Signaling Prefix Origin Validation Results from an RPKI Origin Validating BGP Speaker to BGP Peers
draft-ietf-sidrops-validating-bgp-speaker-03

Abstract

This document describes the use of BGP large communities, as well as its usage, to signal prefix origin validation results from an RPKI Origin validating BGP speaker to other BGP peers. Upon reception of prefix origin validation results, peers can use this information in their local routing decision process.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 24, 2020.
1. Introduction

RPKI-based prefix origin validation [RFC6480] can be a significant operational burden for BGP peers to implement and adopt. To facilitate acceptance and usage of prefix origin validation and ultimately increase the security of the Internet routing system, Autonomous Systems may provide RPKI-based prefix origin validation at certain vantage points. The result of this prefix origin validation is signaled to peers by using the EBGP Prefix Origin Validation State Large Community as introduced in this document.
Peers receiving a prefix origin validation result from the validating EBGP peer can use this information in their local routing decision process for acceptance, rejection, preference, or other traffic engineering purposes of a particular route.

2. EBGP Prefix Origin Validation Large Community

The origin validation state large community 12-octet function specific large community [RFC8092] with the following encoding:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Global Administrator                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        TBD1 (Sub-Type)                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       Validation State                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

The value of the field TBD1 (Sub-Type) has to be assigned. The Global Administrator field MUST be set to the AS number of the validating BGP speaker conducting the prefix origin validation. The last field of the large community is an unsigned integer that gives the route’s validation state as described in Section 4.

If the validating BGP speaker is configured to support the extensions defined in this document, it SHOULD attach the origin validation state large community to BGP UPDATE messages sent to EBGP peers by mapping the computed validation state in the last field of the large community. A receiving BGP speaker, in the absence of a local validation state, SHOULD derive a validation state from the last field of the received large community, if present.

An implementation SHOULD NOT send more than one instance of the origin validation state large community. However, if more than one instance is received, an implementation MUST disregard all instances other than the one with the numerically greatest validation state value. If the value received is greater than the largest specified value (2), the implementation MUST apply a strategy similar to attribute discard [RFC7606] by discarding the erroneous community and logging the error for further analysis.
3. BGP Prefix Origin Validation State Utilized at Validating Peers

A validating BGP speaker that is aware of a BGP Prefix Origin Validation state (see Section 4) for a certain route can handle this information in one of the following modes of operation, attaching validation state to routes as discussed in Section 2:

Simple Tagging: In this mode of operation, the BGP best path selection algorithm is executed. The prefix origin validation state is tagged accordingly.

Dropping and Tagging: Routes for which the prefix origin validation state is "invalid" (according to [RFC6811]) are dropped by the validating BGP speaker. Based on the remaining set of routes, the BGP best path selection algorithm is executed. The prefix origin validation state of "not found" or "valid" (according to [RFC6811]) is tagged accordingly.

Strict Dropping and Tagging: Routes for which the prefix origin validation state is "invalid" or "not found" (according to [RFC6811]) are dropped by the validating BGP speaker. Based on the remaining set of routes, the BGP best path selection algorithm is executed. The prefix origin validation state of "valid" is tagged to the advertised route.

A validating BGP speaker MUST support the Dropping and Tagging operation mode. Other modes of operation are OPTIONAL. The mode of operation MAY be configured by the validating BGP speaker operator for all connected peers, or for each BGP session with a peer separately.

Path hiding, as originally discussed in [RFC7947], may impact end-to-end connectivity for peers receiving prefixes via validating BGP speakers, if the best path selected contains a prefix with a prefix origin validation state which is subsequently dropped.

However, these modes of operation might be used in combination with any options discussed in Section 2.3.2 of [RFC7947] in order to allow a peer to receive one or more routes and take the routing decision by itself, or with implementations who support sending the next best available path.

