Abstract

This document specifies the algorithms, algorithm parameters, asymmetric key formats, asymmetric key sizes, and signature formats used in BGPsec (Border Gateway Protocol Security). This document updates RFC 8208 ("BGPsec Algorithms, Key Formats, and Signature Formats") by adding Special-Use Algorithm IDs and correcting the range of unassigned algorithms IDs to fill the complete range.

This document also includes example BGPsec UPDATE messages as well as the private keys used to generate the messages and the certificates necessary to validate those signatures.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 2, 2018
1. Introduction ... 3
 1.1. Terminology .. 3
 1.2. Changes from RFC 8208 4
2. Algorithms ... 4
 2.1. Algorithm ID Types 4
 2.2. Signature Algorithms 5
 2.2.1. Algorithm ID 0x01 - (ECDSA-P256) 5
3. Asymmetric Key Pair Formats 6
 3.1. Asymmetric Key Pair for Algorithm ID 0x01 - (ECDSA-P256) . 6
 3.1.1. Public Key Format 6
 3.1.2. Private Key Format 6
4. Signature Formats ... 6
5. Additional Requirements 6
6. Security Considerations 7
7. IANA Considerations ... 7
8. References ... 9
 8.1. Normative References 9
 8.2. Informative References 11
Appendix A. Examples ... 12
 A.1. Topology and Experiment Description 12
 A.2. Keys .. 12
 A.3. BGPsec IPv4 ... 16
 A.4. BGPsec IPv6 ... 19
Acknowledgements ... 22
Authors’ Addresses ... 22
1. Introduction

This document specifies the following:

- the digital signature algorithm and parameters,
- the hash algorithm and parameters,
- the algorithm identifier assignment and classification,
- the public and private key formats, and
- the signature formats

used by Resource Public Key Infrastructure (RPKI) Certification Authorities (CAs) and BGPsec (Border Gateway Protocol Security) speakers (i.e., routers). CAs use these algorithms when processing requests for BGPsec Router Certificates [RFC8209]. Examples of when BGPsec routers use these algorithms include requesting BGPsec certificates [RFC8209], signing BGPsec UPDATE messages [RFC8205], and verifying signatures on BGPsec UPDATE messages [RFC8205].

This document updates [RFC7935] to add support for a) a different algorithm for BGPsec certificate requests, which are issued only by BGPsec speakers; b) a different Subject Public Key Info format for BGPsec certificates, which is needed for the specified BGPsec signature algorithm; and c) different signature formats for BGPsec signatures, which are needed for the specified BGPsec signature algorithm. The BGPsec certificates are differentiated from other RPKI certificates by the use of the BGPsec Extended Key Usage as defined in [RFC8209]. BGPsec uses a different algorithm [RFC6090] [DSS] as compared to the rest of the RPKI by using a different algorithm that provides similar security with smaller keys making the certificates smaller; these algorithms also result in smaller signatures, which makes the PDUs smaller.

Appendix A contains example BGPsec UPDATE messages as well as the private keys used to generate the messages and the certificates necessary to validate the signatures.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
1.2. Changes from RFC 8208

This section describes the significant changes between [RFC8208] and this document.

- Added Section 2.1 of algorithm ID types. Also, the interpretation of these IDs is described.
- Restructured Sections 2 and 3 to align with the corresponding algorithm suite identifier value.
- Correction of range for unassigned algorithm suite identifier values.
- Adding of Special-Use algorithm suite identifier values.

2. Algorithms

The algorithms used to compute signatures on CA certificates, BGPsec Router Certificates, and Certificate Revocation Lists (CRLs) are as specified in Section 2 of [RFC7935]. This section addresses BGPsec algorithms; for example, these algorithms are used by BGPsec routers to sign and verify BGPsec UPDATE messages. To identify which algorithm is used, the BGPsec UPDATE message contains the corresponding algorithm ID in each Signature_Block of the BGPsec UPDATE message.

2.1. Algorithm ID Types

Algorithms in BGPsec UPDATE messages are identified by the Algorithm Suite Identifier field (Algorithm ID) within the Signature_Block (see Section 3.2 of [RFC8205]).

