Definitions of Textual Conventions for Pseudowires (PW) Management
draft-ietf-pwe3-pw-tc-mib-15

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 15, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
This document defines a Management Information Base (MIB) module which contains Textual Conventions (TCs) to represent commonly-used Pseudowire (PW) management information. The intent is that these TCs will be imported and used in PW-related MIB modules that would otherwise define their own representations.

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Table of Contents

1. Introduction .................................................. 3
2. The Internet-Standard Management Framework .................. 3
3. Object Definitions ............................................. 3
4. Security Considerations ........................................ 9
5. IANA Considerations ........................................... 9
6. References ...................................................... 10
   6.1. Normative References ..................................... 10
   6.2. Informative References .................................. 10
Authors’ Addresses ................................................ 11
Intellectual Property and Copyright Statements .................. 12

1. Introduction
This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines Textual Conventions used for Pseudowire (PW) technology and PWE3 MIB modules.

Comments should be made directly to the PWE3 mailing list at pwe3@ietf.org.

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Object Definitions

PW-TC-STD-MIB DEFINITIONS ::= BEGIN

IMPORTS

   MODULE-IDENTITY, Unsigned32, mib-2
   FROM SNMPv2-SMI -- [RFC2578]

   TEXTUAL-CONVENTION
   FROM SNMPv2-TC; -- [RFC2579]

pwTcStdMIB MODULE-IDENTITY

   LAST-UPDATED "200902151200Z" -- 15 February 2009 12:00:00 GMT

   ORGANIZATION "Pseudowire Edge-to-Edge Emulation (PWE3) Working Group"

   CONTACT-INFO

   " Thomas D. Nadeau
       Email: tom.nadeau@bt.com

   " David Zelig
       Email: davidz@oversi.com

Orly Nicklass  
Email: orlyn@radvision.com

The PWE3 Working Group (email distribution pwe3@ietf.org,  
http://www.ietf.org/html.charters/pwe3-charter.html)

DESCRIPTION  
"This MIB module defines TEXTUAL CONVENTIONS  
for concepts used in Pseudowire Edge-to-Edge  
networks.

Copyright (C) The IETF Trust (2009). The  
initial version of this MIB module as published  
in RFC YYYY. For full legal notices see the RFC  
itslf or see:  
http://www.ietf.org/copyrights/ianamib.html

-- RFC Editor: Please replace YYYY with the RFC number and remove  
-- this note.

-- Revision history.

REVISION "200902151200Z" -- 15 february 2009 12:00:00 GMT  
DESCRIPTION  
"Original Version"  
::= { mib-2 XXXX }

-- RFC Editor: please replace XXXX with IANA assigned value and  
-- delete this note.

PwGroupID ::= TEXTUAL-CONVENTION  
DISPLAY-HINT "d"  
STATUS current  
DESCRIPTION  
"An administrative identification for grouping a  
set of service-specific pseudowire services."
SYNTAX Unsigned32

PwIDType ::= TEXTUAL-CONVENTION  
DISPLAY-HINT "d"  
STATUS current  
DESCRIPTION  
"Pseudowire Identifier. Used to identify the PW  
(together with some other fields) in the signaling  
session."
SYNTAX Unsigned32

PwIndexType ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"Pseudowire Index. A unique value, greater than zero, for each locally-defined PW for indexing several MIB tables associated with the particular PW. It is recommended that values are assigned contiguously starting from 1. The value for each PW MUST remain constant at least from one re-initialization to the next re-initialization."
SYNTAX Unsigned32 (1..4294967295)

PwIndexOrZeroType ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
"This textual convention is an extension of the PwIndexType convention. The latter defines a greater-than-zero value used to identify a Pseudowire in the managed system. This extension permits the additional value of zero. The zero value is object-specific and MUST therefore be defined as part of the description of any object which uses this syntax. Examples of the usage of zero might include situations where Pseudowire was unknown, or when none or all Pseudowires need to be referenced."
SYNTAX Unsigned32 (0..4294967295)

PwOperStatusTC ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Indicates the operational status of the PW.

- up(1): Ready to pass packets.
- down(2): If PW signaling is not yet finished, or indications available at the service level indicate that the PW is not passing packets.
- testing(3): If AdminStatus at the PW level is set to test.
- dormant(4): The PW is not in a condition to pass packets, but is in a ‘pending’ state, waiting for some external event.
- notPresent(5): Some component is missing to accomplish the setup of the PW. It can be configuration error, incomplete configuration or missing of H/W component.
- lowerLayerDown(6): One or more of the lower-layer interfaces responsible for running the underlying PSN
is not in OperStatus 'up' state."

