Pseudo Wire (PW) over MPLS PSN Management Information Base
draft-ietf-pwe3-pw-mpls-mib-01.txt

Status of this Memo

This document is an Internet-Draft and is in full conformance
with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in
progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at

Copyright (C) The Internet Society (2001). All rights reserved.

1 Abstract

This memo defines an experimental portion of the Management
Information Base (MIB) for use with network management protocols in
the Internet community. In particular, it describes MIB module for
PW operation over Multi-Protocol Label Switching (MPLS) Label
Switch Router (LSR).
2 Introduction

This document describes a model for managing pseudo wire services for transmission over different flavors of MPLS tunnels. The general PW MIB [PW-MIB] defines the parameters global to the VC regardless of underlying PSN and emulated service. Indicating PSN type of MPLS in PW-MIB references this module.

This document describes the MIB objects that define pseudo wire association to the MPLS PSN, in a way that is not specific to the carried service.

Together, [TEMIB and LSRMIB], describe the modeling of an MPLS Tunnel, and a Tunnel’s underlying cross-connects. The defined MIB support MPLS-TE PSN, Non TE MPLS PSN (an outer tunnel created by LDP or manually), and MPLS VC only (no outer tunnel).

Some flavors of MPLS, such as carrying PW in MPLS in IP and MPLS in GRE are not defined here, waiting to the WG documents that will describe the exact MPLS functionality. It still for further study whether this functionality will be treated in this MIB modules or in another one specific to IP PSN.

VC level protection is for further study. Protection is currently assumed at the outer tunnel level only, on bulk of VCs. Future revision of this document will control the behavior of such protection in more details.

Note: the current version is the same as the -00 draft. Update of the MIB module will be available once the applicable documents will be finalized by the WG.
Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [BCP14].

3 Terminology

This document uses terminology from the document describing the PW framework [FRMWK], from [ENCAP] and [TRANS].

The terms "Outbound" and "Inbound" in this MIB module are based on the common practice in the MPLS standards, i.e. "outbound" are toward the PSN. However, where these terms are used in an object name, the object description clarifies the exact packet direction to prevent confusion with these terms in other documents.

"PSN Tunnel" is a general term indicating a virtual connection between the two PW edge devices. Each tunnel may potentially carry multiple VCs inside. In the scope of this document, it is MPLS tunnel.

This document uses terminology from the document describing the MPLS architecture [MPLSArch] for MPLS PSN. A Label Switched Path (LSP) is modeled as described in [LSRMIB and TEMIB] via a series of cross-connects through 1 or more Label switch routers (LSR).

In MPLS PSN, a PW connection typically uses a VC (Virtual Connection) Label within a Tunnel Label [TRANS]. Multiple PW VCs each with a unique VC Label can share the same Tunnel. For PW transport over MPLS, the Tunnel Label is known as the "outer" Label, while the VC Label is known as the "inner" Label. An exception to this is with adjacent LSRs or the use of PHP. In this case, there is an option for PW VCs to connect directly without an outer Label.

4 The SNMP Management Framework

The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in RFC 2571 [RFC2571].

- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC 1215 [RFC1215]. The second version, called SMIv2, is described in STD
58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [RFC1157]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [RFC1901] and RFC 1906 [RFC1906]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [RFC1906], RFC 2572 [RFC2572] and RFC 2574 [RFC2574].

- Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [RFC1157]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [RFC1905].

- A set of fundamental applications described in RFC 2573 [RFC2573] and the view-based access control mechanism described in RFC 2575 [RFC2575].

A more detailed introduction to the current SNMP Management Framework can be found in RFC 2570 [RFC2570].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI.

This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.

4.1 Object Definitions

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, an OBJECT IDENTIFIER, an administratively assigned name, names each object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to also refer to the object type.
5 Feature Checklist

The PW MPLS MIB (PW-MPLS-MIB) is designed to satisfy the following requirements and constraints:

- The MIB supports both manually configured and signaled VCs.
- The MIB supports point-to-point PW connections.
- The MIB enables the use of any emulated service.
- The MIB supports MPLS-TE outer tunnel, Non TE MPLS outer tunnel (an outer tunnel signaled by LDP or set-up manually), and no outer tunnel (where the VC label is the only label in the incoming MPLS stack).
- The MIB enables both strict and loose incoming VC lookup. In strict mode, only VC carried inside known in advance tunnels or interfaces are accepted. The methods of the association knowledge are out of the scope of this document.

6 MIB usage

The MIB structure for defining a PW service is composed from three types of modules.

The first type is the PW-MIB module [PW-MIB], which configures general parameters of the VC that are common to all types of emulated services and PSNs.

The second type of module is per PSN module. There is a different module for each type of PSN. This document defines the MIB module for MPLS (PW-MPLS-MIB).

The third type of module is service-specific module, which is emulated signal type dependent. These modules are defined in other documents; see for example [CEPMIB].

[PWTC] defines some of the object types used in these modules.