This document specifies four types of algorithm IDs:

- Reserved Algorithm ID

 Reserved algorithm IDs are the values 0x00 and 0xFF. These IDs MUST NOT be used in a Signature_Block and if encountered, the router MUST treat BGPsec UPDATE messages as Malformed [RFC4271].

- Signature Algorithm ID

 Signature algorithms are defined in Section 2.2 of this document. Processing of BGPsec UPDATE signing and validation using signature algorithms is described in length in Section 4.2 and Section 5.2 of [RFC8205].
2. Unassigned Algorithm ID

This type of algorithm ID is free for future assignments and MUST NOT be used until an algorithm is officially assigned (see Section 7). In case a router encounters an unassigned algorithm ID in one of the Signature_Blocks of a BGPsec UPDATE message, the router SHOULD process the Signature_Block as "unsupported algorithm" as specified in Section 5.2 of [RFC8205].

2. Special-Use Algorithm ID

Special-Use algorithm IDs span from 0xFA (250) to 0xFE (254). To allow documentation and experimentation to accurately describe deployment examples, the use of publicly assigned algorithm IDs is inappropriate, and a reserved block of Special-Use algorithm IDs is required. This ensures that documentation and experimentation does not clash with assigned algorithm IDs in deployed networks, and mitigates the risks to operational integrity of the network through inappropriate use of documentation to perform literal configuration of routing elements on production systems. A router that encounters an algorithm ID of this type outside of an experimental network, SHOULD treat it the same as "unsupported algorithm" as specified in Section 5.2 of [RFC8205].

2.2. Signature Algorithms

2.2.1. Algorithm ID 0x01 - (ECDSA-P256)

- The signature algorithm used MUST be the Elliptic Curve Digital Signature Algorithm (ECDSA) with curve P-256 [RFC6090] [DSS].

- The hash algorithm used MUST be SHA-256 [SHS].

Hash algorithms are not identified by themselves in certificates or BGPsec UPDATE messages. They are represented by an OID that combines the hash algorithm with the digital signature algorithm as follows:

- The ecdsa-with-SHA256 OID [RFC5480] MUST appear in the Public-Key Cryptography Standards #10 (PKCS #10) signatureAlgorithm field [RFC2986] or in the Certificate Request Message Format (CRMF) POPOSigningKey algorithm field [RFC4211]; where the OID is placed depends on the certificate request format generated.

- In BGPsec UPDATE messages, the ECDSA with SHA-256 algorithm suite identifier value 0x01 (see Section 7) is included in the Signature_Block List’s Algorithm Suite Identifier field.
3. Asymmetric Key Pair Formats

The key formats used to compute signatures on CA certificates, BGPsec Router Certificates, and CRLs are as specified in Section 3 of [RFC7935]. This section addresses key formats found in the BGPsec Router Certificate requests and in BGPsec Router Certificates.

3.1. Asymmetric Key Pair for Algorithm ID 0x01 - (ECDSA-P256)

The ECDSA private keys used to compute signatures for certificate requests and BGPsec UPDATE messages MUST be associated with the P-256 curve domain parameters [RFC5480]. The public key pair MUST use the uncompressed form.

3.1.1. Public Key Format

The Subject’s public key is included in subjectPublicKeyInfo [RFC5280]. It has two sub-fields: algorithm and subjectPublicKey. The values for the structures and their sub-structures follow:

- algorithm (an AlgorithmIdentifier type): The id-ecPublicKey OID MUST be used in the algorithm field, as specified in Section 2.1.1 of [RFC5480]. The value for the associated parameters MUST be secp256r1, as specified in Section 2.1.1.1 of [RFC5480].

- subjectPublicKey: ECPoint MUST be used to encode the certificate’s subjectPublicKey field, as specified in Section 2.2 of [RFC5480].

3.1.2. Private Key Format

Local policy determines private key format.

4. Signature Formats

The structure for the certificate’s and CRL’s signature field MUST be as specified in Section 4 of [RFC7935]; this is the same format used by other RPKI certificates. The structure for the certification request’s and BGPsec UPDATE message’s signature field MUST be as specified in Section 2.2.3 of [RFC3279].