SYNTAX   INTEGER {
  up(1),
  down(2),
  testing(3),
  dormant(4),
  notPresent(5),
  lowerLayerDown(6)
}

PwAttachmentIdentifierType ::= TEXTUAL-CONVENTION
  STATUS      current
  DESCRIPTION
    "An octet string used in the generalized FEC element for
    identifying attachment forwarder and groups. A NULL
    identifier is of zero length.
    "
  SYNTAX    OCTET STRING (SIZE (0..255))

PwGenIdType ::= TEXTUAL-CONVENTION
  STATUS      current
  DESCRIPTION
    "Represents the AGI Type and AII Type in generalized FEC
    signaling and configuration.
    "
  SYNTAX    Unsigned32( 0..254 )

PwCwStatusTC ::= TEXTUAL-CONVENTION
  STATUS      current
  DESCRIPTION
    "Indicates the status of the control word (CW) negotiation
    based on the local configuration and the indications received
    from the peer node.

    waitingForNextMsg(1) indicates that the node is waiting for
    another label mapping from the peer.

    sentWrongBitErrorCode(2) indicates that the local node has
    notified the peer about a mismatch in the C-bit.

    rxWithdrawWithWrongBitErrorCode(3) indicates that a withdraw
    message has been received with the wrong C-bit error code.

    illegalReceivedBit(4) indicates a C-bit configuration with
    the peer which is not compatible with the PW type.

    cwPresent(5) indicates that the CW is present for this PW:
    If signaling is used - the C-bit is set and agreed between the
nodes, and for manually-configured PW the local configuration requires the use of the CW.

cwNotPresent(6) indicates that the CW is not present for this PW: If signaling is used - the C-bit is reset and agreed between the nodes, and for manually-configured PW the local configuration requires that the CW not be used.

notYetKnown(7) indicates that a label mapping has not yet been received from the peer.

REFERENCE

SYNTAX

   INTEGER {
      waitingForNextMsg (1),
      sentWrongBitErrorCode (2),
      rxWithdrawWrongBitErrorCode (3),
      illegalReceivedBit (4),
      cwPresent (5),
      cwNotPresent (6),
      notYetKnown (7)
   }

PwStatus ::= TEXTUAL-CONVENTION
   STATUS current
   DESCRIPTION "Indicates the status of the PW and the interfaces affecting this PW. If none of the bits are set, it indicates no faults are reported."

SYNTAX

   BITS {
      pwNotForwarding (0),
      servicePwRxFault (1),
      servicePwTxFault (2),
      psnPwRxFault (3),
      psnPwTxFault (4)
   }

PwFragSize ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS current
   DESCRIPTION "If set to a value other than zero, it indicates the desired fragmentation length in bytes. If set to zero, fragmentation is not desired for PSN bound packets."
SYNTAX   Unsigned32

PwFragStatus ::= TEXTUAL-CONVENTION
  STATUS      current
  DESCRIPTION
    "Indicates the status of the fragmentation/reassembly process based on local configuration and peer capability.

    noFrag(0) bit indicates that local configuration is for no fragmentation.

    cfgFragGreaterThanPsnMtu(1) bit indicates the local node is set to fragment, but the fragmentation size is greater than the MTU available at the PSN between the nodes. Fragmentation is not done in this case.

    cfgFragButRemoteIncapable(2) bit indicates that the local configuration indicates the desire for fragmentation but the peer is not capable of reassembly.

    remoteFragCapable(3) bit indicates that the remote node is capable to accept fragmented PDUs.

    fragEnabled(4) bit indicates that fragmentation will be used on this PW. Fragmentation can be used if the local node was configured for fragmentation, the peer has the capability to accept fragmented packets, and the CW is in use for this PW."

REFERENCE

SYNTAX   BITS {
  noFrag (0),
  cfgFragGreaterThanPsnMtu (1),
  cfgFragButRemoteIncapable (2),
  remoteFragCapable (3),
  fragEnabled (4)
}

PwCfgIndexOrzero ::= TEXTUAL-CONVENTION
  DISPLAY-HINT "d"
  STATUS      current
  DESCRIPTION
    "Index in any of the relevant configuration tables for supplement information regarding configuration of the specific technology. Value 0 implies no additional configuration information is applicable."
SYNTAX  Unsigned32 (0..4294967295)
END

4. Security Considerations

This module does not define any management objects. Instead, it defines a set of textual conventions that may be used by other PWE3 MIB modules to define management objects.

Meaningful security considerations can only be written in the MIB modules that define management objects. Therefore, this document has no impact on the security of the Internet.

5. IANA Considerations

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pwTcStdMIB</td>
<td>{ mib-2 XXXX }</td>
</tr>
</tbody>
</table>

Editor’s Note (to be removed prior to publication): The IANA is requested to assign a value for "XXXX" under the ‘mib-2’ subtree and to record the assignment in the SMI Numbers registry. When the assignment has been made, the RFC Editor is asked to replace "XXXX" (here and in the MIB module) with the assigned value and to remove this note.

6. References

6.1. Normative References


6.2. Informative References


Authors’ Addresses

Thomas D. Nadeau (editor)
BT
BT Centre
81 Newgate Street
London EC1A 7AJ
United Kingdom
Email: tom.nadeau@bt.com

David Zelig (editor)
Oversi Networks
1 Rishon Letzion St.
Petah Tikva
Israel
Phone: +972 77 3337 750
Email: davidz@oversi.com

Orly Nicklass (editor)
RADVISION
24 Raul Wallenberg
Tel Aviv
Acknowledgment

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).

This document was produced by the PWE3 Working Group.