Abstract

This specification provides the requirements and considerations for WebRTC applications to send and receive video across a network. It specifies the video processing that is required, as well as video codecs and their parameters.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 29, 2015.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. **Introduction**

One of the major functions of WebRTC endpoints is the ability to send and receive interactive video. The video might come from a camera, a screen recording, a stored file, or some other source. This specification defines how the video is used and discusses special considerations for processing the video. It also covers the video-related algorithms WebRTC devices need to support.

Note that this document only discusses those issues dealing with video codec handling. Issues that are related to transport of media streams across the network are specified in [I-D.ietf-rtcweb-rtp-usage].

2. **Terminology**

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. **Pre and Post Processing**

This section provides guidance on pre- or post-processing of video streams.

Unless specified otherwise by the SDP or codec, the color space SHOULD be sRGB [SRGB].
TODO: I’m just throwing this out there to see if a specific proposal, even if wrong, might draw more comment than "TBD". If you don’t like sRGB for this purpose, comment on the rtcweb@ietf.org mailing list. It has been suggested that the MPEG "Coding independent media description code points" specification [IEC23001-8] may have applicability here.

3.1. Camera Source Video

This document imposes no normative requirements on camera capture; however, implementors are encouraged to take advantage of the following features, if feasible for their platform:

- Automatic focus, if applicable for the camera in use
- Automatic white balance
- Automatic light level control

3.2. Screen Source Video

If the video source is some portion of a computer screen (e.g., desktop or application sharing), then the considerations in this section also apply.

Because screen-sourced video can change resolution (due to, e.g., window resizing and similar operations), WebRTC video recipients MUST be prepared to handle mid-stream resolution changes in a way that preserves their utility. Precise handling (e.g., resizing the element a video is rendered in versus scaling down the received stream; decisions around letter/pillarboxing) is left to the discretion of the application.

Additionally, attention is drawn to the requirements in [I-D.ietf-rtcweb-security-arch] section 5.2 and the considerations in [I-D.ietf-rtcweb-security] section 4.1.1.

4. Stream Orientation

In some circumstances - and notably those involving mobile devices - the orientation of the camera may not match the orientation used by the encoder. Of more importance, the orientation may change over the course of a call, requiring the receiver to change the orientation in which it renders the stream.

While the sender may elect to simply change the pre-encoding orientation of frames, this may not be practical or efficient (in particular, in cases where the interface to the camera returns pre-
compressed video frames). Note that the potential for this behavior adds another set of circumstances under which the resolution of a screen might change in the middle of a video stream, in addition to those mentioned under "Screen Sourced Video," above.

To accommodate these circumstances, RTCWEB implementations that can generate media in orientations other than the default MUST support generating the R0 and R1 bits of the Coordination of Video Orientation (CVO) mechanism described in section 7.4.5 of [TS26.114], and MUST send them for all orientations when the peer indicates support for the mechanism. They MAY support sending the other bits in the CVO extension, including the higher-resolution rotation bits. All implementations SHOULD support interpretation of the R0 and R1 bits, and MAY support the other CVO bits.

Further, some codecs support in-band signaling of orientation (for example, the SEI "Display Orientation" messages in H.264 and H.265). If CVO has been negotiated, then the sender MUST NOT make use of such codec-specific mechanisms. However, when support for CVO is not signaled in the SDP, then such implementations MAY make use of the codec-specific mechanisms instead.

5. Mandatory to Implement Video Codec

For the definitions of "WebRTC Browser," "WebRTC Non-Browser", and "WebRTC-Compatible Endpoint" as they are used in this section, please refer to [I-D.ietf-rtcweb-overview].

WebRTC Browsers MUST implement the VP8 video codec as described in [RFC6386] and H.264 as described in [H264].

WebRTC Non-Browsers that support transmitting and/or receiving video MUST implement the VP8 video codec as described in [RFC6386] and H.264 as described in [H264].

To promote the use of non-royalty bearing video codecs, participants in the RTCWEB working group, and any successor working groups in the IETF, intend to monitor the evolving licensing landscape as it pertains to the two mandatory-to-implement codecs. If compelling evidence arises that one of the codecs is available for use on a royalty-free basis, the working group plans to revisit the question of which codecs are required for Non-Browsers, with the intention being that the royalty-free codec will remain mandatory to implement, and the other will become optional.

These provisions apply to WebRTC Non-Browsers only. There is no plan to revisit the codecs required for WebRTC Browsers.
"WebRTC-compatible endpoints" are free to implement any video codecs they see fit. This follows logically from the definition of "WebRTC-compatible endpoint." It is, of course, advisable to implement at least one of the video codecs that is mandated for WebRTC Browsers, and implementors are encouraged to do so.