5. Additional Requirements

It is anticipated that BGPsec will require the adoption of updated key sizes and a different set of signature and hash algorithms over time, in order to maintain an acceptable level of cryptographic security. This profile should be updated to specify such future requirements, when appropriate.
The recommended procedures to implement such a transition of key sizes and algorithms are specified in [RFC6916].

6. Security Considerations

The security considerations of [RFC3279], [RFC5480], [RFC6090], [RFC7935], and [RFC8209] apply to certificates. The security considerations of [RFC3279], [RFC6090], [RFC7935], and [RFC8209] apply to certification requests. The security considerations of [RFC3279], [RFC6090], and [RFC8205] apply to BGPsec UPDATE messages. No new security considerations are introduced as a result of this specification.

7. IANA Considerations

The Internet Assigned Numbers Authority (IANA) has created the "BGPsec Algorithm Suite Registry" in the Resource Public Key Infrastructure (RPKI) group. The one-octet "BGPsec Algorithm Suite Registry" identifiers assigned by IANA identify the digest algorithm and signature algorithm used in the BGPsec Signature_Block List’s Algorithm Suite Identifier field.

IANA has registered a single algorithm suite identifier for the digest algorithm SHA-256 [SHS] and for the signature algorithm ECDSA on the P-256 curve [RFC6090] [DSS].

IANA is asked to modify the previously registered "Unassigned" address space.

<table>
<thead>
<tr>
<th>Algorithm Suite Identifier</th>
<th>Digest Algorithm</th>
<th>Signature Algorithm</th>
<th>Specification Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2-0xEF</td>
<td>Unassigned</td>
<td>Unassigned</td>
<td></td>
</tr>
</tbody>
</table>

To be modified to:

<table>
<thead>
<tr>
<th>Algorithm Suite Identifier</th>
<th>Digest Algorithm</th>
<th>Signature Algorithm</th>
<th>Specification Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2-0xFA</td>
<td>Unassigned</td>
<td>Unassigned</td>
<td></td>
</tr>
</tbody>
</table>
In addition IANA is asked to register the following address space for "Special-Use":

<table>
<thead>
<tr>
<th>Algorithm Suite Identifier</th>
<th>Digest Algorithm</th>
<th>Signature Algorithm</th>
<th>Specification Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFB-0xFE</td>
<td>Special-Use</td>
<td>Special-Use</td>
<td>This Document</td>
</tr>
</tbody>
</table>

After the requested modification, the "BGPsec Algorithm Suite Registry" in the RPKI group should contain the following values:

<table>
<thead>
<tr>
<th>Algorithm Suite Identifier</th>
<th>Digest Algorithm</th>
<th>Signature Algorithm</th>
<th>Specification Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Reserved</td>
<td>Reserved</td>
<td>This document</td>
</tr>
<tr>
<td>0x01</td>
<td>SHA-256</td>
<td>ECDSA P-256</td>
<td>[SHS] [DSS] [RFC6090]</td>
</tr>
<tr>
<td>0x02-0xFA</td>
<td>Unassigned</td>
<td>Unassigned</td>
<td>This document</td>
</tr>
<tr>
<td>0xFB-0xFE</td>
<td>Special-Use</td>
<td>Special-Use</td>
<td>This Document</td>
</tr>
<tr>
<td>0xFF</td>
<td>Reserved</td>
<td>Reserved</td>
<td>This Document</td>
</tr>
</tbody>
</table>

Future assignments are to be made using the Standards Action process defined in [RFC8126]. Assignments consist of the one-octet algorithm suite identifier value and the associated digest algorithm name and signature algorithm name.
8. References

8.1. Normative References

8.2. Informative References

Appendix A. Examples

A.1. Topology and Experiment Description

Topology:

AS(64496)----AS(65536)----AS(65537)

Prefix Announcement: AS(64496), 192.0.2.0/24, 2001:db8::/32

The signature algorithm used in this example is ECDSA P-256 using the algorithm suite identifier ID 0x01 as specified in Section 7 of this document.

A.2. Keys

For this example, the ECDSA algorithm was provided with a static k to make the result deterministic.

