An Alternative Connection Model for the Message Session Relay Protocol (MSRP)
draft-ietf-simple-msrp-acm-05.txt

Abstract

This document defines an alternative connection model for Message Session Relay Protocol (MSRP) User Agents (UAs), which uses the connection-oriented media (COMEDIA) mechanism in order to create the MSRP transport connection. The model allows MSRP UAs behind Network Address Translators (NATs) to negotiate which UA will initiate the establishment of the TCP connection, in order for MSRP messages to traverse the NAT.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 22, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
2. Terminology .. 3
3. Applicability statement 3
4. COMEDIA for MSRP .. 4
 4.1. General ... 4
 4.2. a=setup .. 4
 4.3. TLS .. 5
 4.4. a=connection ... 6
 4.5. MSRP relay connection 6
5. Interoperability with connection model defined in RFC 4975 6
6. Security Considerations .. 7
7. IANA Considerations .. 7
8. Acknowledgements .. 7
9. Change Log .. 7
10. References .. 8
 10.1. Normative References 8
 10.2. Informative References 8
Authors’ Addresses ... 9
1. Introduction

The Message Session Relay Protocol (MSRP) core specification [RFC4975] defines that the MSRP UA which sends the SDP offer is "active", and it is responsible for creating the MSRP transport connection towards the remote UA if a new connection is required. The core specification also allows, but does not define, alternate mechanisms for MSRP UAs to create MSRP transport connections.

[RFC4145] defines a connection-oriented media mechanism, COMEDIA, that endpoints can use to negotiate the endpoint which initiates the creation of media transport connection.

COMEDIA is especially useful when an endpoint is located behind a NAT. The endpoint can use the mechanism to indicate that it will create the media transport connection, in order for the media to traverse the NAT without the usage of relays.

An example is the Open Mobile Alliance (OMA) defined "Instant Message using SIMPLE" [OMA-TS-SIMPLE_IM-V1_0-20090901-D], where one MSRP UA of every MSRP transport connection represents a media server, which is always located in the carrier network. The media server has a global IP address and handles application specific policy control as well as NAT traversal. The OMA IM (Instant Messenger) uses COMEDIA for NAT traversal, and all OMA IM MSRP clients support COMEDIA.

This document defines how an MSRP UA uses COMEDIA in order to negotiate which UA will create the MSRP transport TCP connection towards the other UA. The document also defines how an MSRP UA which uses COMEDIA can establish an MSRP transport connection with a remote UA that does not support COMEDIA.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Applicability statement

Support of this specification is optional for MSRP user agents in general. User Agents that are likely to be deployed in networks where User Agents need to establish the TCP connections in order to traverse NATs SHOULD support this specification in order to improve the odds of being able to communicate across NATs.
4. COMEDIA for MSRP

4.1. General

This section defines how an MSRP UA uses the COMEDIA SDP attributes defined in [RFC4145].

4.2. a=setup

An MSRP UA MUST support the SDP a=setup attribute [RFC4145], in order to negotiate which endpoint will create the MSRP transport connection towards the other UA.

The a=setup attribute is particularly useful when one MSRP UA represents a network media server, or any other entity that is not located behind a NAT. The a=setup attribute allows the media server to ensure that MSRP UAs create the MSRP transport connections towards the server, so that NATs at user’s premises will not interfere with the connection creation.

An MSRP UA MUST always include an explicit a=setup attribute in its SDP offers and answers, since it is sometimes useful for the other endpoint, or for entities in the network, to know whether the UA supports COMEDIA or not.

An MSRP UA MUST support the a=setup "active", "actpass" and "passive" attribute values.

When the a=setup attribute value is "actpass" or "passive", the IP address:port value in the MSRP URI of the SDP a=path attribute MUST contain the actual address:port on which the UA can receive a TCP Open request for the MSRP transport connection.

If the a=setup attribute value is "active", the port number value MUST either be the actual port number that the MSRP UA will use for the TCP endpoint, or the port value 9.

If an MSRP UA can provide a global IP address that the other endpoint can use as destination for a TCP Open request, the UA MUST use the a=setup "actpass" attribute value in SDP offers. This is in order to allow the remote UA to send an SDP answer with an a=setup "active" attribute value if the UA is located behind NAT, and in order to be compatible with MSRP UAs that do not support COMEDIA and thus always will act as passive endpoints. If an MSRP UA cannot provide the actual transport address, the UA MUST use the a=setup "active" attribute value.

The UA MUST NOT use the a=setup "passive" attribute value in an SDP
The MSRP UA can determine that it provides a global IP address in the following scenarios:

- the UA can determine that it is not located behind a NAT;
- the UA relays its MSRP transport connections via a relay (e.g. MSRP relay or TURN server); or
- the UA has used Simple Traversal of UDP Through NATs (STUN) [RFC5389] signalling to retrieve NAT address:port through the local port to be used for the eventual transport connection, while also having determined that the NAT is not address restricted.

Some UAs can determine whether the SIP [RFC3261] signaling has traversed a NAT by inspecting the SIP Via header field in the 200 (OK) response to the initial SIP REGISTER request, and comparing the IP addresses in the Via sent-by and the received header field parameters. If the IP addresses are not the same then the UA can determine that there is a NAT in the path. Even though the media transport might not traverse the NAT, it is safe to assume that it will, and set the a=setup attribute accordingly. This comparing mechanism does not work in all scenarios, though. For example, if the NAT contains a SIP proxy, the UA will not be able to detect the NAT by comparing the IP addresses.

