SIP
Internet-Draft
Updates: 4474 (if approved)
Intended status: Standards Track
Expires: January 15, 2009

SIP SAML Profile and Binding
draft-ietf-sip-saml-04.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 15, 2009.
Abstract

This document specifies a Session Initiation Protocol (SIP) profile of Security Assertion Markup Language (SAML) as well as a SAML SIP binding. The defined SIP SAML Profile composes with the mechanisms defined in the SIP Identity specification and satisfy requirements presented in "Trait-based Authorization Requirements for the Session Initiation Protocol (SIP)".
Table of Contents

1. Introduction ... 4
2. Terminology ... 5
3. SAML Introduction 7
 3.1. SAML Assertions 8
4. Specification Scope 10
5. Employing SAML in SIP 12
6. SIP SAML Profiles 14
 6.1. AS-driven SIP SAML URI-based Attribute Assertion
 Fetch Profile 14
 6.1.1. Required Information 14
 6.1.2. Profile Overview 14
 6.1.3. Profile Description 18
 6.1.4. Assertion Profile Description 21
 6.1.5. Assertion Verification 23
 6.2. The TBD "call-by-value" Profile 25
7. SAML SIP Binding 26
 7.1. SAML HTTP-URI-based SIP Binding 26
8. The ‘saml-shusb’ Option Tag 27
9. Example SAML Assertions 28
10. Security Considerations 33
 10.1. Man-in-the-Middle Attacks and Stolen Assertions ... 33
 10.2. Forged Assertion 33
 10.3. Replay Attack 34
11. Contributors ... 35
12. Acknowledgments ... 36
13. IANA Considerations 37
 13.1. IANA Registration for New SIP Option Tag 37
 13.2. 477 ‘Use Identity Header with SAML Assertion’ Response
 Code .. 37
 13.3. 478 ‘Unknown SAML Assertion Content’ Response Code ... 37
 13.4. 479 ‘Invalid SAML Assertion’ Response Code 37
14. Open Issues .. 39
15. Change Log .. 40
 15.1. -03 to -04 .. 40
 15.2. -02 to -03 .. 40
 15.3. -00 to -02 .. 40
16. References .. 41
 16.1. Normative References 41
 16.2. Informative References 42
Authors’ Addresses ... 44
Intellectual Property and Copyright Statements 45
1. Introduction

This document specifies composition of the Security Assertion Markup Language (SAML) V2.0 with SIP [RFC3261] in order to accommodate richer authorization mechanisms and enable "trait-based authorization." Trait-based authorization is where one is authorized to make use of some resource based on roles or traits rather than ones identifier(s). Motivations for trait-based authorization, along with use-case scenarios, are presented in [RFC4484].

Various means of providing trait-based authorization exist: authorization certificates [RFC3281], SPKI [RFC2693], or extensions to the authenticated identity body [RFC3893]. The authors selected SAML due to its increasing use in environments such as the Liberty Alliance, and the Internet2 project, areas where the applicability to SIP is widely desired.
2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

The SIP network element "Authentication Service" is introduced in [RFC4474]. We reuse this term to refer to a network element that authenticates and authorizes a user and creates a "SIP identity assertion". This system entity is the logical equivalent of a "SAML Authority" in the SAML terminology.

For overall SIP terminology, see [RFC3261].

In this specification, the term, or term component, "SAML" refers to SAML V2.0 in all cases. For example, the term "SAML assertion" implicitly means "SAMLv2 assertion". For overall SAML terminology, see [OASIS.saml-glossary-2.0-os].

The below list maps other various SIP terms to their SAML (rough-)equivalents:

Element, Network Element:
 System Entity, Entity

Authentication Service:
 SAML Authority

Invitee, Invited User, Called Party, Callee:
 Relying Party

Server, User Agent Server (UAS):
 SAML Responder

User Agent Client (UAC), client:
 SAML Requester
Additional terms defined in the context of this specification:

profile attribute(s):

one or more attributes of a "user profile".

user profile, subject profile:

the set of various attributes accompanying (i.e., mapped to) a user account in many environments.
3. SAML Introduction

SAML [OASIS.sstc-saml-exec-overview-2.0-cd-01]
[OASIS.sstc-saml-tech-overview-2.0-draft-08] defines an XML-based framework for exchanging "security assertions" between entities. In the course of making, or relying upon such assertions, SAML system entities may use SAML protocols, or other protocols, to communicate an assertion itself, or the subject of an assertion.