The k used for all signature operations was taken from [RFC6979], Appendix A.2.5, "Signatures With SHA-256, message = ‘sample’".

 k = A6E3C57DD01ABE90086538359835DD4C
 3B17AA873382B0F24D6129493D8AAD60

Keys of AS64496:

ski: AB4D910F55CAE71A215EF3CAFE3ACC45B5EEC154

private key:
 x = D8AA4DFBE2478F86E88A7451BF075565
 709C575AC1C136D081C540254CA440B9

public key:
 Ux = 7391BABBB92A0CB3BE10E59B19EBFFB21
 4E04A91E0CBA1B39A7D38D90F77E55A
 Uy = A05B8E695678E0FA16904B55D9D4FF5C0
 DFC58895EE50BC4F75D205A25BD36FF5
Certificate:

Data:
 Version: 3 (0x2)
 Serial Number: 38655612 (0x24dd67c)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN=ROUTER-0000FBF0
 Validity
 Not Before: Jan 1 05:00:00 2017 GMT
 Not After : Jul 1 05:00:00 2018 GMT
 Subject: CN=ROUTER-0000FBF0
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 a2:5b:dc:3f:ff
 ASN1 OID: prime256v1

X509v3 extensions:
 X509v3 Key Usage:
 Digital Signature
 X509v3 Subject Key Identifier:
 AB:4D:91:0F:55:CA:E7:1A:21:5E:
 F3:CA:FE:3A:CC:45:B5:EE:C1:54
 X509v3 Extended Key Usage:
 1.3.6.1.5.5.7.3.30
 sbgp-autonomousSysNum: critical
 Autonomous System Numbers:
 64496
 Routing Domain Identifiers:
 inherit

Signature Algorithm: ecdsa-with-SHA256
-----BEGIN CERTIFICATE-----
MIIBiDCCAS+gAwIBAgIEAk3WfdAKBggqhkjOPQQDAjAAMgEwDQYJKoZIhvcNAQEFBQcC
AQRhMSAgEAMCwGCSqGSIb3DQEBCwUCAwQAOgIgAHEwDQYJKoZIhvcNAQEFBQcCARYE
AQIBAwIBADANBgkqhkiG9w0BAQEFAAOCAQ8wDQYJKoZIhvcNAQEFBQcCARYE8gUQIBAwI
BAQoAMCAwCQYDVQQDEwJFV0xJTAAnBgkqhkiG9w0BAQsFAAOCAQ8wDQYJKoZIhvcNAQEF
BQcCARYE8gUQIBAwIBADANBgkqhkiG9w0BAQEFAAOCAQ8wDQYJKoZIhvcNAQEFBQcCARYE
8gUQIBAwIBADANBgkqhkiG9w0BAQEFAAOCAQ8wDQYJKoZIhvcNAQEFBQcCARYE8gUQIBAwI
BAQoAMCAwCQYDVQQDEwJFV0xJTAAnBgkqhkiG9w0BAQsFAAOCAQ8wDQYJKoZIhvcNAQEF
BQcCARYE8gUQIBAwIBADANBgkqhkiG9w0BAQEFAAOCAQ8wDQYJKoZIhvcNAQEFBQcCARYE
8gUQIBAwIBADANBgkqhkiG9w0BAQEFAAOCAQ8wDQYJKoZIhvcNAQEFBQcCARYE8g
-----END CERTIFICATE-----

Keys of AS (65536):
==================
ski: 47F23BF1AB2F8A9D26864EBBD8DF2711C74406EC

private key:
x = 6CB2E931B112F24554BCDCAAFD9553A9
519A9AF33C023B60846A21FC95583172

public key:
Ux = 28FC5FE9AFCF5F4CB3F5F85CB212FC1
E9D0E0DBEAEE425BD2F0D3175AA0E989
Uy = EA9B603E38F35FB329DF495641F2BA04
0F1C3AC6138307F257CBA6B8B588F41F
Router Key Certificate example using OpenSSL 1.0.1e-fips 11 Feb 2013
--
Certificate:
Data:
 Version: 3 (0x2)
 Serial Number: 3752143940 (0xdfa52c44)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN=ROUTER-00010000
 Validity
 Not Before: Jan 1 05:00:00 2017 GMT
 Not After : Jul 1 05:00:00 2018 GMT
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 2f:c1:e9:d0:e0:db:ea:ee:42:5b:d2:f0:d3:17:5a:
 b8:b5:88:ff:1f
 ASN1 OID: prime256v1
X509v3 extensions:
X509v3 Key Usage:
X509v3 Subject Key Identifier:
 47:F2:3B:F1:AB:2F:8A:9D:26:86:
X509v3 Extended Key Usage:
 1.3.6.1.5.5.7.3.30
 sbgp-autonomousSysNum: critical
 Autonomous System Numbers:
 65536
 Routing Domain Identifiers:
 inherit