NOTE: If the NAT contains a SIP proxy, the UA will not be able to detect the NAT by comparing the IP addresses.

If an SDP offer includes an a=setup "actpass" attribute value, the SDP answer MAY include an a=setup "active" attribute value, but SHOULD include a=setup "passive" attribute value if the SDP answerer knows that it is not located behind a NAT.

Once the active UA has established the MSRP transport connection, the UA MUST immediately send an MSRP SEND request, as defined in [RFC4975].

NOTE: According to [RFC4975] the initiating UA is always active, but when COMEDIA is used the a=setup attribute is used to negotiate which UA becomes active.

4.3. TLS

If an MSRP UA conformant to this document uses TLS, it MUST use the TLS mechanisms defined in [RFC4975] and [RFC4976]. When establishing a TLS connection between peer MSRP UAs, mutual authentication of the
TLS connection SHOULD be done. From TLS authentication point of view it is thus irrelevant whether an endpoint takes the active or passive role.

In accordance with [RFC4975], an MSRP UA MUST always during the TLS establishment send its certificate to the other endpoint, and if an MSRP UA uses a self-signed TLS certificate to authenticate itself to MSRP peers it MUST also in the SDP include its certificate fingerprint.

Note that fingerprints can only be exchanged in peer-to-peer communication, as MSRP relays [RFC4976] will not receive the SDP payloads containing the fingerprint attributes.

4.4. a=connection

MSRP UAs MUST NOT use the SDP a=connection attribute. [RFC4975] defines connection reuse procedures for MSRP, and this document does not modify those procedures.

If an MSRP UA receives an a=connection attribute, the UA MUST ignore it.

4.5. MSRP relay connection

If an MSRP UA is located behind an MSRP relay [RFC4976], the UA MUST always initiate a transport connection towards the relay, no matter what value the client has provided in the a=setup attribute.

NOTE: Even if an MSRP UA initiates the TCP connection towards its relay, the UA will only send a SEND request if the UA is active, based on the COMEDIA negotiation.

5. Interoperability with connection model defined in RFC 4975

An MSRP UA conformant to this document can interoperate with a UA that follows the connection model defined in [RFC4975]. However, if an MSRP UA conformant to this document is located behind NAT, and does not proxy its MSRP communication via an MSRP relay, and the UA receives an SDP offer from a remote UA that follows the connection model defined in [RFC4975], NAT traversal can only be achieved if the MSRP UA supports ICE [I.D.ietf-mmusic-ice-tcp] and the network provides TURN servers, or if the network supports SBC assisted NAT traversal for TCP.
6. Security Considerations

According to the connection model defined in [RFC4975], the MSRP UA that sends the SDP offer becomes the active party, and it is responsible for creating the MSRP transport connection towards the remote UA if a new connection is required.

When COMEDIA is used, either the sender or the receiver of the SDP offer can become the active party. [RFC4975] requires that the active party immediately issues an MSRP SEND request once the connection has been established. This allows the passive party to bind the inbound TCP connection to the message session identified by the session id part of its MSRP URI. The use of COMEDIA does not change this requirement, but the sender of the SDP offer is no longer assumed to always become the active party.

The active party also takes the role as TLS client, if TLS is used to protect the MSRP messages. However, there are no procedures in [RFC4975] that would break in case the receiver of the SDP offer takes the role as TLS client, and the level of security provided by TLS is not affected.

7. IANA Considerations

This document has no actions for IANA.

8. Acknowledgements

Thanks to Ben Campbell, Remi Denis-Courmont, Nancy Greene, Hadriel Kaplan, Adam Roach, Robert Sparks, Salvatore Loreto and Shida Schubert for their guidance and input in order to produce this document.

9. Change Log

[RFC EDITOR NOTE: Please remove this section when publishing]

Changes from draft-ietf-simple-msrp-acm-04
o TLS section modified.
 o Security considerations section modified.

Changes from draft-ietf-simple-msrp-acm-03
 o Changes based on WGLC comments from Adam Roach and Ben Campbell.
o New section added related to interoperability with connection model defined in RFC 4975.
o Text related to a=setup "holdconn" attribute value removed.
o NAT keepalive section removed.
o Usage of COMEDIA-TLS removed.

Changes from draft-ietf-simple-mscp-acm-02
o Changes based on WGLC comments from Salvatore Loreto and Shida Schubert.

Changes from draft-ietf-simple-msrp-acm-01
o Procedures for using SDP c/m for routing of MSRP messages removed.
o Procedures related to modification of MSRP address information by intermediates moved to separate document.
o Solution to open issue on usage of the SDP a=connection implemented.

10. References

10.1. Normative References

10.2. Informative References

Authors’ Addresses

Christer Holmberg
Ericsson
Hirsalantie 11
Jorvas 02420
Finland

Email: christer.holmberg@ericsson.com

Staffan Blau
Ericsson AB
P.O Box 407
Sweden

Email: staffan.blau@ericsson.com