Thus one can employ SAML to make and encode statements such as "Alice has these profile attributes and her domain’s certificate is available over there, and I’m making this statement, and here’s who I am." Then one can cause such an assertion to be conveyed to some party who can then rely on it in some fashion for some purpose, for example input it into some local policy evaluation for access to some resource. This is done in a particular "context of use". Such a context of use could be, for example, deciding whether to accept and act upon a SIP-based invitation to initiate a communication session.

The specification of how SAML is employed in a particular context of use is known as a "SAML profile". The specification of how SAML assertions and/or protocol messages are conveyed in, or over, another protocol is known as a "SAML Binding". Typically, a SAML profile specifies the SAML bindings that may be used in its context. Both SAML profiles and SAML bindings reference other SAML specifications, especially the SAML Assertions and Protocols, aka "SAML Core", specification [OASIS.saml-core-2.0-os].

There is an additional subtle aspect of SAML profiles that is worth highlighting -- the notion of a "SAML assertion profile". A SAML assertion profile is the specification of the assertion contents in the context of a particular SAML profile. It is possibly further qualified by a particular implementation and/or deployment context. Condensed examples of SAML assertion profiles are:

- The SAML assertion must contain at least one authentication statement and no other statements. The relying party must be represented in the <AudienceRestriction> element. The SubjectConfirmation Method must be Foo. etc.

- The SAML assertion must contain at least one attribute statement and may contain more than one. The values for the subject’s profile attributes named "Foo" and "Bar" must be present. An authentication statement may be present. etc.

The primary facets of SAML itself are:
3.1. SAML Assertions

A SAML assertion is a package of information including issuer and subject, conditions and advice, and/or attribute statements, and/or authentication statements and/or other statements. Statements may or may not be present. The SAML assertion "container" itself contains the following information:

Issuing information:

Who issued the assertion, when was it issued and the assertion identifier.

Subject information:

The name of the subject, the security domain and optional subject information, like public key.

Conditions under which the assertion is valid:

Special kind of conditions like assertion validity period, audience restriction and target restriction.

Additional advice:

Explaining how the assertion was made, for example.

In terms of SAML assertions containing SAML attribute statements or SAML authentication statements, here are explanatory examples:

With a SAML assertion containing a SAML attribute statement, an issuing authority is asserting that the subject is associated with certain attributes with certain subject profile attribute values. For example, user jon@cs.example.com is associated with the attribute "Department", which has the value "Computer Science".

With a SAML assertion containing a SAML authentication statement, an issuing authority is asserting that the subject was authenticated by certain means at a certain time.
With a SAML assertion containing both a SAML attribute statement and a SAML authentication statement, an issuing authority is asserting the union of the above.

3.2. Abstract Request/Response Protocol

SAML defines an abstract request/response protocol for obtaining assertions. See Section 3 "SAML Protocols" of [OASIS.saml-core-2.0-os]. A request asks for an assertion. A response returns the requested assertion or an error. This abstract protocol may then be cast into particular contexts of use by binding it to specific underlying protocols, e.g., HTTP or SIP, and "profiling" it for the specific use case at hand. The SAML HTTP-based web single sign-on profile is one such example (see Section 4.1 Web Browser SSO Profile of [OASIS.saml-profiles-2.0-os]). Trait-based SIP communication session establishment, the topic of this specification, is another.
4. Specification Scope

The scope of this specification is:

- Specify a SIP profile of SAML -- aka a "SIP SAML profile" -- such that a subject’s profile attributes, and their domain’s certificate, can be conveyed to a relying party using SAML. In doing so, satisfy the requirements outlined in [RFC4484], and compose with [RFC4474].

The following are outside the scope of this specification:

- Defining a means for configuring the runtime behavior, or deployment characteristics, of the Authentication Service.

 Discussion:

 For example, a SIP Authentication Service could be implemented such that its SAML-based features are employed, or not, on a subject-by-subject basis, and/or on a domain-by-domain basis.

- The definition of specific conveyed subject profile attributes (aka traits).

 Discussion:

 This specification defines a facility enabling "trait-based authorization" as discussed in [RFC4484].

 The attributes of interest in trait-based authorization will be ones akin to, for example: roles, organizational membership, access rights, or authentication event context. Definition of such attributes is application- and/or deployment-context-dependent and are not defined in this specification. However, The SAMLv2 specification defines several "SAML Attribute Profiles" for encoding attributes from various application domains, e.g., LDAP, UUID/GUID, DCE PAC, and XACML, in SAML assertions [OASIS.saml-profiles-2.0-os].

 In order for any trait-based system to be practical, participating entities must agree on attributes and traits that will be conveyed and subsequently relied upon. Without such agreements, a trait-based system cannot be usefully deployed. This specification does not discuss the manner in which participating entities might discover one another or agree on the syntax and semantics of attributes and traits.