4. Signaling Prefix Origin Validation Results from a Validating Peer to Peers

The EBGP Prefix Origin Validation State Community is utilized for signaling prefix origin validation result from a validating BGP speaker to other peers.
This draft proposes an encoding of the prefix origin validation result [RFC6811] as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Lookup result = "valid"</td>
</tr>
<tr>
<td>1</td>
<td>Lookup result = "not found"</td>
</tr>
<tr>
<td>2</td>
<td>Lookup result = "invalid"</td>
</tr>
</tbody>
</table>

Table 1

This encoding is re-used. Validating peers providing RPKI-based prefix origin validation set the validation state according to the prefix origin validation result (see [RFC6811]).

5. Operational Recommendations

5.1. Local Routing Decision Process

A peer receiving prefix origin validation results from the route server MAY use the information in its own local routing decision process. The local routing decision process SHOULD apply to the rules as described in Section 5 [RFC6811].

A peer receiving a prefix origin validation result from the route server MAY redistribute this information within its own AS.

In cases where multiple ASes are being administered by the same authority, peers MAY also redistribute this information across EBGP boundaries of the authority in question.

5.2. Validating Peers Receiving the EBGP Prefix Origin Validation State Large Community

A validating BGP speaker receiving routes from peers containing the EBGP Prefix Origin Validation State Large Community MUST remove the large community before the route is re-distributed to its peers. This is required regardless of whether the validating BGP speaker is executing prefix origin validation or not.

Failure to do so would allow opportunistic peers to advertise routes tagged with arbitrary prefix origin validation results via validating peers, influencing maliciously the decision process of other, non-validating BGP speakers.
5.3. Information about Validity of a BGP PrefixOrigin Not Available at a Validating Peer

In case information about the validity of a BGP prefix origin is not available at the validating BGP speaker (e.g., error in the ROA cache, CPU overload) the validating BGP speaker MUST NOT add the EBGP Prefix Origin Validation State Large Community to the route.

5.4. Error Handling at Peers

A route sent by a validating BGP speaker SHOULD only contain none or one EBGP Prefix Origin Validation State Large Community.

A peer receiving a route from a validating BGP speaker containing more than one EBGP Prefix Origin Validation State Large Community SHOULD only consider the largest value (as described in Table 1) in the validation result field and disregard the other values. Values larger than two in the validation result field MUST be disregarded.

6. Security Considerations

All security considerations described in RFC6811 [RFC6811] fully apply to this document.

Additionally, threat agents polluting ROA cache server(s) run by AS operators could cause significant operational impact, since multiple validating BGP speaker clients could be affected. Peers should be vigilant as to the integrity and authenticity of the origin validation results as they are provided by a third party, namely the AS operator hosting both the validating BGP speaker as well as any ROA cache server(s).

Therefore, a validating BGP speaker could be misused to spread malicious prefix origin validation results. However, in the case of IXPs, peers already trust the route server for the collection, filtering (e.g., IRR database filtering), and redistribution of BGP routing information to other peers.

To facilitate trust and support with peers establishing appropriate controls in mitigating the risks mentioned above, AS operators SHOULD provide out-of-band means for peers to ensure that the ROA validation process has not been compromised or corrupted.

7. References
7.1. Normative References

7.2. Informative References

Authors’ Addresses
Internet-DraSignaling Prefix Origin Validation Results from a July 2019

Thomas King
DE-CIX Management GmbH
Lichtstrasse 43i
Cologne 50825
DE

Email: thomas.king@de-cix.net

Christoph Dietzel
DE-CIX Management GmbH
Lichtstrasse 43i
Cologne 50825
DE

Email: christoph.dietzel@de-cix.net

Daniel Kopp
DE-CIX Management GmbH
Lichtstrasse 43i
Cologne 50825
DE

Email: daniel.kopp@de-cix.net

Aristidis Lambrianidis
Amsterdam Internet Exchange
Frederiksplein 42
Amsterdam 1017 XN
NL

Email: aristidis.lambrianidis@ams-ix.net