6.1 PW-MPLS-MIB usage

- The VC table (pwVcTable) in [PW-MIB] is used for all VC types (ATM, FR, Ethernet, SONET, etc.). This table contains high level generic parameters related to the VC creation. A row is created by the operator for each PW service.

- If the PSN type in pwVcTable is MPLS, the agent creates a row in the MPLS specific parameters table (pwMplsVcTable) in PW-MPLS-MIB,
which contain MPLS specific parameters such as EXP bits handling and outer tunnel selection.

- A row is created by the agent in the MPLS outbound tunnels table (pwVcMplsOutboundTable), which associates the VC to one or more (in a case of backup tunnels) MPLS tunnels. This table simply associates the VC with the entries at the relevant MPLS MIBs. Additional rows in this table may be created manually, if more than one outer tunnel is required (for example for protection purposes).

- The MPLS inbound tunnel table (pwVcMplsInboundTable) associates the VC to the incoming tunnel. This (optional) table can be used for restricting the packet reception for a specific PW from pre-defined tunnels, bringing better security and better miss-configuration error immunity.

- The MPLS tunnels mapping tabled (pwMplsTeMappingTable and pwMplsNonTeMappingTable) associate the tunnel and the VC label to the VC index. This table is used for easy lookup process when searching VC information.

The relation to the MPLS network is by configuration of the edge LSR only - that is to say, the LSR providing the PW function. Since Tunnels are uni-directional, a pair of tunnels must exist (one for inbound, one for outbound). The following graphic depicts a VC that originates and terminates at LSR-M. It uses LSPs A and B formed by Tunnels Ax and Bx continuing through LSR-N to LSR-P. The concatenations of Tunnels create the LSPs. Note: 'X' denotes a Tunnel’s cross-connect.
The PW-MPLS-MIB supports three options for MPLS network:

- In the MPLS-TE case, Tunnel A1 and B1 are created via the MPLS-TE MIB [TEMIB]. The tunnels are associated to the VC by the (4) indexes that uniquely identify the Tunnel at the TE-MIB.

- In the Non TE case, Tunnel A1 and B1 are either manually configured or set up with LDP. The tunnels are associated to the VC by the XC index in the MPLS-LSR-MIB [LSRMIB].

- In the VC only case, there is no outer Tunnel on top of the VC label. This case is useful in case of adjacent PE (see [TRANS]) or when LSR-N acts as PHP for the outer tunnel label. In this case, Association is done directly to the physical interfaces in the PW-MPLS-MIB tables.

A combination of MPLS-TE outer tunnel(s) and LDP outer tunnel for the same VC is allowed by creating the rows with the same VcIndex with different MPLS tunnel indexes types.

6.2 Example of MIB usage

In this section we provide an example of using the MIB objects for setting up a VC over MPLS. While this example is not meant to illustrate every permutation of the MIB, it is intended as an aid to understanding some of the key concepts. It is meant to be read after going through the MIB itself.
In this example a PW service for CEP is configured over an MPLS-TE tunnel. It uses LDP as in [TRANS] for service set-up.

In PW-MIB:

In pwVcTable:

```
{   
  pwVcIndex               5,   
  pwVcType                cep,   
  pwVcOwner               maintenanceProtocol,   
  pwVcPsnType             mpls,   
  pwVcSetUpPriority       0,   
  pwVcHoldingPriority     0,   
  pwVcInboundMode         loose,   
  pwVcPeerAddrType        ipv4(2),   
  pwVcPeerAddr            1.4.3.2, -- In this case equal to the peer tunnel IP address   
  pwVcID                  10,   
  pwVcLocalGroupId        12,   
  pwVcControlWord         false, -- Control word not to be sent   
  pwVcLocalIfMtu          0, -- Do not send ifMtu parameter   
  pwVcLocalIfString       false, -- Do not signal if string   
  pwVcRemoteGroupId       0xFFFF, -- Will be received by -- maintenance protocol   
  pwVcRemoteControlWord   notKnownYet,   
  pwVcRemoteIfMtu         0,   
  pwVcRemoteIfString      "",   
  pwVcOutboundVcLabel     0xFFFF, -- Will be received by -- maintenance protocol   
  pwVcInboundVcLabel      0xFFFF, -- Will be set by signaling   
  pwVcName                "Example of CEP VC",   
  pwVcDescr               "",   
  ..   
  pwVcAdminStatus         up,   
  ..
}
```
The operator now create a row in `pwVcMplsTable` based on the `VcIndex`, that is configured with MPLS specific values:

In `pwVcMplsTable`:

```plaintext`
{
    pwVcMplsMplsType        mplsTe,
    pwVcMplsExpBitsMode     outerTunnel,
    pwVcMplsExpBits         0,
    pwVcMplsTtl             2,
    pwVcMplsLocalLdpID      1.2.3.4.0.0 -- Global label space
    pwVcMplsLocalLdpEntityID 0,
    pwVcMplsPeerLdpID       0, -- Not known yet
    ...
}
```

The operator now associates the VC with an outgoing TE tunnel:

In `pwVcMplsOutboundTable`:

```plaintext`
{
    pwVcMplsOutboundIndex                    0, -- The first row
    pwVcMplsOutBoundLsrXcIndex               0, -- MPLS-TE
    pwVcMplsOutboundTunnelIndex              500,
    pwVcMplsOutboundTunnelInstance           0,
    pwVcMplsOutboundTunnelLclLSR             1.2.3.4, -- Always
    pwVcMplsOutboundTunnelPeerLSR            1.4.3.2
    pwVcMplsOutboundIfIndex                  0, -- MPLS-TE
    ...
}
```

`pwVcMplsInboundTable` is not used because loose LDP set-up is used. `pwVcMplsTeMappingTable` entry will be created by the agent once the outbound table is configured and will enable easy lookup for the `VcIndex` from knowledge of the outer tunnel indexes.
7 Object definitions

PW-MPLS-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 experimental, Unsigned32
 FROM SNMPv2-SMI

 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF

 RowStatus, StorageType
 FROM SNMPv2-TC

 InterfaceIndexOrZero
 FROM IF-MIB

 MplsTunnelIndex, MplsTunnelInstanceIndex,
 MplsLdpIdentifier, MplsLsrIdentifier
 FROM MPLS-TC-MIB

 PwVcIndexType
 FROM PW-TC-MIB

 pwVcIndex
 FROM PW-MIB

;

pwVcMplsMIB MODULE-IDENTITY
 LAST-UPDATED "200206021200Z" -- 02 June 2002 12:00:00 EST
 ORGANIZATION "Pseudo Wire Edge to Edge Emulation (PWE3) Working
 Group"
 CONTACT-INFO
 "
 David Zelig
 Postal: Corrigent Systems
 126, Yigal Alon St.
 Tel Aviv, ISRAEL
 Phone: +972-3-6945273
 E-mail: davidz@corrigent.com

 Thomas D. Nadeau
 Postal: Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA 01824
 Tel: +1-978-497-3051
 Email: tnadeau@cisco.com

 Dave Danenberg

 Zelig et al Expires December 2003 [page 10]
DESCRIPTION
"This MIB complements the PW-MIB for PW operation over MPLS.
"

-- Revision history.

REVISION
"200206021200Z" -- 02 June 2002 12:00:00 EST
DESCRIPTION
"Draft-ietf-pwe3-pw-mpls-mib-00 version. Changes from previous version:
1) Spliting the mapping table into two tables, one for Non TE application and one for TE application.
2) Object types alignment with MPLS MIBs.
"

REVISION
"200201291200Z" -- 29 January 2002 12:00:00 EST
DESCRIPTION
"Changes from previous version:
1) Add LDP entity association.
2) Clarify inbound/outbound directions.
3) Simplify indexing of outbound and inbound tables and providing get next variables.
"

REVISION
"200107111200Z" -- 7 November 2001 12:00:00 EST
DESCRIPTION
"Changes from previous version:
1) Remove Vc instance from table indexing.
2) Update descriptions of indexing and protection.
3) Remove the need for MPLS-LSR in case of VC only.
4) Change pwVcMplsMplsType to BITS in order to enable multiple types of outer tunnel.
5) Add ifindex to outer tunnel tables to support vcOnly option.
"
6) change naming of outbound, inbound and mapping tables to reflect addition of VC only port ifindexes.
7) Adapt order of items in mapping table to SNMP convention.

REVISION
"200107111200Z" -- July 11 2001 12:00:00 EST
DESCRIPTION
"draft-zelig-pw-mib-00.txt - initial version"

::= { experimental xxx } -- To be assigned by IANA

-- Top-level components of this MIB.

-- Traps
pwVcMplsNotifications OBJECT IDENTIFIER
 ::= { pwVcMplsMIB 0 }
pwVcMplsNotifyPrefix OBJECT IDENTIFIER
 ::= { pwVcMplsNotifications 0 }

-- Tables, Scalars
pwVcMplsObjects OBJECT IDENTIFIER
 ::= { pwVcMplsMIB 1 }

-- Conformance
pwVcMplsConformance OBJECT IDENTIFIER
 ::= { pwVcMplsMIB 2 }

-- PW VC MPLS table

pwVcMplsTable OBJECT-TYPE
SYNTAX SEQUENCE OF PwVcMplsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table specifies information for VC to be carried over
 MPLS PSN."
 ::= { pwVcMplsObjects 1 }

pwVcMplsEntry OBJECT-TYPE
SYNTAX PwVcMplsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "A row in this table represents parameters specific to MPLS
 PSN for a pseudo wire connection (VC). The row is created
 automatically by the local agent if the pwVcPsnType is
 MPLS. It is indexed by pwVcIndex, which uniquely
 identifying a singular connection."

