
QUIC C. Krasic
Internet-Draft Netflix
Intended status: Standards Track M. Bishop
Expires: February 16, 2019 Akamai Technologies
 A. Frindell, Ed.
 Facebook
 August 15, 2018

 QPACK: Header Compression for HTTP over QUIC
 draft-ietf-quic-qpack-02

Abstract

 This specification defines QPACK, a compression format for
 efficiently representing HTTP header fields, to be used in HTTP over
 QUIC. This is a variation of HPACK header compression that seeks to
 reduce head-of-line blocking.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

 Working Group information can be found at https://github.com/quicwg
 [2]; source code and issues list for this draft can be found at
 https://github.com/quicwg/base-drafts/labels/-qpack [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 16, 2019.

Krasic, et al. Expires February 16, 2019 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-qpack
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QPACK August 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Header Tables . 4
 2.1 . Static Table . 4
 2.2 . Dynamic Table . 4
 2.2.1 . Absolute and Relative Indexing 5
 2.2.2 . Post-Base Indexing 6
 2.3 . Avoiding Head-of-Line Blocking in HTTP/QUIC 7
 2.3.1 . State Synchronization 8
 3. Conventions and Definitions 9
 3.1 . Notational Conventions 9
 4. Configuration . 9
 5. Wire Format . 10
 5.1 . Primitives . 10
 5.1.1 . Prefixed Integers 10
 5.1.2 . String Literals 10
 5.2 . QPACK Encoder Stream 11
 5.2.1 . Insert With Name Reference 11
 5.2.2 . Insert Without Name Reference 12
 5.2.3 . Duplicate . 12
 5.2.4 . Dynamic Table Size Update 13
 5.3 . QPACK Decoder Stream 13
 5.3.1 . Table State Synchronize 13
 5.3.2 . Header Acknowledgement 14
 5.3.3 . Stream Cancellation 15
 5.4 . Request and Push Streams 15
 5.4.1 . Header Data Prefix 15
 5.4.2 . Instructions . 17
 6. Error Handling . 19
 7. Encoding Strategies . 20
 7.1 . Single Pass Encoding 20
 7.2 . Preventing Eviction Races 20

Krasic, et al. Expires February 16, 2019 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QPACK August 2018

 7.3 . Reference Tracking 20
 7.3.1 . Blocked Eviction 20
 7.3.2 . Blocked Decoding 21
 7.4 . Speculative table updates 21
 7.5 . Sample One Pass Encoding Algorithm 21
 8. Security Considerations 23
 9. IANA Considerations . 23
 9.1 . Settings Registration 23
 9.2 . Stream Type Registration 23
 9.3 . Error Code Registration 23
 10. References . 24
 10.1 . Normative References 24
 10.2 . Informative References 24
 10.3 . URIs . 24
 Appendix A . Change Log . 25
 A.1 . Since draft-ietf-quic-qpack-01 25
 A.2 . Since draft-ietf-quic-qpack-00 25
 A.3 . Since draft-ietf-quic-qcram-00 25
 Acknowledgments . 25
 Authors’ Addresses . 26

1. Introduction

 The QUIC transport protocol was designed from the outset to support
 HTTP semantics, and its design subsumes many of the features of
 HTTP/2. HTTP/2 uses HPACK ([RFC7541]) for header compression, but
 QUIC’s stream multiplexing comes into some conflict with HPACK. A
 key goal of the design of QUIC is to improve stream multiplexing
 relative to HTTP/2 by reducing head-of-line blocking. If HPACK were
 used for HTTP/QUIC, it would induce head-of-line blocking due to
 built-in assumptions of a total ordering across frames on all
 streams.

 QUIC is described in [QUIC-TRANSPORT]. The HTTP/QUIC mapping is
 described in [QUIC-HTTP]. For a full description of HTTP/2, see
 [RFC7540]. The description of HPACK is [RFC7541].

 QPACK reuses core concepts from HPACK, but is redesigned to allow
 correctness in the presence of out-of-order delivery, with
 flexibility for implementations to balance between resilience against
 head-of-line blocking and optimal compression ratio. The design
 goals are to closely approach the compression ratio of HPACK with
 substantially less head-of-line blocking under the same loss
 conditions.

Krasic, et al. Expires February 16, 2019 [Page 3]

https://tools.ietf.org/pdf/draft-ietf-quic-qpack-01
https://tools.ietf.org/pdf/draft-ietf-quic-qpack-00
https://tools.ietf.org/pdf/draft-ietf-quic-qcram-00
https://tools.ietf.org/pdf/rfc7541
https://tools.ietf.org/pdf/rfc7540
https://tools.ietf.org/pdf/rfc7541

Internet-Draft QPACK August 2018

2. Header Tables

 Like HPACK, QPACK uses two tables for associating header fields to
 indexes. The static table (see Section 2.1) is predefined and
 contains common header fields (some of them with an empty value).
 The dynamic table (see Section 2.2) built up over the course of the
 connection and can be used by the encoder to index header fields
 repeated in the encoded header lists.

 Unlike in HPACK, entries in the QPACK static and dynamic tables are
 addressed separately. The following sections describe how entries in
 each table is addressed.

2.1 . Static Table

 The static table consists of a predefined static list of header
 fields, each of which has a fixed index over time. Its entries are
 defined in Appendix A of [RFC7541] . Note that because HPACK did not
 use zero-based references, there is no value at index zero of the
 static table.

