pwType
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwOwner
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwPsnType
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwSetUpPriority
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwHoldingPriority
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwPeerAddrType
SYNTAX InetAddressType { unknown(0), ipv4(1) }
MIN-ACCESS read-only
DESCRIPTION "Write access is not required. Only unknown(0) and ipv4(1) is required."

OBJECT pwPeerAddr
SYNTAX InetAddress (SIZE(0|4))
MIN-ACCESS read-only
DESCRIPTION "Write access is not required. An implementation is only required to support 0, 4 address sizes."

OBJECT pwAttachedPwIndex
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwIfIndex
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwID
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."
OBJECT pwLocalGroupId
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwGroupAttachmentId
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwLocalAttachmentId
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwPeerAttachmentId
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwCwPreference
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwLocalIfMtu
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwLocalIfString
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwLocalCapabAdvert
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwFragmentCfgSize
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwFcsRetentionCfg
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwOutboundLabel
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwInboundLabel
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwName
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwDescr
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwAdminStatus
SYNTAX INTEGER { up(1), down(2) }
MIN-ACCESS read-only
DESCRIPTION "Write access is not required. The support of value
testing(3) is not required."

OBJECT pwOperStatus
SYNTAX INTEGER { up(1), down(2), notPresent(5), lowerLayerDown(6) }
MIN-ACCESS read-only
DESCRIPTION "The support of the values testing(3) and dormant(4)
is not required."

OBJECT pwRowStatus
SYNTAX RowStatus { active(1) }
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwStorageType
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwUpDownNotifEnable
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwDeletedNotifEnable
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

OBJECT pwNotifRate
MIN-ACCESS read-only
DESCRIPTION "Write access is not required."

::= { pwCompliances 2 }

-- Units of conformance.

pwBasicGroup OBJECT-GROUP
OBJECTS {
 pwType,
 pwOwner,
 pwPsnType,
 pwIfIndex,
 pwCwPreference,
 pwLocalIfMtu,
 pwOutboundLabel,
 pwInboundLabel,
 pwName,
 pwDescr,
 pwCreateTime,
 pwUpTime,
 pwLastChange,
 pwAdminStatus,
 pwOperStatus,
 pwLocalStatus,
 pwRowStatus,
 pwStorageType,
 pwOamEnable

}

STATUS current
DESCRIPTION
"Collection of objects that are required in all implementations that support the PW MIB module."
::= { pwGroups 1 }

pwPwIdGroup OBJECT-GROUP
OBJECTS {
 pwID
}

STATUS current
DESCRIPTION
"Collection of objects required for PW ID configuration and signaling."
::= { pwGroups 2 }

pwGeneralizedFecGroup OBJECT-GROUP
OBJECTS {
 pwGroupAttachmentID,
 pwLocalAttachmentID,
 pwPeerAttachmentID
}

STATUS current
DESCRIPTION
"Collection of objects required for generalized FEC configuration and signaling."
 ::= { pwGroups 3 }

pwFcsGroup OBJECT-GROUP
 OBJECTS {
 pwFcsRetentionCfg,
 pwFcsRetentionStatus
 }

STATUS current
DESCRIPTION
 "Collection of objects required for FCS retention configuration and signaling."
 ::= { pwGroups 4 }

pwFragGroup OBJECT-GROUP
 OBJECTS {
 pwFragmentCfgSize,
 pwRmtFragCapability
 }

STATUS current
DESCRIPTION
 "Collection of objects required for fragmentation configuration and signaling."
 ::= { pwGroups 5 }

pwPwStatusGroup OBJECT-GROUP
 OBJECTS {
 pwRemoteCapabilities,
 pwRemoteStatusCapable,
 pwRemoteStatus
 }

STATUS current
DESCRIPTION
 "Collection of objects required for PW status configuration and signaling."
 ::= { pwGroups 6 }

pwGetNextGroup OBJECT-GROUP
 OBJECTS {
 pwIndexNext
 }

STATUS current
DESCRIPTION
 "Collection of objects for getting the next available index."
::= { pwGroups 7 }

pwPriorityGroup OBJECT-GROUP
OBJECTS {
 pwSetUpPriority,
 pwHoldingPriority
}

STATUS current
DESCRIPTION
 "Collection of objects for controlling the PW setup and holding priority."
::= { pwGroups 8 }

pwAttachmentGroup OBJECT-GROUP
OBJECTS {
 pwAttachedPwIndex
}

STATUS current
DESCRIPTION
 "Collection of objects for PW configuration as ifIndex"
::= { pwGroups 9 }

pwPerformanceGeneralGroup OBJECT-GROUP
OBJECTS {
 pwPerfTotalErrorPackets
}

STATUS current
DESCRIPTION
 "Collection of general objects needed for managing the total running performance parameters."
::= { pwGroups 10 }

pwPerformance1DayIntervalGroup OBJECT-GROUP
OBJECTS {
 pwPerf1DayIntervalValidData,
 pwPerf1DayIntervalTimeElapsed,
 pwPerf1DayIntervalInHCPackets,
 pwPerf1DayIntervalInHCBytes,
 pwPerf1DayIntervalOutHCPackets,
 pwPerf1DayIntervalOutHCBytes
}
 STATUS current
DESCRIPTION
"Collection of objects needed for PW running 1 day interval performance collection."
::= { pwGroups 11 }

pwPerformanceIntervalGeneralGroup OBJECT-GROUP
OBJECTS {
 pwTimeElapsed,
 pwValidIntervals,
 pwPerfIntervalValidData,
 pwPerfIntervalTimeElapsed
}