INDEX { pwVcIndex }

Zelig et al Expires December 2003 [page 12]
::= { pwVcMplsTable 1 }

PwVcMplsEntry ::= SEQUENCE {
 pwVcMplsMplsType BITS,
 pwVcMplsExpBitsMode INTEGER,
 pwVcMplsExpBits Unsigned32,
 pwVcMplsTtl Unsigned32,
 pwVcMplsLocalLdpID MplsLdpIdentifier,
 pwVcMplsLocalLdpEntityID Unsigned32,
 pwVcMplsPeerLdpID MplsLdpIdentifier,
 pwVcMplsStorageType StorageType
}

pwVcMplsMplsType OBJECT-TYPE
SYNTAX BITS {
 mplsTe (0),
 mplsNonTe (1),
 vcOnly (2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Set by the operator to indicate the outer tunnel types, if
exists. mplsTe is used if the outer tunnel was set up by
MPLS-TE, and mplsNonTe is used if the outer tunnel was set up
by LDP or manually. Combination of mplsTe and mplsNonTe
may exist in case of outer tunnel protection.
vcOnly is used if there is no outer tunnel label. vcOnly
cannot be combined with mplsNonTe or mplsTe."

::= { pwVcMplsEntry 1 }

pwVcMplsExpBitsMode OBJECT-TYPE
SYNTAX INTEGER {
 outerTunnel (1),
 specifiedValue (2),
 serviceDependant (3)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Set by the operator to indicate the way the VC shim label
EXP bits are to be determined. The value of outerTunnel(1)
is used where there is an outer tunnel - pwVcMplsMplsType
is mplsTe or mplsNonTe. Note that in this case there is no
need to mark the VC label with the EXP bits since the VC
label is not visible to the intermediate nodes.
If there is no outer tunnel, specifiedValue(2) indicate
that the value is specified by pwVcMplsExpBits, and
serviceDependant(3) indicate that the EXP bits are setup
based on a rule specified in the emulated service specific tables, for example when the EXP bits are a function of 802.1p marking for Ethernet emulated service."

REFERENCE
"martini et al, <draft-martini-l2circuit-encap-mpls.txt>"

DEFVAL { outerTunnel }
:= { pwVcMplsEntry 2 }

pwVcMplsExpBits OBJECT-TYPE
SYNTAX Unsigned32 (0..7)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Set by the operator to indicate the MPLS EXP bits to be used on the VC shim label if pwVcMplsExpBitsMode is specifiedValue(2), zero otherwise."

DEFVAL { 0 }
:= { pwVcMplsEntry 3 }

pwVcMplsTtl OBJECT-TYPE
SYNTAX Unsigned32 (0..255)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Set by the operator to indicate the VC TTL bits to be used on the VC shim label."

REFERENCE
"martini et al, <draft-martini-l2circuit-encap-mpls> "

DEFVAL { 2 }
:= { pwVcMplsEntry 4 }

pwVcMplsLocalLdpID OBJECT-TYPE
SYNTAX MplsLdpIdentifier
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The local LDP identifier of the LDP entity creating this VC in the local node. As the VC labels are always set from the per platform label space, the last two octets in the LDP ID MUST be always both zeros."

REFERENCE
"<draft-ietf-ldp-mib>,
<draft-martini-l2circuit-encap-mpls>.
"

:= { pwVcMplsEntry 5 }

pwVcMplsLocalLdpEntityID OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-write
STATUS current
DESCRIPTION

Zelig et al Expires December 2003

[page 14]
"The local LDP Entity index of the LDP entity to be used for this VC on the local node. Should be set to all zeros if not used."

REFERENCE
"<draft-ietf-ldp-mib>

::= { pwVcMplsEntry 6 }

pwVcMplsPeerLdpID OBJECT-TYPE
SYNTAX MplsLdpIdentifier
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The peer LDP identifier as identified from the LDP session. Should be zero if not relevant or not known yet."

REFERENCE
"<draft-ietf-ldp-mib>,
<draft-martini-l2circuit-encap-mpls>.

::= { pwVcMplsEntry 7 }

-- End of PW MPLS VC table

-- Pseudo Wire VC MPLS Outbound Tunnel table

pwVcMplsOutboundIndexNext OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object contains an appropriate value to be used for pwVcMplsOutboundIndex when creating entries in the pwVcMplsOutboundTable. The value 0 indicates that no unassigned entries are available. To obtain the pwVcMplsOutboundIndex value for a new entry, the manager issues a management protocol retrieval operation to obtain the current value of this object. After each retrieval, the agent should modify the value to the next unassigned index, however the agent MUST NOT assume such retrieval will be done for each row created."

::= { pwVcMplsObjects 2 }
Pseudo Wire (PW) Over MPLS Management Information Base

pwVcMplsOutboundTable

SYNTAX

```
SEQUENCE OF PwVcMplsOutboundEntry
```

MAX-ACCESS

```
not-accessible
```

STATUS

```
current
```

DESCRIPTION

"This table associates VCs using MPLS PSN with the outbound MPLS tunnels (i.e. toward the PSN) or the physical interface in case of VC only."