2.2 . Dynamic Table

 The dynamic table consists of a list of header fields maintained in
 first-in, first-out order. The dynamic table is initially empty.
 Entries are added by instructions on the encoder stream (see
 Section 5.2).

 Before a new entry is added to the dynamic table, entries are evicted
 from the end of the dynamic table until the size of the dynamic table
 is less than or equal to (maximum size - new entry size) or until the
 table is empty.

 If the size of the new entry is less than or equal to the maximum
 size, that entry is added to the table. It is an error to attempt to
 add an entry that is larger than the maximum size; this MUST be
 treated as a connection error of type
 "HTTP_QPACK_DECOMPRESSION_FAILED".

 A new entry can reference an entry in the dynamic table that will be
 evicted when adding this new entry into the dynamic table.
 Implementations are cautioned to avoid deleting the referenced name
 if the referenced entry is evicted from the dynamic table prior to
 inserting the new entry.

 The dynamic table can contain duplicate entries (i.e., entries with
 the same name and same value). Therefore, duplicate entries MUST NOT
 be treated as an error by a decoder.

Krasic, et al. Expires February 16, 2019 [Page 4]

https://tools.ietf.org/pdf/rfc7541#appendix-A

Internet-Draft QPACK August 2018

 The encoder decides how to update the dynamic table and as such can
 control how much memory is used by the dynamic table. To limit the
 memory requirements of the decoder, the dynamic table size is
 strictly bounded.

 The decoder determines the maximum size that the encoder is permitted
 to use for the dynamic table. In HTTP/QUIC, this value is determined
 by the SETTINGS_HEADER_TABLE_SIZE setting (see Section 4).

 An encoder can choose to use less capacity than this maximum size
 (see Section 5.2.4), but the chosen size MUST stay lower than or
 equal to the maximum set by the decoder. Whenever the maximum size
 for the dynamic table is reduced, entries are evicted from the end of
 the dynamic table until the size of the dynamic table is less than or
 equal to the maximum size.

 This mechanism can be used to completely clear entries from the
 dynamic table by setting a maximum size of 0, which can subsequently
 be restored.

2.2.1 . Absolute and Relative Indexing

 Each entry possesses both an absolute index which is fixed for the
 lifetime of that entry and a relative index which changes over time
 based on the context of the reference. The first entry inserted has
 an absolute index of "1"; indices increase sequentially with each
 insertion.

 The relative index begins at zero and increases in the opposite
 direction from the absolute index. Determining which entry has a
 relative index of "0" depends on the context of the reference.

 On the encoder stream, a relative index of "0" always refers to the
 most recently inserted value in the dynamic table. Note that this
 means the entry referenced by a given relative index will change
 while interpreting instructions on the encoder stream.

Krasic, et al. Expires February 16, 2019 [Page 5]

Internet-Draft QPACK August 2018

 +---+---------------+-----------+
 | n | ... | d + 1 | Absolute Index
 + - +---------------+ - - - - - +
 | 0 | ... | n - d - 1 | Relative Index
 +---+---------------+-----------+
 ^ |
 | V
 Insertion Point Dropping Point

 n = count of entries inserted
 d = count of entries dropped

 Example Dynamic Table Indexing - Control Stream

 Because frames from request streams can be delivered out of order
 with instructions on the encoder stream, relative indices are
 relative to the Base Index at the beginning of the header block (see
 Section 5.4.1). The Base Index is an absolute index. When
 interpreting the rest of the frame, the entry identified by Base
 Index has a relative index of zero. The relative indices of entries
 do not change while interpreting headers on a request or push stream.

 Base Index
 |
 V
 +---+-----+-----+-----+-------+
 | n | n-1 | n-2 | ... | d+1 | Absolute Index
 +---+-----+ - +-----+ - +
 | 0 | ... | n-d-3 | Relative Index
 +-----+-----+-------+

 n = count of entries inserted
 d = count of entries dropped

 Example Dynamic Table Indexing - Request Stream

2.2.2 . Post-Base Indexing

 A header block on the request stream can reference entries added
 after the entry identified by the Base Index. This allows an encoder
 to process a header block in a single pass and include references to
 entries added while processing this (or other) header blocks. Newly
 added entries are referenced using Post-Base instructions. Indices
 for Post-Base instructions increase in the same direction as absolute
 indices, but the zero value is one higher than the Base Index.

Krasic, et al. Expires February 16, 2019 [Page 6]

Internet-Draft QPACK August 2018

 Base Index
 |
 V
 +---+-----+-----+-----+-----+
 | n | n-1 | n-2 | ... | d+1 | Absolute Index
 +---+-----+-----+-----+-----+
 | 1 | 0 | Post-Base Index
 +---+-----+

 n = count of entries inserted
 d = count of entries dropped

 Dynamic Table Indexing - Post-Base References

 If the decoder encounters a reference to an entry which has already
 been dropped from the table or which is greater than the declared
 Largest Reference (see Section 5.4.1), this MUST be treated as a
 stream error of type "HTTP_QPACK_DECOMPRESSION_FAILED" error code.
 If this reference occurs on the encoder stream, this MUST be treated
 as a session error.

2.3 . Avoiding Head-of-Line Blocking in HTTP/QUIC

 Because QUIC does not guarantee order between data on different
 streams, a header block might reference an entry in the dynamic table
 that has not yet been received.