 Note that SAMLv2 specifies a "metadata" facility that may be
useful in addressing this need.
5. Employing SAML in SIP

Employing SAML in SIP necessitates devising a new SAML profile(s) and binding(s) because those already specified in the SAMLv2 specification set are specific to other use contexts, e.g., HTTP-based web browsing. Although SIP bears some similarity to HTTP, it is a separately distinct protocol, thus requiring specification of SIP-specific SAML profile(s) and binding(s). This is technically straightforward as both SAML and SIP are explicitly extensible.

The "Authenticated Identity Management in SIP" specification [RFC4474] (aka "SIP Identity") facilitates the composition of SAML and SIP in that it defines a "mediated authentication architecture" where verifying endpoints verify SIP identity assertions -- i.e., the "Identity" header value -- signed by an Authentication Service (AS). The semantic being that the AS is vouching that it did indeed authenticate the calling party.

Such an Authentication Service, which likely has access to various pieces of information concerning the calling party, could also act as a SAML Authority, and make such information available to the callee via SAML.

Since [RFC4474] stipulates that the AS must make its certificate available for retrieval and convey the availability and access mechanism via a URI, in the Identity-Info header, we have an opportunity to compose SIP Identity and SAML.

Such composition can be accomplished by having the resource referred to by the URI in the Identity-Info be a SAML assertion conveying both the AS’s certificate and user profile attributes. This is the approach defined in this specification. Figure 1 illustrates this approach in a high-level summary fashion. Figure 2, further below, illustrates additional details.
Since the AS already being trusted to create and add the Identity header containing the SIP Identity Assertion, and to supply a pointer to its domain certificate, having it point instead to a SAML assertion conveying the domain certificate and possibly some user profile attributes, does not significantly alter the first-order security considerations examined in [RFC4474]. This specification provides some additional security considerations analysis below in Section 10.
6. SIP SAML Profiles

This section defines two "SIP SAML profiles":

- The "AS-driven SIP SAML URI-based Attribute Assertion Fetch Profile"
- The to-be-determined (TBD) "call-by-value" profile

6.1. AS-driven SIP SAML URI-based Attribute Assertion Fetch Profile

6.1.1. Required Information

The information given in this section is similar to the info provided when registering something, a MIME Media Type, say, with IANA. In this case, it is for registering this profile with the OASIS SSTC. See Section 2 "Specification of Additional Profiles" in [OASIS.saml-profiles-2.0-os].

Identification:

@@ NOTE: This URN must be agreed upon, and then registered with IANA per [RFC3553].

Contact Information:

@@ someone’s or something’s contact info goes here

SAML Confirmation Method Identifiers:

The SAML V2.0 "(bearer,hok,?)" confirmation method identifier is used in this profile.

Description:

Given below.

Updates:

None.

6.1.2. Profile Overview

Figure 2 illustrates this profile’s overall protocol flow. The following steps correspond to the labeled interactions in the figure. Within an individual step, there may be one or more actual message
exchanges depending upon the protocol binding employed for that particular step and other implementation-dependent behavior.

Although this profile is overview is cast in terms of a SIP INVITE transaction, the reader should note that the mechanism specified herein, and in [RFC4474], may be applied to any SIP request message.

Figure 2 begins on the next page.
INVITE
From: alice@example.com
To: sip:bob@example.com
407 Proxy auth. req.
Challenge
ACK
INVITE + authorization
header w/ creds
From: alice@example.com
To: sip:bob@example.com
Proxy-Authorization:

GET /assns/?ID=abcde
HTTP/1.1 200 OK
<saml:Assertion>
 <saml:Subject>
 <saml:NameID>
 Alice@example.com
 </saml:NameID>
 </saml:Subject>
 <saml:SubjConfData>
 <ds:KeyInfo>
 </ds:KeyInfo>
 </saml:SubjConfData>
 <saml:AttrStatement>
 foo=bar
 </saml:AttrStatement>
</saml:Assertion>
Step 1. Initial SIP Transaction between Caller and AS

This optional initial step is comprised of substeps 1a, 1b, and 1c in Figure 2. In this step, the caller, Alice, sends a SIP request message, illustrated as an INVITE, indicating Bob as the callee (1a), is subsequently challenged by the AS (1b), and sends an ACK in response to the challenge (1c). The latter message signals the completion of this SIP transaction (which is an optional substep of this profile).

Step 2. Caller sends SIP Request Message with Authorization Credentials to the AS

Alice then sends an INVITE message in response to the challenge, or uses cached credentials for the domain if step 1 was skipped, as specified in [RFC4474] and [RFC3261]. Depending on the chosen SIP security mechanism for client authentication either digest authentication, client side authentication of Transport Layer Security, or a combination of both is used to provide the AS with a strong assurance about the identity of Alice.