::= { pwVcMplsObjects 3 }

pwVcMplsOutboundEntry

SYNTAX

```
PwVcMplsOutboundEntry
```

MAX-ACCESS

```
not-accessible
```

STATUS

```
current
```

DESCRIPTION

"A row in this table represents a link between PW VC (that require MPLS tunnels) and MPLS tunnel toward the PSN. In the case of VC only, it associate the VC with the interface that shall carry the VC. This table is indexed by the pwVcIndex and an additional index enabling multiple rows for the same VC index.

At least one entry is created in this table by the operator for each PW VC that requires MPLS PSN. Note that the first entry for each VC can be indexed by pwVcMplsOutboundIndex equal zero without a need for retrieval of pwVcMplsOutboundIndexNext.

This table points to the appropriate MPLS MIB. In the case of MPLS-TE, the 4 variables relevant to the indexing of a TE MPLS tunnel are set as in Srinivasan, et al, `<draft-ietf-mpls-te-mib>`.

In case of Non-TE MPLS (an outer tunnel label assigned by LDP or manually) the table points to the XC entry in the LSR MIB as in Srinivasan, et al, `<draft-ietf-mpls-lsr-mib>`.

In case of VC only (no outer tunnel) the ifIndex of the port to carry the VC is configured.

Each VC may have multiple rows in this tables if protection is available at the outer tunnel level, each row may be of different type except for VC only, on which only rows with ifIndex of the port are allowed."

INDEX

```
{ pwVcIndex, pwVcMplsOutboundIndex }
```

::= { pwVcMplsOutboundTable 1 }

PwVcMplsOutboundEntry

::= SEQUENCE {

```
pwVcMplsOutboundIndex Unsigned32,
```

Zelig et al Expires December 2003
pwVcMplsOutboundLsrXcIndex OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object will be set by the operator. If the outer
label is defined in the MPL-LSR-MIB, i.e. set by LDP
or manually, this object points to the XC index
of the outer tunnel. Otherwise, it is set to zero."
 ::= { pwVcMplsOutboundEntry 2 }

pwVcMplsOutboundTunnelIndex OBJECT-TYPE
SYNTAX MplsTunnelIndex
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Part of set of indexes for outbound tunnel in the case of
MPLS-TE outer tunnel, otherwise set to zero."
 ::= { pwVcMplsOutboundEntry 3 }

pwVcMplsOutboundTunnelInstance OBJECT-TYPE
SYNTAX MplsTunnelInstanceIndex
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Part of set of indexes for outbound tunnel in the case of
MPLS-TE outer tunnel, otherwise set to zero."
 ::= { pwVcMplsOutboundEntry 4 }
pwVcMplsOutboundTunnelLclLSR OBJECT-TYPE
SYNTAX MplsLsrIdentifier
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Part of set of indexes for outbound tunnel in the case of
MPLS-TE outer tunnel, otherwise set to zero."
::= { pwVcMplsOutboundEntry 5 }

pwVcMplsOutboundTunnelPeerLSR OBJECT-TYPE
SYNTAX MplsLsrIdentifier
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Part of set of indexes for outbound tunnel in the case of
MPLS-TE outer tunnel, otherwise set to zero."
::= { pwVcMplsOutboundEntry 6 }

pwVcMplsOutboundIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"In case of VC only (no outer tunnel), this object holds
the ifIndex of the outbound port, otherwise set to zero."
::= { pwVcMplsOutboundEntry 7 }

pwVcMplsOutboundRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"For creating, modifying, and deleting this row."
::= { pwVcMplsOutboundEntry 8 }

pwVcMplsOutboundStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This variable indicates the storage type for this object."
::= { pwVcMplsOutboundEntry 9 }

-- End of Pseudo Wire VC MPLS Outbound Tunnel table

-- Pseudo Wire VC MPLS Inbound Tunnel table

pwVcMplsInboundIndexNext OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object contains an appropriate value to be used for pwVcMplsInboundIndex when creating entries in the pwVcMplsInboundTable. The value 0 indicates that no unassigned entries are available. To obtain the pwVcMplsInboundIndex value for a new entry, the manager issues a management protocol retrieval operation to obtain the current value of this object. After each retrieval, the agent should modify the value to the next unassigned index, however the agent MUST NOT assume such retrieval will be done for each row created."

 ::= { pwVcMplsObjects 4 }

 pwVcMplsInboundTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PwVcMplsInboundEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table associates VCs using MPLS PSN with the inbound MPLS tunnels (i.e. for packets coming from the PSN), if such association is desired (mainly for security reasons)."

 ::= { pwVcMplsObjects 5 }

 pwVcMplsInboundEntry OBJECT-TYPE
 SYNTAX PwVcMplsInboundEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A row in this table represents a link between PW VCs (that require MPLS tunnels) and MPLS tunnel for packets arriving from the PSN. This table is indexed by the set of indexes used to identify the VC - pwVcIndex and an additional index enabling multiple rows for the same VC index. Note that the first entry for each VC can be indexed by pwVcMplsOutboundIndex equal zero without a need for retrieval of pwVcMplsInboundIndexNext. An entry is created in this table either automatically by the local agent or created manually by the operator in cases that strict mode is required. Note that the control messages contain VC ID and VC type, which together with the remote IP address identify the pwVcIndex in the local node."
This table points to the appropriate MPLS MIB. In the case of MPLS-TE, the 4 variables relevant to the indexing of a TE MPLS tunnel are set as in Srinivasan, et al, <draft-ietf-mpls-te-mib>.