Signature Algorithm: ecdsa-with-SHA256
A.3. BGPsec IPv4

BGPsec IPv4 UPDATE from AS(65536) to AS(65537):
==
Binary Form of BGPsec UPDATE (TCP-DUMP):

FF FF
01 03 02 00 00 00 EC 40 01 01 02 80 04 04 00 00
00 00 80 0E 0D 00 01 01 04 C6 33 64 64 00 18 C0
00 02 90 1E 00 CD 00 0E 01 00 00 01 00 00 01 00
00 00 FB F0 00 BF 01 47 F2 3B F1 AB 2F 8A 9D 26
86 4E BB D8 DF 27 11 C7 44 06 EC 00 48 30 46 02
21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E
81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E A8 4E AF
37 16 02 01 00 90 F2 C1 29 AB B2 F3 9B 6A 07 96
3B D5 55 A8 7A B2 B7 33 3B 7B 91 F1 66 8F D8 61
8C 83 FA C3 F1 AB 4D 91 0F 55 CA E7 1A 21 5E F3
CA FE 3A CC 45 B5 EE C1 54 00 48 30 46 02 21 00
EF D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6
9D 2C 87 7B 56 AA F9 91 C3 4D 0E A8 4E AF 37 16
02 21 00 8E 21 F6 0E 44 C6 06 6C 8B 8A 95 A3 C0
9D 3A D4 37 95 85 A2 D7 28 EE AD 07 A1 7E D7 AA
05 5E CA

Signature from AS(64496) to AS(65536):

Digest: 21 33 E5 CA A0 26 BE 07 3D 9C 1B 4E FE B9 B9 77
9F 20 F8 F5 0E 29 FA 98 40 00 9F 60 47 D0 81 54
Signature: 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD
9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E
A8 4E AF 37 16 02 21 00 8E 21 F6 0E 44 C6 06 6C
8B 8A 95 A3 C0 9D 3A D4 37 95 85 A2 D7 28 EE AD
07 A1 7E D7 AA 05 5E CA
Signature from AS(65536) to AS(65537):

Digest: 01 4F 24 DA E2 A5 21 90 B0 80 5C 60 5D B0 63 54
 22 3E 93 BA 41 1D 3D 82 A3 EC 26 52 0C 5F 84
Signature: 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD
 9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E
 A8 4E AF 37 16 02 21 00 90 F2 C1 29 AB B2 F3 9B
 6A 07 96 3B D5 55 A8 7A B2 B7 33 3B 7B 91 F1 66
 8F D8 61 8C 83 FA C3 F1

The human-readable output is produced using bgpsec-io, a BGPsec traffic generator that uses a Wireshark-like printout.