6. Codec-Specific Considerations

SDP allows for codec-independent indication of preferred video resolutions using the mechanism described in [RFC6236]. If a recipient of video indicates a receiving resolution, the sender SHOULD accommodate this resolution, as the receiver may not be capable of handling higher resolutions.

Additionally, codecs may include codec-specific means of signaling maximum receiver abilities with regards to resolution, frame rate, and bitrate.

Unless otherwise signaled in SDP, recipients of video streams are MUST be able to decode video at a rate of at least 20 fps at a resolution of at least 320x240. These values are selected based on the recommendations in [HSUP1].

Encoders are encouraged to support encoding media with at least the same resolution and frame rates cited above.

6.1. VP8

For the VP8 codec, defined in [RFC6386], endpoints MUST support the payload formats defined in [I-D.ietf-payload-vp8]. In addition they MUST support the 'bilinear' and 'none' reconstruction filters.

TODO: There have been claims that VP8 already requires supporting both filters; if true, these do not need to be reiterated here.

In addition to the [RFC6236] mechanism, VP8 encoders MUST limit the streams they send to conform to the values indicated by receivers in the corresponding max-fr and max-fs SDP attributes.

6.2. H.264

For the [H264] codec, endpoints MUST support the payload formats defined in [RFC6184]. In addition, they MUST support Constrained Baseline Profile Level 1.2, and they SHOULD support H.264 Constrained High Profile Level 1.3.
Implementations of the H.264 codec have utilized a wide variety of optional parameters. To improve interoperability the following parameter settings are specified:

packetization-mode: Packetization-mode 1 MUST be supported. Other modes MAY be negotiated and used.

profile-level-id: Implementations MUST include this parameter within SDP and SHOULD interpret it when receiving it.

max-mbps, max-smbps, max-fs, max-cpb, max-dpb, and max-br: These parameters allow the implementation to specify that they can support certain features of H.264 at higher rates and values than those signalled by their level (set with profile-level-id). Implementations MAY include these parameters in their SDP, but SHOULD interpret them when receiving them, allowing them to send the highest quality of video possible.

sprop-parameter-sets: H.264 allows sequence and picture information to be sent both in-band, and out-of-band. WebRTC implementations MUST signal this information in-band; as a result, this parameter will not be present in SDP.

TODO: Do we need to require the handling of specific SEI messages? One example that has been raised is freeze-frame messages.

7. Security Considerations

This specification does not introduce any new mechanisms or security concerns beyond what the other documents it references. In WebRTC, video is protected using DTLS/SRTP. A complete discussion of the security can be found in [I-D.ietf-rtcweb-security] and [I-D.ietf-rtcweb-security-arch]. Implementers should consider whether the use of variable bit rate video codecs are appropriate for their application based on [RFC6562].

8. IANA Considerations

This document requires no actions from IANA.

9. Acknowledgements

The authors would like to thank Gaelle Martin-Cocher, Stephan Wenger, and Bernard Aboba for their detailed feedback and assistance with this document. Thanks to Cullen Jennings for providing text and review. This draft includes text from draft-cbran-rtcweb-codec.
10. References

10.1. Normative References

[H264] ITU-T Recommendation H.264, "Advanced video coding for
generic audiovisual services", April 2013.

[HSUP1] ITU-T Recommendation H.Sup1, "Application profile - Sign
language and lip-reading real-time conversation using low
bit rate video communication", May 1999.

Galligan, "RTP Payload Format for VP8 Video", draft-ietf-
payload-vp8-11 (work in progress), February 2014.

Browser-based Applications", draft-ietf-rtcweb-overview-12
(work in progress), October 2014.

[IEC23001-8] ISO/IEC 23001-8:2013/DCOR1, "Coding independent media
description code points", 2013.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

[RFC4421] Perkins, C., "RTP Payload Format for Uncompressed Video:
Additional Colour Sampling Modes", RFC 4421, February
2006.

"Codec Control Messages in the RTP Audio-Visual Profile

[RFC6184] Wang, Y.-K., Even, R., Kristensen, T., and R. Jesup, "RTP

Attributes in the Session Description Protocol (SDP)", RFC
6236, May 2011.

10.2. Informative References

Author’s Address

Adam Roach
Mozilla
\Dallas
US

Phone: +1 650 903 0800 x863
Email: adam@nostrum.com