In case of non-TE MPLS tunnel (an outer tunnel label assigned by LDP or manually) the table points to the XC entry in the MPLS-LSR-MIB as in Srinivasan, et al, <draft-ietf-mpls-lsr-mib>.

Each VC may have multiple rows in this tables if protection is available at the outer tunnel level, each row may be of different type except for VC only, on which only rows with ifIndex of the port are allowed.

```
INDEX  { pwVcIndex, pwVcMplsInboundIndex }
::= { pwVcMplsInboundTable 1 }

PwVcMplsInboundEntry ::= SEQUENCE {
  pwVcMplsInboundIndex               Unsigned32,
  pwVcMplsInboundLsrXcIndex          Unsigned32,
  pwVcMplsInboundTunnelIndex         MplsTunnelIndex,
  pwVcMplsInboundTunnelInstance      MplsTunnelInstanceIndex,
  pwVcMplsInboundTunnelLclLSR        MplsLsrIdentifier,
  pwVcMplsInboundTunnelPeerLSR       MplsLsrIdentifier,
  pwVcMplsInboundIfIndex             InterfaceIndexOrZero,
  pwVcMplsInboundRowStatus           RowStatus,
  pwVcMplsInboundStorageType         StorageType
}

pwVcMplsInboundIndex OBJECT-TYPE
SYNTAX        Unsigned32 (0..4294967295)
MAX-ACCESS    not-accessible
STATUS        current
DESCRIPTION
"Arbitrary index for enabling multiple rows per VC in this table. Next available free index can be retrieved using pwVcMplsInboundIndexNext."
::= { pwVcMplsInboundEntry 1 }

pwVcMplsInboundLsrXcIndex OBJECT-TYPE
SYNTAX        Unsigned32
MAX-ACCESS    read-create
STATUS        current
DESCRIPTION
"If the outer label is defined in the MPLS-LSR-MIB, i.e. set by LDP or manually, this object points to the XC index of the outer tunnel. Otherwise, it is set to zero."
::= { pwVcMplsInboundEntry 2 }

pwVcMplsInboundTunnelIndex OBJECT-TYPE
SYNTAX MplsTunnelIndex
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Part of set of indexes for outbound tunnel in the case of
MPLS-TE outer tunnel, otherwise set to zero."
::= { pwVcMplsInboundEntry 3 }

pwVcMplsInboundTunnelInstance OBJECT-TYPE
SYNTAX MplsTunnelInstanceIndex
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Part of set of indexes for outbound tunnel in the case of
MPLS-TE outer tunnel, otherwise set to zero."
::= { pwVcMplsInboundEntry 4 }

pwVcMplsInboundTunnelLclLSR OBJECT-TYPE
SYNTAX MplsLsrIdentifier
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Part of set of indexes for outbound tunnel in the case of
MPLS-TE outer tunnel, otherwise set to zero."
::= { pwVcMplsInboundEntry 5 }

pwVcMplsInboundTunnelPeerLSR OBJECT-TYPE
SYNTAX MplsLsrIdentifier
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"Part of set of indexes for outbound tunnel in the case of
MPLS-TE outer tunnel, otherwise set to zero."
::= { pwVcMplsInboundEntry 6 }

pwVcMplsInboundIfIndex OBJECT-TYPE
SYNTAX InterfaceIndexOrZero
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"In case of VC only (no outer tunnel), this object holds the
ifIndex of the inbound port, otherwise set to zero."
::= { pwVcMplsInboundEntry 7 }

pwVcMplsInboundRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION "For creating, modifying, and deleting this row."
::= { pwVcMplsInboundEntry 8 }

pwVcMplsInboundStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION "This variable indicates the storage type for this row."
::= { pwVcMplsInboundEntry 9 }

-- End of Pseudo Wire VC MPLS Inbound Tunnel table

-- MPLS to VC Mapping Tables.

pwVcMplsNonTeMappingTable OBJECT-TYPE
SYNTAX SEQUENCE OF PwVcMplsNonTeMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table maps an inbound/outbound Tunnel to a VC in non-TE applications."
::= { pwVcMplsObjects 6 }

pwVcMplsNonTeMappingEntry OBJECT-TYPE
SYNTAX PwVcMplsNonTeMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A row in this table represents the association between the PW VC and it’s non TE MPLS outer Tunnel it’s physical interface if there is no outer tunnel (VC only). An application can use this table to quickly retrieve the PW carried over specific non-TE MPLS outer tunnel or physical interface.