Send UPDATE Message

+-marker: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+-length: 259
+-type: 2 (UPDATE)
+-withdrawn_routes_length: 0
+-total_path_attr_length: 236
 |+-ORIGIN: INCOMPLETE (4 bytes)
 | |+-Flags: 0x40 (Well-Known, Transitive, Complete)
 | |+-Type Code: ORIGIN (1)
 | |+-Length: 1 byte
 | |+-Origin: INCOMPLETE (1)
 |+-MULTI_EXIT_DISC (7 bytes)
 | |+-Flags: 0x80 (Optional, Non-transitive, Complete)
 | |+-Type Code: MULTI_EXIT_DISC (4)
 | |+-Length: 4 bytes
 | |+-data: 00 00 00 00
 |+-MP_REACH_NLRI (16 bytes)
 | |+-Flags: 0x80 (Optional, Non-transitive, Complete)
 | |+-Type Code: MP_REACH_NLRI (14)
 | |+-Length: 13 bytes
 | |+-Address family: IPv4 (1)
 | |+-Subsequent address family identifier: Unicast (1)
 | |+-Next hop network address: (4 bytes)
 | | | |+-Next hop: 198.51.100.100
 | |+-Subnetwork points of attachment: 0
 | |+-Network layer reachability information: (4 bytes)
 | | | |+-192.0.2.0/24
 | | | |+-MP Reach NLRI prefix length: 24
 | | | |+-MP Reach NLRI IPv4 prefix: 192.0.2.0
+-BGPSEC Path Attribute (209 bytes)
 +--Flags: 0x90 (Optional, Complete, Extended Length)
 +--Type Code: BGPSEC Path Attribute (30)
 +--Length: 205 bytes
 +--Secure Path (14 bytes)
 +--Length: 14 bytes
 +--Secure Path Segment: (6 bytes)
 +--pCount: 1
 +--Flags: 0
 +--AS number: 65536 (1.0)
 +--Secure Path Segment: (6 bytes)
 +--pCount: 1
 +--Flags: 0
 +--AS number: 64496 (0.64496)
 +--Signature Block (191 bytes)
 +--Length: 191 bytes
 +--Algo ID: 1
 +--Signature Segment: (94 bytes)
 +--SKI: 47F23BF1AB2F8A9D26864EBBD8DF2711C74406EC
 +--Length: 72 bytes
 +--Signature: 3046022100EFD48B 2AACB6A8FD1140DD
 9CD45E81D69D2C87 7B56A9F991C34D0E
 A84EAF3716022100 90F2C129ABB2F39B
 6A07963BD555A87A B2B7333B791F166
 8FD8618C83FAC3F1
 +--Signature Segment: (94 bytes)
 +--SKI: AB4D910F55CAE71A215EF3CAFE3ACC45B5EEC154
 +--Length: 72 bytes
 +--Signature: 3046022100EFD48B 2AACB6A8FD1140DD
 9CD45E81D69D2C87 7B56A9F991C34D0E
 A84EAF3716022100 8E21F60E44C6066C
 8B8A95A3C09D3AD4 379585A2D728EEAD
 07A17ED7AA055ECA
A.4. BGPsec IPv6

BGPsec IPv6 UPDATE from AS(65536) to AS(65537):
===
Binary Form of BGP/BGPsec UPDATE (TCP-DUMP):
FF 01 10 02 00 00 00 F9 40 01 01 02 80 04 04 00 00 00 00 00 00 00 00 C6 33 64 64 00 20 20 01 0D B8 90 1E 00 CD 00 OE 01 00 00 01 00 00 01 00 00 00 FB F0 00 BF 01 47 F2 3B F1 AB 2F 8A 9D 2E 86 4E BB D8 DF 27 11 C7 44 06 EC 00 48 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E A8 4E AF 37 16 02 21 00 D1 B9 4F 62 51 04 6D 21 36 A1 05 B0 F4 72 7C 5C BC D6 74 D9 7D 28 E6 1B 8F 43 BD DE 91 C3 06 26 AB 4D 91 0F 55 CA E7 1A 21 5E F3 CA FE 3A CC 45 B5 EE C1 54 00 48 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E A8 4E AF 37 16 02 21 00 E2 A0 2C 68 FE 53 CB 96 93 4C 78 1F 5A 14 A2 97 19 79 20 0C 91 56 ED F8 55 05 8E 80 53 F4 AC D3

Signature from AS(64496) to AS(65536):

Digest: 8A 0C D3 E9 8E 55 10 45 82 1D 80 46 01 D6 55 FC 52 11 89 DF 4D B0 28 7D 84 AC FC 77 55 6D 06 C7 Signature: 30 46 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E A8 4E AF 37 16 02 21 00 E2 A0 2C 68 FE 53 CB 96 93 4C 78 1F 5A 14 A2 97 19 79 20 0C 91 56 ED F8 55 05 8E 80 53 F4 AC D3

Signature from AS(65536) to AS(65537):

Digest: 44 49 EC 70 8D EC 5C 85 00 C2 17 8C 72 FE 4C 79 FF A9 3C 95 31 61 01 2D EE 7E EE 05 46 AF 5F D0 Signature: 46 49 02 21 00 EF D4 8B 2A AC B6 A8 FD 11 40 DD 9C D4 5E 81 D6 9D 2C 87 7B 56 AA F9 91 C3 4D 0E A8 4E AF 37 16 02 21 00 D1 B9 4F 62 51 04 6D 21 36 A1 05 B0 F4 72 7C C5 BC D6 74 D9 7D 28 E6 1B 8F 43 BD DE 91 C3 06 26
The human-readable output is produced using bgpsec-io, a BGPsec traffic generator that uses a Wireshark-like printout.