Step 3. AS Authorizes the SIP Request and Forwards it to Callee

First, the AS authorizes the received INVITE message as specified in [RFC4474] and [RFC3261]. If the authorization is successful, the AS will form the "identity signature" for the message and add Identity and Identity-Info header fields to the message. The AS also at this time constructs and caches a SAML assertion asserting Alice’s profile attributes required by Bob’s domain (example2.com), and also containing a the domain’s (example.com) public key certificate, or a reference to it. This certificate MUST contain the public key corresponding to the private key used to construct the signature whose value was placed in the Identity header. The AS constructs a HTTP-based SAML URI Reference incorporating the assertion’s Assertion ID (see section 2.3.3 of [OASIS.saml-core-2.0-os]). The AS uses this URI as the value for the Identity-Info header it adds to the INVITE.
message.

The AS determines which profile attributes (if any) to assert in the <AttributeStatement> via local configuration and/or obtaining example2.com’s metadata [OASIS.saml-metadata-2.0-os]. The AS then sends the updated INVITE message to Bob.

Step 4. Callee Dereferences HTTP-based SAML URI Reference

Bob’s UAC or SIP Proxy receives the message and begins verifying it per the "Verifier Behavior" specified in [RFC4474]. In order to accomplish this task, it needs to obtain Alice’s domain certificate. It obtains the HTTP-based SAML URI Reference from the message’s Identity-Info header and dereferences it per Section 7.1. Note that this is not a SIP message, but an HTTP message [RFC2616].

Step 5. AS Returns SAML Assertion

Upon receipt of the above HTTP request, which contains an embedded reference to Alice’s SAML Assertion, Alice’s AS returns her assertion in an HTTP response message. Upon receipt of Alice’s SAML Assertion, the AS continues its verification of the INVITE message. If successful, it returns a 200 OK message directly to Alice. Otherwise it returns an appropriate SIP error response.

Step 6. Callee Returns SIP 200 OK to Caller

If Bob determines, based upon Alice’s identity as asserted by the AS, and as further substantiated by the information in the SAML assertion, to accept the INVITE, he returns a SIP 200 OK message directly to Alice.

6.1.3. Profile Description

The following sections provide detailed definitions of the individual profile steps. The relevant illustration is Figure 3, below. Note that this profile is agnostic to the specific SIP request, and also that the Sender and Authentication Service (AS) may be separate or co-located in actuality.
6.1.3.1. Initial SIP Transaction between Sender and AS

This OPTIONAL step maps to Steps 1 and 2 of Section 5 "Authentication Service Behavior" of [RFC4474]. If the SIP request sent by the caller in substep 1a is deemed insufficiently authenticated by the AS per the rules stipulated by [RFC4474] Steps 1 and 2, then the AS MUST authenticate the sender of the message. The particulars of how this is accomplished depend upon implementation and/or deployment instantiation as discussed in [RFC4474]. Substeps 1b and 1c as shown.
in Figure 3 are non-normative and illustrative only.

6.1.3.2. Sender sends SIP Request Message with Authorization Credentials to the AS

This step maps to Steps 1 and 2 of Section 5 "Authentication Service Behavior" of [RFC4474]. This request is presumed to be made in a context such that the AS will not challenge it -- i.e., the AS will consider the sender of the message to be authenticated. If this is not true, then this procedure reverts back to Step 1, above.

Otherwise, the AS carries out all other processing of the message as stipulated in [RFC4474] Steps 1 and 2, and if successful, this procedure proceeds to the next step below.

6.1.3.3. AS Authorizes the SIP Request and Forwards it to Verifier

This first portion of this step maps to Steps 3 and 4 of Section 5 "Authentication Service Behavior" of [RFC4474], which the AS MUST perform, although with the following additional substeps:

The AS MUST construct a SAML assertion according to the "Assertion Profile Description" specified in Section 6.1.4 of this specification.

The AS SHOULD construct an HTTPS, and MAY construct an HTTP, URI per Section "3.7.5.1 URI Syntax" of [OASIS.saml-bindings-2.0-os].

The AS MUST use the URI constructed in the immediately preceding substep as the value of the Identity-Info header that is added to the SIP request message per Step 4 of Section 5 of [RFC4474].

Upon successful completion of all of the above, the AS forwards the request message.

At this point in this step, after perhaps traversing some number of intermediaries, the SIP request message arrives at a SIP network entity performing the "verifier" role. This role and its behavior are specified in Section 6 "Verifier Behavior" of [RFC4474]. The verifier MUST perform the steps enumerated in the aforementioned section, with the following modifications:

Step 1 of [RFC4474] Section 6 maps to and is updated by, the following two steps in this procedure.