 Each header block contains a Largest Reference which identifies the
 table state necessary for decoding. If the greatest absolute index
 in the dynamic table is less than the value of the Largest Reference,
 the stream is considered "blocked." While blocked, header field data
 should remain in the blocked stream’s flow control window. When the
 Largest Reference is zero, the frame contains no references to the
 dynamic table and can always be processed immediately. A stream
 becomes unblocked when the greatest absolute index in the dynamic
 table becomes greater than or equal to the Largest Reference for all
 header blocks the decoder has started reading from the stream. If a
 decoder encounters a header block where the actual largest reference
 is not equal to the largest reference declared in the prefix, it MAY
 treat this as a stream error of type HTTP_QPACK_DECOMPRESSION_FAILED.

 A decoder can permit the possibility of blocked streams by setting
 SETTINGS_QPACK_BLOCKED_STREAMS to a non-zero value (see Section 4).
 This setting specifies an upper bound on the number of streams which
 can be blocked.

 An encoder can decide whether to risk having a stream become blocked.
 If permitted by the value of SETTINGS_QPACK_BLOCKED_STREAMS,

Krasic, et al. Expires February 16, 2019 [Page 7]

Internet-Draft QPACK August 2018

 compression efficiency can be improved by referencing dynamic table
 entries that are still in transit, but if there is loss or reordering
 the stream can become blocked at the decoder. An encoder avoids the
 risk of blocking by only referencing dynamic table entries which have
 been acknowledged, but this means using literals. Since literals
 make the header block larger, this can result in the encoder becoming
 blocked on congestion or flow control limits.

 An encoder MUST limit the number of streams which could become
 blocked to the value of SETTINGS_QPACK_BLOCKED_STREAMS at all times.
 Note that the decoder might not actually become blocked on every
 stream which risks becoming blocked. If the decoder encounters more
 blocked streams than it promised to support, it SHOULD treat this as
 a stream error of type HTTP_QPACK_DECOMPRESSION_FAILED.

2.3.1 . State Synchronization

 The decoder stream signals key events at the decoder that permit the
 encoder to track the decoder’s state. These events are:

 o Complete processing of a header block

 o Abandonment of a stream which might have remaining header blocks

 o Receipt of new dynamic table entries

 Regardless of whether a header block contained blocking references,
 the knowledge that it has been processed permits the encoder to evict
 entries to which no unacknowledged references remain; see
 Section 7.3.1 . When a stream is reset or abandoned, the indication
 that these header blocks will never be processed serves a similar
 function; see Section 5.3.3 .

 For the encoder to identify which dynamic table entries can be safely
 used without a stream becoming blocked, the encoder tracks the
 absolute index of the decoder’s Largest Known Received entry.

 When blocking references are permitted, the encoder uses
 acknowledgement of header blocks to identify the Largest Known
 Received index, as described in Section 5.3.2 .

 To acknowledge dynamic table entries which are not referenced by
 header blocks, for example because the encoder or the decoder have
 chosen not to risk blocked streams, the decoder sends a Table State
 Synchronize instruction (see Section 5.3.1).

Krasic, et al. Expires February 16, 2019 [Page 8]

Internet-Draft QPACK August 2018

3. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Definitions of terms that are used in this document:

 Header: A name-value pair sent as part of an HTTP message.

 Header set: The full collection of headers associated with an HTTP
 message.

 Header block: The compressed representation of a header set.

 Encoder: An implementation which transforms a header set into a
 header block.

 Decoder: An implementation which transforms a header block into a
 header set.

 QPACK is a name, not an acronym.

3.1 . Notational Conventions

 Diagrams use the format described in Section 3.1 of [RFC2360] , with
 the following additional conventions:

 x (A) Indicates that x is A bits long

 x (A+) Indicates that x uses the prefixed integer encoding defined
 in Section 5.1 of [RFC7541] , beginning with an A-bit prefix.

 x ... Indicates that x is variable-length and extends to the end of
 the region.

4. Configuration

 QPACK defines two settings which are included in the HTTP/QUIC
 SETTINGS frame.

 SETTINGS_HEADER_TABLE_SIZE (0x1): An integer with a maximum value of
 2^30 - 1. The default value is 4,096 bytes. See Section 2.2 for
 usage.

Krasic, et al. Expires February 16, 2019 [Page 9]

https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc8174
https://tools.ietf.org/pdf/rfc2360#section-3.1
https://tools.ietf.org/pdf/rfc7541#section-5.1

Internet-Draft QPACK August 2018

 SETTINGS_QPACK_BLOCKED_STREAMS (0x7): An integer with a maximum
 value of 2^16 - 1. The default value is 100. See Section 2.3 .

5. Wire Format

 QPACK instructions occur in three locations, each of which uses a
 separate instruction space:

 o The encoder stream is a unidirectional stream of type "0x48"
 (ASCII ’H’) which carries table updates from encoder to decoder.
 Instructions on this stream modify the dynamic table state without
 generating output to any particular request.

 o The decoder stream is a unidirectional stream of type "0x68"
 (ASCII ’h’) which carries acknowledgements of table modifications
 and header processing from decoder to encoder.

 o Finally, the contents of HEADERS and PUSH_PROMISE frames on
 request streams and push streams reference the QPACK table state.

 There MUST be exactly one of each unidirectional stream type in each
 direction. Receipt of a second instance of either stream type MUST
 be treated as a connection error of HTTP_WRONG_STREAM_COUNT. Closure
 of either unidirectional stream MUST be treated as a connection error
 of type HTTP_CLOSED_CRITICAL_STREAM.

