Session Channel Break Extension
draft-ietf-secsh-break-02.txt

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on October 18, 2004.

Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

The Session Channel Break Extension provides a means to send a BREAK signal [2] over an SSH terminal session [5].
Table of Contents

1. Introduction .. 3
2. The Break Request .. 4
3. Security Considerations ... 6
4. References .. 7
4.1 Normative References .. 7
4.2 Informative References ... 7
Authors’ Addresses .. 7
Intellectual Property and Copyright Statements 8
1. Introduction

The SSH session channel provides a mechanism for the client-user to interactively enter commands and receive output from a remote host while taking advantage of the SSH transport’s privacy and integrity features. SSH is increasingly being used to replace telnet for terminal access applications.

A common application of the telnet protocol is the "Console Server" [2] whereby a telnet NVT can be connected to a physical RS-232/V.24 asynchronous port, making the telnet NVT appear as a locally attached terminal to that port, and making that physical port appear as a network addressable device. A number of major computer equipment vendors provide high level administrative functions through an asynchronous serial port and generally expect the attached terminal to be capable of send a BREAK signal.

A BREAK signal is defined as the TxD signal being held in a SPACE ("0") state for a time greater than a whole character time. In practice, a BREAK signal is typically 250 to 500 ms in length.

The telnet protocol furnishes a means to send a "BREAK" signal, which RFC0854 defines as a "a signal outside the USASCII set which is currently given local meaning within many systems." [1] Console Server vendors interpret the TELNET BREAK signal as a physical BREAK signal, which can then allow access to the full range of administrative functions available on an asynchronous serial console port.

The lack of a similar facility in the SSH session channel has forced users to continue the use of telnet for the "Console Server" function.
2. The Break Request

The following channel specific request can be sent to request that the remote host perform a BREAK operation.

- byte: SSH_MSG_CHANNEL_REQUEST
- uint32: recipient channel
- string: "break"
- boolean: want_reply
- uint32: break-length in milliseconds

If the BREAK length cannot be controlled by the application receiving this request, the BREAK length parameter SHOULD be ignored and the default BREAK signal length of the chipset or underlying chipset driver SHOULD be sent.

If the application receiving this request can control the BREAK-length, the following suggestions are made regarding BREAK duration. If a BREAK duration request of greater than 3000ms is received, it SHOULD be processed as a 3000ms BREAK, in order to prevent an unreasonably long BREAK request causing the port to become unavailable for as long as 49.7 days while executing the BREAK. Applications that require a longer BREAK may choose to ignore this requirement. If BREAK duration request of less than 500ms, is requested a BREAK of 500ms SHOULD be sent since most devices will recognize a BREAK of that length. In the event that an application needs a shorter BREAK, this suggestion can be ignored. If the BREAK-length parameter is 0, the BREAK SHOULD be sent as 500ms or the default BREAK signal length of the chipset or underlying chipset driver.

If the SSH connection does not terminate on a physical serial port, the BREAK indication SHOULD be handled in an implementation-defined manner consistent with the general use of BREAK as an attention/interrupt signal; for instance, a service processor could use some other out-of-band facility to get the attention of a system it manages.

In a case where an SSH connection cascades to another connection, the BREAK SHOULD be passed along the cascaded connection. For example, a telnet session from an SSH shell should carry along an SSH initiated BREAK and an SSH client initited from a telnet connection SHOULD pass a BREAK indication from the telnet connection.

If the want_reply boolean is set, the server MUST reply using SSH_MSG_CHANNEL_SUCCESS or SSH_MSG_CHANNEL_FAILURE [5] messages. If a BREAK of any kind was preformed, SSH_MSG_CHANNEL_SUCCESS MUST be sent. If no BREAK was preformed, SSH_MSG_CHANNEL_FAILURE MUST be
sent.

This operation SHOULD be supported by any general purpose SSH client.
3. Security Considerations

Many computer systems treat serial consoles as local and secured, and interpret a BREAK signal as an instruction to halt execution of the operating system or to enter privileged configuration modes. Because of this, extra care should be taken to ensure that SSH access to BREAK-enabled ports are limited to users with appropriate privileges to execute such functions. Alternatively, support for the BREAK facility MAY be implemented configurable or a per port or per server basis.

Implementations that literally interpret the BREAK length parameter without imposing the suggested BREAK time limit may cause a denial of service to or unexpected results from attached devices receiving the very long BREAK signal.
4. References

4.1 Normative References

4.2 Informative References

Authors’ Addresses

Joseph Galbraith
VanDyke Software
4848 Tramway Ridge Blvd
Suite 101
Albuquerque, NM 87111
US

Phone: +1 505 332 5700
EMail: galb-list@vandyke.com

Phillip Remaker
Cisco Systems, Inc
170 West Tasman Drive
San Jose, CA 95120
US

Phone: +1 408 526 8614
EMail: remaker@cisco.com
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

Full Copyright Statement

Copyright (C) The Internet Society (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.