Steps 2, 3, and 4 of [RFC4474] Section 6 may be mapped across this latter portion of this step, and/or the following two steps, as appropriate.
6.1.3.4. Verifier Dereferences HTTP-based SAML URI Reference

The verifier SHOULD ascertain whether it has a current cached copy of the SIP message sender’s SAML assertion and domain certificate. If not, or if the verifier chooses to (e.g., due to local policy), it MUST dereference the the HTTP-based SAML URI Reference found in the SIP message’s Identity-Info header. To do so, the verifier MUST employ the "SAML HTTP-URI-based SIP Binding" specified in Section 7.1.

6.1.3.5. AS Returns SAML Assertion

This step also employs Section 7.1 "SAML HTTP-URI-based SIP Binding".

If the prior step returns an HTTP error (e.g., 4xx series), then this procedure terminates and the verifier returns (upstream) a SIP 436 ‘Bad Identity-Info’ Response code.

Otherwise, the HTTP response message will contain a SAML assertion and be denoted as such via the MIME media type of "application/samlassertion+xml" [IANA.application.samlassertion-xml]. The verifier MUST perform the verification steps specified in Section 6.1.5 "Assertion Verification", below. If successful, then this procedure continues with the next step.

6.1.3.6. Verifier performs Next Step

The SIP request was successfully processed. The verifier now performs its next step, which depends at least in part on the type of SIP request it received.

6.1.4. Assertion Profile Description

This section defines the particulars of how the sender, i.e., the SAML Authority, MUST construct certain portions of the SAML assertions it issues. The schema for SAML assertions themselves is defined in Section 2.3 of [OASIS.saml-core-2.0-os].

An example SAML assertion, formulated according to this profile is given in Section 9.

Overall SAML assertion profile requirements:

The SAML assertion MUST be signed by the same key as used to sign the contents of the Identity header field. Signing of SAML assertions is defined in Section 5.4 of [OASIS.saml-core-2.0-os].

In the following subsections, the SAML assertion profile is specified
element-by-element, in a top-down, depth-first manner, beginning with
the outermost element, "<Assertion>". Where applicable, the
requirements for an element's XML attributes are also stated, as a
part of the element's description. Requirements for any given
element or XML attribute are only stated when, in the context of use
of this profile, they are not already sufficiently defined by
[OASIS.saml-core-2.0-os].

6.1.4.1. Element: <Assertion>

 Attribute: ID

 The value for the ID XML attribute SHOULD be allocated randomly
such that the value meets the randomness requirements specified in
Section 1.3.4 of [OASIS.saml-core-2.0-os].

 Attribute: IssueInstant

 The value for the IssueInstant XML attribute SHOULD be set at the
time the SAML assertion is created (and cached for subsequent
retrieval). This time instant value MAY be temporally the same as
that encoded in the SIP message's Date header, and MUST be at
least temporally later, although it is RECOMMENDED that it not be
10 minutes or more later.

6.1.4.1.1. Element: <Issuer>

 The value for the Issuer XML element MUST be a value that matches
either the Issuer or the Issuer Alternative Name fields [RFC3280] in
the certificate conveyed by the SAML assertion in the ds:
X509Certificate element located on this path within the SAML
assertion:

<Assertion
 <ds:Signature
 <ds:KeyInfo
 <ds:X509Data
 <ds:X509Certificate

6.1.4.1.2. Element: <Subject>

 The <Subject> element SHOULD contain both a <NameID> element and a
<SubjectConfirmation> element.

 The value of the <NameID> element MUST be the same as the Address of
Record (AoR) value used in computing the "signed-identity-digest"
which forms the value of the Identity header. See Section 9 of
[RFC4474].
The `<SubjectConfirmation>` element attribute Method SHOULD be set to the value:

 urn:oasis:names:tc:SAML:2.0:cm:sender-vouches

Although it MAY be set to some other implementation- and/or deployment-specific value. The `<SubjectConfirmation>` element itself SHOULD be empty.

6.1.4.1.3. Element: `<Conditions>`

The `<Conditions>` element SHOULD contain an `<AudienceRestriction>` element, which itself SHOULD contain an `<Audience>` element. The value of the `<Audience>` element SHOULD be the same as the addr-spec of the SIP request’s To header field.

The following XML attributes of the `<Conditions>` element MUST be set as follows:

- **Attribute: NotBefore**

 The value of the NotBefore XML attribute MUST be set to a time instant the same as the value for the IssueInstant XML attribute discussed above, or to a later time.