 This section describes the instructions which are possible on each
 stream type.

 All table updates occur on the encoder stream. Request streams and
 push streams only carry header blocks that do not modify the state of
 the table.

5.1 . Primitives

5.1.1 . Prefixed Integers

 The prefixed integer from Section 5.1 of [RFC7541] is used heavily
 throughout this document. The format from [RFC7541] is used
 unmodified.

5.1.2 . String Literals

 The string literal defined by Section 5.2 of [RFC7541] is also used
 throughout. This string format includes optional Huffman encoding.

 HPACK defines string literals to begin on a byte boundary. They
 begin with a single flag (indicating whether the string is Huffman-

Krasic, et al. Expires February 16, 2019 [Page 10]

https://tools.ietf.org/pdf/rfc7541#section-5.1
https://tools.ietf.org/pdf/rfc7541
https://tools.ietf.org/pdf/rfc7541#section-5.2

Internet-Draft QPACK August 2018

 coded), followed by the Length encoded as a 7-bit prefix integer, and
 finally Length octets of data. When Huffman encoding is enabled, the
 Huffman table from Appendix B of [RFC7541] is used without
 modification.

 This document expands the definition of string literals and permits
 them to begin other than on a byte boundary. An "N-bit prefix string
 literal" begins with the same Huffman flag, followed by the length
 encoded as an (N-1)-bit prefix integer. The remainder of the string
 literal is unmodified.

 A string literal without a prefix length noted is an 8-bit prefix
 string literal and follows the definitions in [RFC7541] without
 modification.

5.2 . QPACK Encoder Stream

 Table updates can add a table entry, possibly using existing entries
 to avoid transmitting redundant information. The name can be
 transmitted as a reference to an existing entry in the static or the
 dynamic table or as a string literal. For entries which already
 exist in the dynamic table, the full entry can also be used by
 reference, creating a duplicate entry.

 The contents of the encoder stream are an unframed sequence of the
 following instructions.

5.2.1 . Insert With Name Reference

 An addition to the header table where the header field name matches
 the header field name of an entry stored in the static table or the
 dynamic table starts with the ’1’ one-bit pattern. The "S" bit
 indicates whether the reference is to the static (S=1) or dynamic
 (S=0) table. The 6-bit prefix integer (see Section 5.1 of [RFC7541])
 that follows is used to locate the table entry for the header name.
 When S=1, the number represents the static table index; when S=0, the
 number is the relative index of the entry in the dynamic table.

 The header name reference is followed by the header field value
 represented as a string literal (see Section 5.2 of [RFC7541]).

Krasic, et al. Expires February 16, 2019 [Page 11]

https://tools.ietf.org/pdf/rfc7541#appendix-B
https://tools.ietf.org/pdf/rfc7541
https://tools.ietf.org/pdf/rfc7541#section-5.1
https://tools.ietf.org/pdf/rfc7541#section-5.2

Internet-Draft QPACK August 2018

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | S | Name Index (6+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Insert Header Field -- Indexed Name

5.2.2 . Insert Without Name Reference

 An addition to the header table where both the header field name and
 the header field value are represented as string literals (see
 Section 5.1) starts with the ’01’ two-bit pattern.

 The name is represented as a 6-bit prefix string literal, while the
 value is represented as an 8-bit prefix string literal.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | H | Name Length (5+) |
 +---+---+---+-------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Insert Header Field -- New Name

5.2.3 . Duplicate

 Duplication of an existing entry in the dynamic table starts with the
 ’000’ three-bit pattern. The relative index of the existing entry is
 represented as an integer with a 5-bit prefix.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | Index (5+) |
 +---+---+---+-------------------+

 Figure 1: Duplicate

 The existing entry is re-inserted into the dynamic table without
 resending either the name or the value. This is useful to mitigate

Krasic, et al. Expires February 16, 2019 [Page 12]

Internet-Draft QPACK August 2018

 the eviction of older entries which are frequently referenced, both
 to avoid the need to resend the header and to avoid the entry in the
 table blocking the ability to insert new headers.

5.2.4 . Dynamic Table Size Update

 An encoder informs the decoder of a change to the size of the dynamic
 table using an instruction which begins with the ’001’ three-bit
 pattern. The new maximum table size is represented as an integer
 with a 5-bit prefix (see Section 5.1 of [RFC7541]).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | Max size (5+) |
 +---+---+---+-------------------+

 Figure 2: Maximum Dynamic Table Size Change

 The new maximum size MUST be lower than or equal to the limit
 determined by the protocol using QPACK. A value that exceeds this
 limit MUST be treated as a decoding error. In HTTP/QUIC, this limit
 is the value of the SETTINGS_HEADER_TABLE_SIZE parameter (see
 Section 4) received from the decoder.

 Reducing the maximum size of the dynamic table can cause entries to
 be evicted (see Section 4.3 of [RFC7541]). This MUST NOT cause the
 eviction of entries with outstanding references (see Section 7.3).
 Changing the size of the dynamic table is not acknowledged as this
 instruction does not insert an entry.

5.3 . QPACK Decoder Stream

 The decoder stream carries information used to ensure consistency of
 the dynamic table. Information is sent from the QPACK decoder to the
 QPACK encoder; that is, the server informs the client about the
 processing of the client’s header blocks and table updates, and the
 client informs the server about the processing of the server’s header
 blocks and table updates.