 STATUS current
DESCRIPTION
"Collection of general objects needed for managing the interval performance parameters."
::= { pwGroups 12 }

pwPerfCurrentGroup OBJECT-GROUP
OBJECTS {
 pwPerfCurrentInPackets,
 pwPerfCurrentInBytes,
 pwPerfCurrentOutPackets,
 pwPerfCurrentOutBytes,
 pwPerfIntervalInPackets,
 pwPerfIntervalInBytes,
 pwPerfIntervalOutPackets,
 pwPerfIntervalOutBytes
}

 STATUS current
DESCRIPTION
"Collection of 32 bits objects needed for PW performance collection in 15 minutes intervals."
::= { pwGroups 13 }

pwHCPerfCurrentGroup OBJECT-GROUP
OBJECTS {
 pwPerfCurrentInHCPackets,
 pwPerfCurrentInHCBytes,
 pwPerfCurrentOutHCPackets,
 pwPerfCurrentOutHCBytes,
 pwPerfIntervalInHCPackets,
 pwPerfIntervalInHCBytes,
pwPerfIntervalOutHCPackets,
pwPerfIntervalOutHCBYtes
}

STATUS current
DESCRIPTION
"Collection of HC objects needed for PW performance
 collection in 15 minutes intervals."
::= { pwGroups 14 }

pwMappingTablesGroup OBJECT-GROUP
OBJECTS {
 pwIndexMappingPwIndex,
 pwPeerMappingPwIndex
}

STATUS current
DESCRIPTION
"Collection of objects contained in the reverse
 mapping tables."
::= { pwGroups 15 }

pwNotificationControlGroup OBJECT-GROUP
OBJECTS {
 pwUpDownNotifEnable,
 pwDeletedNotifEnable,
 pwNotifRate
}

STATUS current
DESCRIPTION
"Collection of objects for controlling the PW
 notifications."
::= { pwGroups 16 }

pwNotificationGroup NOTIFICATION-GROUP
NOTIFICATIONS {
 pwUp,
 pwDown,
 pwDeleted
}

STATUS current
DESCRIPTION
"Collection PW notifications objects."
::= { pwGroups 17 }

pwSignalingGroup OBJECT-GROUP
12. Security Considerations

It is clear that this MIB module is potentially useful for monitoring PW capable PEs. This MIB module can also be used for configuration of certain objects, and anything that can be configured can be incorrectly configured, with potentially disastrous results.

There are number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability:

- the pwTable contains objects to configure PW parameters on a Provider Edge (PE) device. Unauthorized access to objects in this table, could result in disruption of traffic on the network. The objects pwUpDownNotifEnable and pwNotifRate control the reports from the network element to the EMS. Unauthorized access to these objects could result in disruption of configuration and status change reporting, resulting mis-view of the network conditions. The use of stronger mechanisms such as SNMPv3 security should be considered where possible. Specifically, SNMPv3 VACM and USM MUST
be used with any v3 agent which implements this MIB module. Administrators should consider whether read access to these objects should be allowed, since read access may be undesirable under certain circumstances.

Some of the readable objects in this MIB module "i.e., objects with a MAX-ACCESS other than not-accessible" may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:

- the pwTable, pwPerfCurrentTable, pwPerfIntervalTable, pwPerf1DayIntervalTable, pwIndexMappingTable and pwPeerMappingTable collectively show the pseudo wire connectivity topology and its performance characteristics. If an Administrator does not want to reveal this information, then these tables should be considered sensitive/vulnerable.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure, for example by using IPSec, even then, there is no control as to who on the secure network is allowed to access and GET/SET "read/change/create/delete" the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework "see [RFC3410], section 8", including full support for the SNMPv3 cryptographic mechanisms "for authentication and privacy".

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module, is properly configured to give access to the objects only to those principals "users" that have legitimate rights to indeed GET or SET "change/create/delete" them.

13. IANA Considerations

13.1. IANA Considerations for PW-STD-MIB

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:
Editor's Note (to be removed prior to publication): The IANA is requested to assign a value for "ZZZZ" under the 'transmission' subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "ZZZZ" (here and in the MIB module) with the assigned value and to remove this note.

IANA is also requested to register a value for a PW type in the IANAifType-MIB.

13.2. IANA Considerations for IANA-PWE3-MIB

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

Editor's Note (to be removed prior to publication): The IANA is requested to assign a value for "XXXX" under the 'transmission' subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "XXXX" (here and in the MIB module) with the assigned value and to remove this note.

14. Acknowledgements

We thank Orly Nicklass for her dedicated review and significant edit at various sections of the document.

15. References

15.1. Normative References

[PWTC] Nadeau, T. and D. Zelig, "Definitions for Textual Conventions and OBJECT-IDENTITIES for Pseudo-Wires"
Martini, L. and G. Swallow, "Wildcard Pseudowire Type", work-in-progress.

15.2. Informative References

Authors’ Addresses

Thomas D. Nadeau (editor)
Cisco Systems, Inc.
250 Apollo Drive
Chelmsford, MA 01824
USA

Email: tnadeau@cisco.com
David Zelig (editor)
Corrigent Systems
126, Yigal Alon St.
Tel Aviv,
Israel
Phone: +972 3 6945 273
Email: davidz@corrigent.com

Dave Danenberg
Email: dave_danenberg@yahoo.com

Sharon Mantin
Corrigent Systems
126, Yigal Alon St.
Tel Aviv,
Israel
Phone: +972 3 6948 615
Email: sharonma@corrigent.com
Full Copyright Statement

Copyright (C) The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).