- **Attribute: NotOnOrAfter**

 The value of the NotOnOrAfter XML attribute MUST be set to a time instant later than the value for NotBefore.

6.1.4.1.4. Element: `<AttributeStatement>`

The SAML assertion MAY contain an `<AttributeStatement>` element. If so, the `<AttributeStatement>` element will contain attribute-value pairs, e.g., of a user profile nature, encoded according to either one of the "SAML Attribute Profiles" as specified in [OASIS.saml-profiles-2.0-os], or encoded in some implementation- and/or deployment-specific attribute profile.

The attribute-value pairs SHOULD in fact pertain to the entity identified in the SIP From header field, since a SAML assertion formulated per this overall section is stating that they do.

6.1.5. Assertion Verification

This section specifies the steps that a verifier participating in this profile MUST perform in addition to the "Verifier Behavior" specified in Section 6 of [RFC4474].
The steps are:

1. Before Step 1 in Section 6 of [RFC4474], the verifier MUST extract the AS’s domain certificate from the <ds:X509Certificate> XML element at the end of the element path given in Section 6.1.4.1.1.

2. Perform Step 1 in Section 6 of [RFC4474].

3. After Step 1 in Section 6 of [RFC4474], but before Step 2 of that section, the verifier MUST verify the SAML assertion’s signature via the procedures specified in Section 5.4 of [OASIS.saml-core-2.0-os] as well as [W3C.xmldsig-core].

@@ TODO: do we need to define a new SIP error response code for when a SAML assn signature is bad? e.g., ‘4xx Invalid SAML assertion’.

4. Perform Step 2 in Section 6 of [RFC4474].

5. Verify that the signer of the SIP message’s Identity header field is the same as the signer of the SAML assertion.

6. Perform Steps 3 and 4 in Section 6 of [RFC4474].

7. Verify that the SAML assertion’s <Issuer> element value matches the Issuer or the Issuer Alternative Name fields [RFC3280] in the AS’s domain certificate.

8. Verify that the SAML assertion’s <NameID> element value is the same as the Address of Record (AoR) value in the "signed-identity-digest". See Section 9 of [RFC4474].

9. Verify that the SAML assertion’s <SubjectConfirmation> element value is set to whichever value was configured at implementation- or deployment-time. The default value is:

 urn:oasis:names:tc:SAML:2.0:cm:sender-vouches

10. Verify that the SAML assertion contains an <Audience> element, and that its value matches the value of the addr-spec of the SIP To header field.

11. Verify that the validity period denoted by the NotBefore and NotOnOrAfter attributes of the <Conditions> element meets the requirements given in Section 6.1.4.1.3.
6.2. The TBD "call-by-value" Profile

To-Be-Determined (TBD)
7. SAML SIP Binding

This section specifies one SAML SIP Binding at this time. Additional bindings may be specified in future revisions of this specification.

7.1. SAML HTTP-URI-based SIP Binding

This section specifies the "SAML HTTP-URI-based SIP Binding", (SHUSB).

The SHUSB is a profile of the "SAML URI Binding" specified in Section 3.7 of [OASIS.saml-bindings-2.0-os]. The SAML URI Binding specifies a means by which SAML assertions can be referenced by URIs and thus be obtained through resolution of such URIs.

This profile of the SAML URI Binding is congruent with the SAML URI Binding -- including support for HTTP-based URIs being mandatory to implement -- except for the following further restrictions which are specified in the interest of interoperability (section numbers refer to [OASIS.saml-bindings-2.0-os]):

Section 3.7.5.3 Security Considerations:

Support for TLS 1.0 or SSL 3.0 is mandatory to implement.

Section 3.7.5.4 Error Reporting:

All SHOULDs in this section are to be interpreted as MUSTs.
8. The 'saml-shusb' Option Tag

This document creates and IANA registers one new option tag: "saml-shusb". This option tag is to be used, as defined in RFC 3261, in the Require, Supported and Unsupported headers. It is used to indicate support for this SIP extension, this option tag is included in a Supported header of the SIP request.
9. Example SAML Assertions

This section presents two examples of a SAML assertion, one unsigned (for clarity), the other signed (for accuracy).

In the first example, Figure 4, the assertion is attesting with respect to the subject (lines 7-15) "Alice@example.com" (line 11). The validity conditions are expressed in lines 16-23, via both a validity period expressed as temporal endpoints, and an "audience restriction" stating that this assertion’s semantics are valid for only the relying party named "example2.com". Also, the assertion’s issuer is noted in lines 4-5.

The above items correspond to some aspects of this specification’s SAML assertion profile, as noted below in Security Considerations discussions, see: Section 10.1 and Section 10.2.