 The contents of the decoder stream are an unframed sequence of the
 following instructions.

5.3.1 . Table State Synchronize

 The Table State Synchronize instruction begins with the ’00’ two-bit
 pattern. The instruction specifies the total number of dynamic table
 inserts and duplications since the last Table State Synchronize or
 Header Acknowledgement that increased the Largest Known Received

Krasic, et al. Expires February 16, 2019 [Page 13]

https://tools.ietf.org/pdf/rfc7541#section-5.1
https://tools.ietf.org/pdf/rfc7541#section-4.3

Internet-Draft QPACK August 2018

 dynamic table entry. This is encoded as a 6-bit prefix integer. The
 encoder uses this value to determine which table entries might cause
 a stream to become blocked, as described in Section 2.3.1 .

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | Insert Count (6+) |
 +---+---+-----------------------+

 Figure 3: Table State Synchronize

 A decoder chooses when to emit Table State Synchronize instructions.
 Emitting a Table State Synchronize after adding each new dynamic
 table entry will provide the most timely feedback to the encoder, but
 could be redundant with other decoder feedback. By delaying a
 Table State Synchronize, a decoder might be able to coalesce multiple
 Table State Synchronize instructions, or replace them entirely with
 Header Acknowledgements. However, delaying too long may lead to
 compression inefficiencies if the encoder waits for an entry to be
 acknowledged before using it.

5.3.2 . Header Acknowledgement

 After processing a header block whose declared Largest Reference is
 not zero, the decoder emits a Header Acknowledgement instruction on
 the decoder stream. The instruction begins with the ’1’ one-bit
 pattern and includes the request stream’s stream ID, encoded as a
 7-bit prefix integer. It is used by the peer’s QPACK encoder to know
 when it is safe to evict an entry.

 The same Stream ID can be identified multiple times, as multiple
 header blocks can be sent on a single stream in the case of
 intermediate responses, trailers, and pushed requests. Since header
 frames on each stream are received and processed in order, this gives
 the encoder precise feedback on which header blocks within a stream
 have been fully processed.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Stream ID (7+) |
 +---+---------------------------+

 Figure 4: Header Acknowledgement

 When blocking references are permitted, the encoder uses
 acknowledgement of header blocks to update the Largest Known Received
 index. If a header block was potentially blocking, the
 acknowledgement implies that the decoder has received all dynamic

Krasic, et al. Expires February 16, 2019 [Page 14]

Internet-Draft QPACK August 2018

 table state necessary to process the header block. If the Largest
 Reference of an acknowledged header block was greater than the
 encoder’s current Largest Known Received index, the block’s Largest
 Reference becomes the new Largest Known Received.

5.3.3 . Stream Cancellation

 A stream that is reset might have multiple outstanding header blocks.
 A decoder that receives a stream reset before the end of a stream
 generates a Stream Cancellation instruction on the decoder stream.
 Similarly, a decoder that abandons reading of a stream needs to
 signal this using the Stream Cancellation instruction. This signals
 to the encoder that all references to the dynamic table on that
 stream are no longer outstanding.

 An encoder cannot infer from this instruction that any updates to the
 dynamic table have been received.

 The instruction begins with the ’01’ two-bit pattern. The
 instruction includes the stream ID of the affected stream - a request
 or push stream - encoded as a 6-bit prefix integer.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | Stream ID (6+) |
 +---+---+-----------------------+

 Figure 5: Stream Cancellation

5.4 . Request and Push Streams

 HEADERS and PUSH_PROMISE frames on request and push streams reference
 the dynamic table in a particular state without modifying it. Frames
 on these streams emit the headers for an HTTP request or response.

5.4.1 . Header Data Prefix

 Header data is prefixed with two integers, "Largest Reference" and
 "Base Index".

Krasic, et al. Expires February 16, 2019 [Page 15]

Internet-Draft QPACK August 2018

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Largest Reference (8+) |
 +---+---------------------------+
 | S | Delta Base Index (7+) |
 +---+---------------------------+
 | Compressed Headers ...
 +-------------------------------+

 Figure 6: Frame Payload

 "Largest Reference" identifies the largest absolute dynamic index
 referenced in the block. Blocking decoders use the Largest Reference
 to determine when it is safe to process the rest of the block.

 "Base Index" is used to resolve references in the dynamic table as
 described in Section 2.2.1 .

 To save space, Base Index is encoded relative to Largest Reference
 using a one-bit sign and the "Delta Base Index" value. A sign bit of
 0 indicates that the Base Index has an absolute index that is greater
 than or equal to the Largest Reference; the value of Delta Base Index
 is added to the Largest Reference to determine the absolute value of
 the Base Index. A sign bit of 1 indicates that the Base Index is
 less than the Largest Reference. That is:

 if sign == 0:
 baseIndex = largestReference + deltaBaseIndex
 else:
 baseIndex = largestReference - deltaBaseIndex

 A single-pass encoder is expected to determine the absolute value of
 Base Index before encoding a header block. If the encoder inserted
 entries in the dynamic table while encoding the header block, Largest
 Reference will be greater than Base Index, so the encoded difference
 is negative and the sign bit is set to 1. If the header block did
 not reference the most recent entry in the table and did not insert
 any new entries, Base Index will be greater than the Largest
 Reference, so the delta will be positive and the sign bit is set to
 0.