The table is indexed by the XC index for MPLS Non-TE tunnel, or ifIndex of the port in VC only case, the direction of the VC in the specific entry and the VCIndex.

The same table is used in both inbound and outbound directions, but in a different row for each direction. If the inbound association is not known, no rows should exist for it.

Rows are created by the local agent when all the
INDEX { pwVcMplsNonTeMappingTunnelDirection,
    pwVcMplsNonTeMappingXcTunnelIndex,
    pwVcMplsNonTeMappingIfIndex,
    pwVcMplsNonTeMappingVcIndex }

::= { pwVcMplsNonTeMappingTable 1 }

PwVcMplsNonTeMappingEntry ::= SEQUENCE {
    pwVcMplsNonTeMappingTunnelDirection   INTEGER,
    pwVcMplsNonTeMappingXcTunnelIndex     Unsigned32,
    pwVcMplsNonTeMappingIfIndex           InterfaceIndexOrZero,
    pwVcMplsNonTeMappingVcIndex           PwVcIndexType
}

pwVcMplsNonTeMappingTunnelDirection OBJECT-TYPE
SYNTAX    INTEGER  { outbound (1), -- From the PE toward the PSN
                      inbound  (2)  -- From the PSN into the PE
                      }
MAX-ACCESS not-accessible
STATUS    current
DESCRIPTION "Identifies if the row represent an outbound or inbound
mapping."
 ::= { pwVcMplsNonTeMappingEntry 1 }

pwVcMplsNonTeMappingXcTunnelIndex OBJECT-TYPE
SYNTAX    Unsigned32  {0..4294967295}
MAX-ACCESS not-accessible
STATUS    current
DESCRIPTION "Index for the conceptual XC row identifying Tunnel to VC
mappings when the outer tunnel is created by the MPLS-LSR-MIB, Zero otherwise."
 ::= { pwVcMplsNonTeMappingEntry 2 }

pwVcMplsNonTeMappingIfIndex OBJECT-TYPE
SYNTAX    InterfaceIndexOrZero
MAX-ACCESS not-accessible
STATUS    current
DESCRIPTION "Identify the port on which the VC is carried for VC only
case."
 ::= { pwVcMplsNonTeMappingEntry 3 }

pwVcMplsNonTeMappingVcIndex OBJECT-TYPE
SYNTAX    PwVcIndexType
MAX-ACCESS read-only
STATUS        current
DESCRIPTION   "The value that represent the VC in the pwVcTable."
::= { pwVcMplsNonTeMappingEntry 4 }

-- End of Non-TE MPLS Tunnel to VC Mapping Table

pwVcMplsTeMappingTable OBJECT-TYPE
SYNTAX           SEQUENCE OF PwVcMplsTeMappingEntry
MAX-ACCESS       not-accessible
STATUS           current
DESCRIPTION      "This table maps an inbound/outbound Tunnel to a VC in
MPLS-TE applications."
::= { pwVcMplsObjects 7 }

pWcMplsTeMappingEntry OBJECT-TYPE
SYNTAX           PwVcMplsTeMappingEntry
MAX-ACCESS       not-accessible
STATUS           current
DESCRIPTION      "A row in this table represents the association
between a PW VC and it’s MPLS-TE outer Tunnel.

An application can use this table to quickly retrieve the
PW carried over specific TE MPLS outer tunnel.

The table in indexed by the 4 indexes of a TE tunnel,
the direction of the VC specific entry and the VcIndex.

The same table is used in both inbound and outbound
directions, a different row for each direction. If the
inbound association is not known, no rows should exist for
it.

Rows are created by the local agent when all the
association data is available for display."

INDEX  { pwVcMplsTeMappingTunnelDirection,
pwVcMplsTeMappingTunnelIndex,
pwVcMplsTeMappingTunnelInstance,
pwVcMplsTeMappingTunnelPeerLsrID,
pwVcMplsTeMappingTunnelLocalLsrID,
pwVcMplsTeMappingVcIndex }
::= { pwVcMplsTeMappingTable 1 }

PwVcMplsTeMappingEntry ::= SEQUENCE { pnVcMplsTeMappingTunnelDirection, pnVcMplsTeMappingTunnelIndex, pnVcMplsTeMappingTunnelInstance, pnVcMplsTeMappingTunnelPeerLsrID, pnVcMplsTeMappingTunnelLocalLsrID, pnVcMplsTeMappingVcIndex }
pwVcMplsTeMappingTunnelPeerLsrID OBJECT-TYPE
SYNTAX     MplsLsrIdentifier
MAX-ACCESS not-accessible
STATUS     current
DESCRIPTION "Identifies an Peer LSR when the outer tunnel is MPLS-TE based." ::= { pwVcMplsTeMappingEntry 4 }

pwVcMplsTeMappingTunnelLocalLsrID OBJECT-TYPE
SYNTAX     MplsLsrIdentifier
MAX-ACCESS not-accessible
STATUS     current
DESCRIPTION "Identifies the local LSR." ::= { pwVcMplsTeMappingEntry 5 }
pwVcMplsTeMappingVcIndex OBJECT-TYPE
SYNTAX     PwVcIndexType
MAX-ACCESS read-only
STATUS     current
DESCRIPTION
 "The value that represent the VC in the pwVcTable."