In lines 24-36, Alice’s telephone number is conveyed, in a "typed" fashion, using LDAP/X.500 schema as the typing means.
Figure 4: Unsigned SAML Assertion Illustrating Conveyance of Subject Attribute

In the second example, Figure 5, the information described above is the same, the addition is that this version of the assertion is signed. All the signature information is conveyed in the <ds:signature> element, lines 7-47. Thus this assertion’s origin and its integrity are assured. Since this assertion is the same as the one in the first example above, other than having a signature added, the
second example below addresses the same Security Considerations aspects, plus those requiring a Signature.
<Assertion ID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"
 IssueInstant="2003-04-17T00:46:02Z" Version="2.0"
 xmlns="urn:oasis:names:tc:SAML:2.0:assertion">
 <Issuer>
 example.com
 </Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference
 URI="#_a75adf55-01d7-40cc-929f-dbd8372ebdfc">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <InclusiveNamespaces
 PrefixList="#default saml ds xs xsi"
 xmlns="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>Kclet6XcaOgOWXM4gty6/UNdviI=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 hq4zk+ZknjggCQgZm7ea8fI7...Hr7wHxvCCRwubfZ6RqVL+wNmeWI4=
 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
 MIICyjCCAjOgAwIBAgICANWwDQYJKoZIhvcNAQEEBQAwgakxNVBAYTAlVT
 MRIwEAYDVQIIEwIXJjBjMwYIKwYBBQUHAwQGMB8w
 </ds:X509Certificate>
 <ds:X509Certificate>
 8I3bsbmRAUg4UP9h6ABVq4KQMnuxu1xQxLhpRly1GPdioG8cC3w/w==
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
</Assertion>
<Assertion>
 <NameID
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
 Alice@example.com
 </NameID>
 <SubjectConfirmation
 Method="urn:oasis:names:tc:SAML:2.0:cm:sender-vouches"/>
 <Subject>
 <Conditions
 NotBefore="2003-04-17T00:46:02Z"
 NotOnOrAfter="2003-04-17T00:51:02Z">
 <AudienceRestriction>
 <Audience>
 example2.com
 </Audience>
 </AudienceRestriction>
 </Conditions>
 <AttributeStatement>
 <saml:Attribute
 xmlns:x500="urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"
 Name="urn:oid:2.5.4.20"
 FriendlyName="telephoneNumber">
 <saml:AttributeValue xsi:type="xs:string">
 +1-888-555-1212
 </saml:AttributeValue>
 </saml:Attribute>
 </AttributeStatement>
 </Subject>
</Assertion>

Figure 5: Signed SAML Assertion Illustrating Conveyance of Subject Attribute
10. Security Considerations

This section discusses security considerations when using SAML with SIP.

10.1. Man-in-the-Middle Attacks and Stolen Assertions

Threat:

By making SAML assertions available via HTTP-based requests by a potentially unbounded set of requesters, it is conceivably possible that anyone would be able to simply request one and obtain it. By SIP intermediaries on the signaling path for example. Or, an HTTP intermediary/proxy could intercept the assertion as it is being returned to a requester.

The attacker could then conceivably attempt to impersonate the subject (the putative caller) to some SIP-based target entity.

Countermeasures:

Such an attack is implausible for several reasons. The primary reason is that a message constructed by an imposter using a stolen assertion that conveys the public key certificate of some domain will not verify per [RFC4474] because the imposter will not have the corresponding private key with which to generate the signed Identity header value.

Also, the SIP SAML assertion profile specified herein that the subject’s SAML assertion must adhere to causes it to be not useful to arbitrary parties. The subject’s assertion:

* should be signed, thus causing any alterations to break its integrity and make such alterations detectable.

* relying party is represented in the SAML assertion’s Audience Restriction.

* Issuer is represented in the SAML assertion.

* validity period for assertion is restricted.

10.2. Forged Assertion
Threat:

A malicious user could forge or alter a SAML assertion in order to communicate with the SIP entities.

Countermeasures:

To avoid this kind of attack, the entities must assure that proper mechanisms for protecting the SAML assertion are employed, e.g., signing the SAML assertion itself. Section 5.1 of [OASIS.saml-core-2.0-os] specifies the signing of SAML assertions.

Additionally, the assertion content dictated by the SAML assertion profile herein ensures ample evidence for a relying party to verify the assertion and its relationship with the received SIP request.

10.3. Replay Attack

Threat:

Theft of SIP message protected by the mechanisms described herein and replay of it at a later time.