 An encoder that produces table updates before encoding a header block
 might set Largest Reference and Base Index to the same value. When
 Largest Reference and Base Index are equal, the Delta Base Index is
 encoded with a zero sign bit. A sign bit set to 1 when the Delta
 Base Index is 0 MUST be treated as a decoder error.

Krasic, et al. Expires February 16, 2019 [Page 16]

Internet-Draft QPACK August 2018

 A header block that does not reference the dynamic table can use any
 value for Base Index; setting both Largest Reference and Base Index
 to zero is the most efficient encoding.

5.4.2 . Instructions

5.4.2.1 . Indexed Header Field

 An indexed header field representation identifies an entry in either
 the static table or the dynamic table and causes that header field to
 be added to the decoded header list, as described in Section 3.2 of
 [RFC7541] .

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | S | Index (6+) |
 +---+---+-----------------------+

 Indexed Header Field

 If the entry is in the static table, or in the dynamic table with an
 absolute index less than or equal to Base Index, this representation
 starts with the ’1’ 1-bit pattern, followed by the "S" bit indicating
 whether the reference is into the static (S=1) or dynamic (S=0)
 table. Finally, the relative index of the matching header field is
 represented as an integer with a 6-bit prefix (see Section 5.1 of
 [RFC7541]).

5.4.2.2 . Indexed Header Field With Post-Base Index

 If the entry is in the dynamic table with an absolute index greater
 than Base Index, the representation starts with the ’0001’ 4-bit
 pattern, followed by the post-base index (see Section 2.2.2) of the
 matching header field, represented as an integer with a 4-bit prefix
 (see Section 5.1 of [RFC7541]).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 1 | Index (4+) |
 +---+---+---+---+---------------+

 Indexed Header Field with Post-Base Index

5.4.2.3 . Literal Header Field With Name Reference

 A literal header field with a name reference represents a header
 where the header field name matches the header field name of an entry
 stored in the static table or the dynamic table.

Krasic, et al. Expires February 16, 2019 [Page 17]

https://tools.ietf.org/pdf/rfc7541#section-3.2
https://tools.ietf.org/pdf/rfc7541#section-3.2
https://tools.ietf.org/pdf/rfc7541#section-5.1
https://tools.ietf.org/pdf/rfc7541#section-5.1
https://tools.ietf.org/pdf/rfc7541#section-5.1

Internet-Draft QPACK August 2018

 If the entry is in the static table, or in the dynamic table with an
 absolute index less than or equal to Base Index, this representation
 starts with the ’01’ two-bit pattern. If the entry is in the dynamic
 table with an absolute index greater than Base Index, the
 representation starts with the ’0000’ four-bit pattern.

 The following bit, ’N’, indicates whether an intermediary is
 permitted to add this header to the dynamic header table on
 subsequent hops. When the ’N’ bit is set, the encoded header MUST
 always be encoded with a literal representation. In particular, when
 a peer sends a header field that it received represented as a literal
 header field with the ’N’ bit set, it MUST use a literal
 representation to forward this header field. This bit is intended
 for protecting header field values that are not to be put at risk by
 compressing them (see Section 7.1 of [RFC7541] for more details).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | N | S |Name Index (4+)|
 +---+---+---+---+---------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field With Name Reference

 For entries in the static table or in the dynamic table with an
 absolute index less than or equal to Base Index, the header field
 name is represented using the relative index of that entry, which is
 represented as an integer with a 4-bit prefix (see Section 5.1 of
 [RFC7541]). The "S" bit indicates whether the reference is to the
 static (S=1) or dynamic (S=0) table.

5.4.2.4 . Literal Header Field With Post-Base Name Reference

 For entries in the dynamic table with an absolute index greater than
 Base Index, the header field name is represented using the post-base
 index of that entry (see Section 2.2.2) encoded as an integer with a
 3-bit prefix.

Krasic, et al. Expires February 16, 2019 [Page 18]

https://tools.ietf.org/pdf/rfc7541#section-7.1
https://tools.ietf.org/pdf/rfc7541#section-5.1
https://tools.ietf.org/pdf/rfc7541#section-5.1

Internet-Draft QPACK August 2018

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | N |NameIdx(3+)|
 +---+---+---+---+---+-----------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field With Post-Base Name Reference

5.4.2.5 . Literal Header Field Without Name Reference

 An addition to the header table where both the header field name and
 the header field value are represented as string literals (see
 Section 5.1) starts with the ’001’ three-bit pattern.

 The fourth bit, ’N’, indicates whether an intermediary is permitted
 to add this header to the dynamic header table on subsequent hops.
 When the ’N’ bit is set, the encoded header MUST always be encoded
 with a literal representation. In particular, when a peer sends a
 header field that it received represented as a literal header field
 with the ’N’ bit set, it MUST use a literal representation to forward
 this header field. This bit is intended for protecting header field
 values that are not to be put at risk by compressing them (see
 Section 7.1 of [RFC7541] for more details).

 The name is represented as a 4-bit prefix string literal, while the
 value is represented as an 8-bit prefix string literal.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | N | H |NameLen(3+)|
 +---+---+---+---+---+-----------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field Without Name Reference

6. Error Handling

 The following error code is defined for HTTP/QUIC to indicate all
 failures of QPACK which prevent the stream or connection from
 continuing:

Krasic, et al. Expires February 16, 2019 [Page 19]

https://tools.ietf.org/pdf/rfc7541#section-7.1

Internet-Draft QPACK August 2018

 HTTP_QPACK_DECOMPRESSION_FAILED (0x06): QPACK failed to decompress a
 frame and cannot continue.