Send UPDATE Message

```
+--marker: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+--length: 272
+--type: 2 (UPDATE)
+--withdrawn_routes_length: 0
+--total_path_attr_length: 249
  +--ORIGIN: INCOMPLETE (4 bytes)
    |  +--Flags: 0x40 (Well-Known, Transitive, Complete)
    |  +--Type Code: ORIGIN (1)
    |  +--Length: 1 byte
    |  +--Origin: INCOMPLETE (1)
  +--MULTI_EXIT_DISC (7 bytes)
    |  +--Flags: 0x80 (Optional, Non-transitive, Complete)
    |  +--Type Code: MULTI_EXIT_DISC (4)
    |  +--Length: 4 bytes
    |  +--data: 00 00 00 00
  +--MP_REACH_NLRI (29 bytes)
    |  +--Flags: 0x80 (Optional, Non-transitive, Complete)
    |  +--Type Code: MP_REACH_NLRI (14)
    |  +--Length: 26 bytes
    |  +--Address family: IPv6 (2)
    |  +--Subsequent address family identifier: Unicast (1)
    |  +--Next hop network address: (16 bytes)
    |  +--Subnetwork points of attachment: 0
    |  +--Network layer reachability information: (5 bytes)
      |  |  +--2001:db8::/32
      |  +--MP Reach NLRI prefix length: 32
      |  +--MP Reach NLRI IPv6 prefix: 2001:db8::
+-BGPSEC Path Attribute (209 bytes)
  +-Flags: 0x90 (Optional, Complete, Extended Length)
  +-Type Code: BGPSEC Path Attribute (30)
  +-Length: 205 bytes
  +-Secure Path (14 bytes)
    +-Length: 14 bytes
      +-Secure Path Segment: (6 bytes)
        +-pCount: 1
        +-Flags: 0
        +-AS number: 65536 (1.0)
      +-Secure Path Segment: (6 bytes)
        +-pCount: 1
        +-Flags: 0
        +-AS number: 64496 (0.64496)
  +--Signature Block (191 bytes)
    +-Length: 191 bytes
    +-Algo ID: 1
  +-Signature Segment: (94 bytes)
    +-SKI: 47F23BF1AB2F8A9D26864EBBD8DF2711C74406EC
    +-Length: 72 bytes
    +-Signature: 3046022100EFD48B 2AACB6A8FD1140DD
      9CD45E81D69D2C87 7B56AAFA991C34D0E
      A84EAF3716022100 D1B94F6251046D21
      36A105B0F4727CC5 BCD674D97D28E61B
      8F43BDDE91C30626
  +-Signature Segment: (94 bytes)
    +-SKI: AB4D910F55CAE71A215EF3CAFE3ACC45B5EEC154
    +-Length: 72 bytes
    +-Signature: 3046022100EFD48B 2AACB6A8FD1140DD
      9CD45E81D69D2C87 7B56AAFA991C34D0E
      A84EAF3716022100 E2A02C68FE53CB96
      934C781F5A14A297 1979200C9156EDF8
      55058E8053F4ACD3
Acknowledgements

The authors wish to thank Geoff Huston and George Michaelson for producing [RFC7935], which this document is entirely based on. The authors would also like to thank Roque Gagliano, David Mandelberg, Tom Petch, Sam Weiler, and Stephen Kent for their reviews and comments. Mehmet Adalier, Kotikalapudi Sriram, and Doug Montgomery were instrumental in developing the test vectors found in Appendix A. Additionally we want to thank Geoff Huston, author of [RFC5398] from where we borrowed wording for Section 2.1 of this document.

Authors’ Addresses

Sean Turner
sn3rd

Email: sean@sn3rd.com

Oliver Borchert
NIST
100 Bureau Drive
Gaithersburg, MD  20899
United States of America

Email: oliver.borchert@nist.gov