Countermeasures:

There are various provisions within [RFC4474] that prevent a replay attack.
11. Contributors

The authors would like to thank Marcus Tegnander and Henning Schulzrinne for his contributions to earlier versions of this document.
12. Acknowledgments

We would like to thank RL ‘Bob’ Morgan, Stefan Goeman, Shida Schubert, Jason Fischl, Sebastian Felis, Nie Pin, Marcos Dytz, Erkki Koivusalo, Richard Barnes, Marc Willekens, Marc Willekens, Steffen Fries and Vijay Gurbani for their comments to this draft. The "AS-driven SIP SAML URI-based Attribute Assertion Fetch Profile" is based on an idea by Jon Peterson.
13. IANA Considerations

13.1. IANA Registration for New SIP Option Tag

The SIP option tag "saml-shusb" is created by this document, with the definition and rule in Section 4.4 of this document, to be added to sip-parameters within IANA.

13.2. 477 'Use Identity Header with SAML Assertion' Response Code

This document registers a new SIP response code. It is sent when a verifier receives a SIP request that lacks an Identity header with a SAML assertion in order to indicate that the request should be resent with an Identity header pointing to a SAML assertion. This response code is defined by the following information, which has been added to the method and response-code sub-registry under http://www.iana.org/assignments/sip-parameters.

Response Code Number: 477

Default Reason Phrase: Use Identity Header with SAML Assertion

13.3. 478 'Unknown SAML Assertion Content' Response Code

This document registers a new SIP response code. It is used when the verifier is unable to parse the content of the SAML assertion referenced by the URI of the Identity-Info header, because, for example, the assertion contains only unknown elements in the SAML assertion, or the SAML assertion XML document is garbled. This response code is defined by the following information, which has been added to the method and response-code sub-registry under http://www.iana.org/assignments/sip-parameters.

Response Code Number: 478

Default Reason Phrase: Unknown SAML Assertion Content

13.4. 479 'Invalid SAML Assertion' Response Code

This document registers a new SIP response code. It is used when the verifier is unable to process the SAML assertion referenced by the URI of the Identity-Info header, because, for example, the assertion is self-signed, or signed by a root certificate authority for whom the verifier does not possess a root certificate. This response code is defined by the following information, which has been added to the method and response-code sub-registry under http://www.iana.org/assignments/sip-parameters.
Response Code Number: 479

Default Reason Phrase: Invalid SAML Assertion
14. Open Issues

A list of open issues can be found at:
http://www.tschofenig.priv.at:8080/saml-sip/
15. Change Log

RFC Editor - Please remove this section before publication.

15.1. -03 to -04

Updated IANA consideration section.

Added option tag

Updated acknowledgments section

Minor editorial changes to the security considerations section

15.2. -02 to -03

Denoted that this I-D is intended to update RFC4474 per SIP working group consensus at IETF-69. This is the tact adopted in order to address the impedance mismatch between the nature of the URIs specified as to be placed in the Identity-Info header field, and what is specified in RFC4474 as the allowable value of that header field.

Added placeholder "TBD" section for a to-be-determined "call-by-value" profile, per SIP working group consensus at IETF-69.

Removed use-case appendicies (per recollection of JHodges during IETF-69 discussion as being WG consensus, but such is not noted in the minutes).

15.3. -00 to -02

Will detail in -04 rev.
16. References

16.1. Normative References

[OASIS.saml-bindings-2.0-os]

[OASIS.saml-core-2.0-os]

[OASIS.saml-metadata-2.0-os]

[OASIS.saml-profiles-2.0-os]

16.2. Informative References

[IANA.application.samlassertion-xml]
OASIS Security Services Technical Committee (SSTC),
"application/samlassertion+xml MIME Media Type Registration", IANA MIME Media Types Registry application/samlassertion+xml, December 2004.

[OASIS.saml-conformance-2.0-os]

[OASIS.saml-glossary-2.0-os]

[OASIS.saml-sec-consider-2.0-os]

Authors’ Addresses

Hannes Tschofenig
Nokia Siemens Networks
Linnoitustie 6
Espoo 02600
Finland
Phone: +358 (50) 4871445
Email: Hannes.Tschofenig@gmx.net
URI: http://www.tschofenig.priv.at

Jeff Hodges
NeuStar, Inc.
2000 Broadway Street
Redwood City, CA 94063
US
Email: Jeff.Hodges@neustar.biz

Jon Peterson
NeuStar, Inc.
1800 Sutter St Suite 570
Concord, CA 94520
US
Email: jon.peterson@neustar.biz

James Polk
Cisco
2200 East President George Bush Turnpike
Richardson, Texas 75082
US
Email: jmpolk@cisco.com

Douglas C. Sicker
University of Colorado at Boulder
ECOT 430
Boulder, CO 80309
US
Email: douglas.sicker@colorado.edu
Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.