7. Encoding Strategies

7.1 . Single Pass Encoding

 An encoder making a single pass over a list of headers must choose
 Base Index before knowing Largest Reference. When trying to
 reference a header inserted to the table after encoding has begun,
 the entry is encoded with different instructions that tell the
 decoder to use an absolute index greater than the Base Index.

7.2 . Preventing Eviction Races

 Due to out-of-order arrival, QPACK’s eviction algorithm requires
 changes (relative to HPACK) to avoid the possibility that an indexed
 representation is decoded after the referenced entry has already been
 evicted. QPACK employs a two-phase eviction algorithm, in which the
 encoder will not evict entries that have outstanding (unacknowledged)
 references.

7.3 . Reference Tracking

 An encoder MUST ensure that a header block which references a dynamic
 table entry is not received by the decoder after the referenced entry
 has already been evicted. An encoder also respects the limit set by
 the decoder on the number of streams that are allowed to become
 blocked. Even if the decoder is willing to tolerate blocked streams,
 the encoder might choose to avoid them in certain cases.

 In order to enable this, the encoder will need to track outstanding
 (unacknowledged) header blocks and table updates using feedback
 received from the decoder.

7.3.1 . Blocked Eviction

 The encoder MUST NOT permit an entry to be evicted while a reference
 to that entry remains unacknowledged. If a new header to be inserted
 into the dynamic table would cause the eviction of such an entry, the
 encoder MUST NOT emit the insert instruction until the reference has
 been processed by the decoder and acknowledged.

 The encoder can emit a literal representation for the new header in
 order to avoid encoding delays, and MAY insert the header into the
 table later if desired.

Krasic, et al. Expires February 16, 2019 [Page 20]

Internet-Draft QPACK August 2018

 To ensure that the blocked eviction case is rare, references to the
 oldest entries in the dynamic table SHOULD be avoided. When one of
 the oldest entries in the table is still actively used for
 references, the encoder SHOULD emit an Duplicate representation
 instead (see Section 5.2.3).

7.3.2 . Blocked Decoding

 For header blocks encoded in non-blocking mode, the encoder needs to
 forego indexed representations that refer to table updates which have
 not yet been acknowledged with Section 5.3 . Since all table updates
 are processed in sequence on the encoder stream, an index into the
 dynamic table is sufficient to track which entries have been
 acknowledged.

 To track blocked streams, the necessary Base Index value for each
 stream can be used. Whenever the decoder processes a table update,
 it can begin decoding any blocked streams that now have their
 dependencies satisfied.

7.4 . Speculative table updates

 Implementations can _speculatively_ send header frames on the HTTP
 Control Streams which are not needed for any current HTTP request or
 response. Such headers could be used strategically to improve
 performance. For instance, the encoder might decide to _refresh_ by
 sending Duplicate representations for popular header fields
 (Section 5.2.3), ensuring they have small indices and hence minimal
 size on the wire.

7.5 . Sample One Pass Encoding Algorithm

 Pseudo-code for single pass encoding, excluding handling of
 duplicates, non-blocking mode, and reference tracking.

Krasic, et al. Expires February 16, 2019 [Page 21]

Internet-Draft QPACK August 2018

 baseIndex = dynamicTable.baseIndex
 largestReference = 0
 for header in headers:
 staticIdx = staticTable.getIndex(header)
 if staticIdx:
 encodeIndexReference(streamBuffer, staticIdx)
 continue

 dynamicIdx = dynamicTable.getIndex(header)
 if !dynamicIdx:
 # No matching entry. Either insert+index or encode literal
 nameIdx = getNameIndex(header)
 if shouldIndex(header) and dynamicTable.canIndex(header):
 encodeLiteralWithIncrementalIndex(controlBuffer, nameIdx,
 header)
 dynamicTable.add(header)
 dynamicIdx = dynamicTable.baseIndex

 if !dynamicIdx:
 # Couldn’t index it, literal
 if nameIdx <= staticTable.size:
 encodeLiteral(streamBuffer, nameIndex, header)
 else:
 # encode literal, possibly with nameIdx above baseIndex
 encodeDynamicLiteral(streamBuffer, nameIndex, baseIndex,
 header)
 largestReference = max(largestReference,
 dynamicTable.toAbsolute(nameIdx))
 else:
 # Dynamic index reference
 assert(dynamicIdx)
 largestReference = max(largestReference, dynamicIdx)
 # Encode dynamicIdx, possibly with dynamicIdx above baseIndex
 encodeDynamicIndexReference(streamBuffer, dynamicIdx,
 baseIndex)

 # encode the prefix
 encodeInteger(prefixBuffer, 0x00, largestReference, 8)
 if baseIndex >= largestReference:
 encodeInteger(prefixBuffer, 0, baseIndex - largestReference, 7)
 else:
 encodeInteger(prefixBuffer, 0x80,
 largestReference - baseIndex, 7)

 return controlBuffer, prefixBuffer + streamBuffer

Krasic, et al. Expires February 16, 2019 [Page 22]

Internet-Draft QPACK August 2018

8. Security Considerations

 TBD.