 ::= { pwVcMplsTeMappingEntry 6 }

-- End of TE MPLS Tunnel to VC Mapping Table

-- Notifications - PW over MPLS - FFS
-- End of notifications.

-- conformance information

-- Note: Conformance at the object access and values level is
-- still FFS, therefore current conformance is defined at the
-- object existence level only.

pwVcMplsGroups   OBJECT IDENTIFIER ::= { pwVcMplsConformance 1 }
pwVcMplsCompliances OBJECT IDENTIFIER ::= { pwVcMplsConformance 2 }

pwMplsModuleCompliance MODULE-COMPLIANCE
STATUS  current
DESCRIPTION
 "The compliance statement for agent that support PW
over MPLS PSN operation."

MODULE  -- this module
MANDATORY-GROUPS { pwVcMplsGroup,
                    pwVcMplsOutboundGroup,
                    pwVcMplsMappingGroup
                }

GROUP       pwVcMplsInboundGroup
DESCRIPTION
 "This group is mandatory for those PE that support PW
over MPLS PSN."

 ::= { pwVcMplsCompliances 1 }

-- Units of conformance.

pwVcMplsGroup OBJECT-GROUP
OBJECTS {
    pwVcMplsMplsType,
    pwVcMplsExpBitsMode,
    pwVcMplsExpBits,
    pwVcMplsTtl,
    pwVcMplsMplsLabel,
    pwVcMplsVcLabel,  
Zelig et al          Expires December 2003               [page 26]  

pwVcMplsLocalLdpID,
pwVcMplsLocalLdpEntityID,
pwVcMplsPeerLdpID,
pwVcMplsStorageType

}  

STATUS current
DESCRIPTION
"Collection of objects needed for PW VC over MPLS PSN configuration."
::= { pwVcMplsGroups 1 }

pwVcMplsOutboundGroup OBJECT-GROUP
OBJECTS{
    pwVcMplsOutboundIndexNext,
pwVcMplsOutboundLsrXcIndex,
pwVcMplsOutboundTunnelIndex,
pwVcMplsOutboundTunnelInstance,
pwVcMplsOutboundTunnelLclLSR,
pwVcMplsOutboundTunnelPeerLSR,
pwVcMplsOutboundIfIndex,
pwVcMplsOutboundRowStatus,
pwVcMplsOutboundStorageType
}

STATUS current
DESCRIPTION
"Collection of objects needed for outbound association of VC and MPLS tunnel."
::= { pwVcMplsGroups 2 }

pwVcMplsInboundGroup OBJECT-GROUP
OBJECTS{
    pwVcMplsInboundIndexNext,
pwVcMplsInboundLsrXcIndex,
pwVcMplsInboundTunnelIndex,
pwVcMplsInboundTunnelInstance,
pwVcMplsInboundTunnelLclLSR,
pwVcMplsInboundTunnelPeerLSR,
pwVcMplsInboundIfIndex,
pwVcMplsInboundRowStatus,
pwVcMplsInboundStorageType
}

STATUS current
DESCRIPTION
"Collection of objects needed for inbound association of VC and MPLS tunnel. This group is mandatory if strict mode is implemented."
::= { pwVcMplsGroups 3 }

pwVcMplsMappingGroup OBJECT-GROUP

OBJECTS {
    pwVcMplsNonTeMappingVcIndex,
    pwVcMplsTeMappingVcIndex
}

STATUS current

DESCRIPTION

"Collection of objects used for mapping of tunnels and VC labels to VC index."

::= { pwVcMplsGroups 4 }

END -- of PW-MPLS-MIB

8 Security Considerations

There are a number of management objects defined in this MIB that have a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

SNMPv1 by itself is not a secure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB.

It is recommended that the implementers consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2574 [RFC2574] and the View-based Access Control Model RFC 2575 [RFC2575] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

The use of strict inbound VC lookup the security problems related to a global VC space in a node is greatly reduced, by limiting the accepted packets to a small set of controlled tunnels.

9 References


10 Author’s Addresses

David Zelig
Corrigent Systems
126, Yigal Alon st.
Tel Aviv, ISRAEL
Phone: +972-3-6945273
Email: davidz@corrigent.com

Thomas D. Nadeau
Cisco Systems, Inc.
250 Apollo Drive
Chelmsford, MA 01824
Email: tnadeau@cisco.com

Dave Danenberg
Litchfield Communications, Inc.
76 Westbury Park Rd
Princeton Building East
Watertown, CT 06795
Email: dave_danenberg@litchfieldcomm.com

Zelig et al Expires December 2003 [page 31]
Andrew G. Malis  
Vivace Networks, Inc.  
2730 Orchard Parkway  
San Jose, CA 95134  
Email: Andy.Malis@vivacenetworks.com

Sharon Mantin  
AxONLink (Israel) Ltd  
9 Bareket St.  
Petah Tikva 49517, Israel  
Phone: +972-3-9263972  
Email: sharon.mantin@axonlink.com

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.