9. IANA Considerations

9.1 . Settings Registration

 This document creates two new settings in the "HTTP/QUIC Settings"
 registry established in [QUIC-HTTP].

 The entries in the following table are registered by this document.

 +-----------------------+------+---------------+
 | Setting Name | Code | Specification |
 +-----------------------+------+---------------+
 | HEADER_TABLE_SIZE | 0x1 | Section 4 |
 | | | |
 | QPACK_BLOCKED_STREAMS | 0x7 | Section 4 |
 +-----------------------+------+---------------+

9.2 . Stream Type Registration

 This document creates two new settings in the "HTTP/QUIC Stream Type"
 registry established in [QUIC-HTTP].

 The entries in the following table are registered by this document.

 +----------------------+------+---------------+--------+
 | Stream Type | Code | Specification | Sender |
 +----------------------+------+---------------+--------+
 | QPACK Encoder Stream | 0x48 | Section 5 | Both |
 | | | | |
 | QPACK Decoder Stream | 0x68 | Section 5 | Both |
 +----------------------+------+---------------+--------+

9.3 . Error Code Registration

 This document establishes one new error code in the "HTTP/QUIC Error
 Code" registry established in [QUIC-HTTP].

 Name: HTTP_QPACK_DECOMPRESSION_FAILED

 Code: 0x06

 Description: QPACK failed to interpret an instruction and cannot
 continue.

Krasic, et al. Expires February 16, 2019 [Page 23]

Internet-Draft QPACK August 2018

10. References

10.1 . Normative References

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-14 (work in progress), August
 2018.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-
 transport-13 (work in progress), August 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997,
 < https://www.rfc-editor.org/info/rfc2119 >.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541 , DOI 10.17487/RFC7541, May 2015,
 < https://www.rfc-editor.org/info/rfc7541 >.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14 , RFC 8174 , DOI 10.17487/RFC8174,
 May 2017, < https://www.rfc-editor.org/info/rfc8174 >.

10.2 . Informative References

 [RFC2360] Scott, G., "Guide for Internet Standards Writers", BCP 22 ,
 RFC 2360 , DOI 10.17487/RFC2360, June 1998,
 < https://www.rfc-editor.org/info/rfc2360 >.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540 ,
 DOI 10.17487/RFC7540, May 2015,
 < https://www.rfc-editor.org/info/rfc7540 >.

10.3 . URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=quic

 [2] https://github.com/quicwg

 [3] https://github.com/quicwg/base-drafts/labels/-qpack

Krasic, et al. Expires February 16, 2019 [Page 24]

https://tools.ietf.org/pdf/draft-ietf-quic-http-14
https://tools.ietf.org/pdf/draft-ietf-quic-transport-13
https://tools.ietf.org/pdf/draft-ietf-quic-transport-13
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/pdf/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/pdf/bcp22
https://tools.ietf.org/pdf/rfc2360
https://www.rfc-editor.org/info/rfc2360
https://tools.ietf.org/pdf/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github.com/quicwg
https://github.com/quicwg/base-drafts/labels/-qpack

Internet-Draft QPACK August 2018

Appendix A . Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

A.1 . Since draft-ietf-quic-qpack-01

 o Only header blocks that reference the dynamic table are
 acknowledged (#1603, #1605)

A.2 . Since draft-ietf-quic-qpack-00

 o Renumbered instructions for consistency (#1471, #1472)

 o Decoder is allowed to validate largest reference (#1404, #1469)

 o Header block acknowledgments also acknowledge the associated
 largest reference (#1370, #1400)

 o Added an acknowledgment for unread streams (#1371, #1400)

 o Removed framing from encoder stream (#1361,#1467)

 o Control streams use typed unidirectional streams rather than fixed
 stream IDs (#910,#1359)

A.3 . Since draft-ietf-quic-qcram-00

 o Separate instruction sets for table updates and header blocks
 (#1235, #1142, #1141)

 o Reworked indexing scheme (#1176, #1145, #1136, #1130, #1125,
 #1314)

 o Added mechanisms that support one-pass encoding (#1138, #1320)

 o Added a setting to control the number of blocked decoders (#238,
 #1140, #1143)

 o Moved table updates and acknowledgments to dedicated streams
 (#1121, #1122, #1238)

Acknowledgments

 This draft draws heavily on the text of [RFC7541]. The indirect
 input of those authors is gratefully acknowledged, as well as ideas
 from:

Krasic, et al. Expires February 16, 2019 [Page 25]

https://tools.ietf.org/pdf/draft-ietf-quic-qpack-01
https://tools.ietf.org/pdf/draft-ietf-quic-qpack-00
https://tools.ietf.org/pdf/draft-ietf-quic-qcram-00
https://tools.ietf.org/pdf/rfc7541

Internet-Draft QPACK August 2018

 o Ryan Hamilton

 o Patrick McManus

 o Kazuho Oku

 o Biren Roy

 o Ian Swett

 o Dmitri Tikhonov

 Buck’s contribution was supported by Google during his employment
 there.

 A substantial portion of Mike’s contribution was supported by
 Microsoft during his employment there.

Authors’ Addresses

 Charles ’Buck’ Krasic
 Netflix

 Email: ckrasic@netflix.com

 Mike Bishop
 Akamai Technologies

 Email: mbishop@evequefou.be

 Alan Frindell (editor)
 Facebook

 Email: afrind@fb.com

Krasic, et al. Expires February 16, 2019 [Page 26]

