Extending the Session Initiation Protocol
Reason Header for Preemption Events
draft-ietf-sipping-reason-header-for-preemption-04.txt
Sept 12th, 2005

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are draft documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six Months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on March 12th, 2006.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This document proposes an IANA Registration extension to the Session Initiation Protocol (SIP) Reason Header to include in a BYE Method Request as a result of a session preemption event, either at a user agent (UA), or somewhere in the network involving a reservation-based protocol such as RSVP or NSIS. This document does not attempt to address routers failing in the packet path; but a deliberate event of tearing down a flow between UAs, and informing the terminated UA(s) with an indication of what occurred.
1. Introduction

With the introduction of the SIP Resource-Priority (R-P) header [4], there became the possibility of sessions being torn down for (scarce) resource reasons; meaning there weren’t enough resources for a particular session to continue. Certain domains will implement this mechanism where resources may become constrained either at the user agent (UA), or at congested router interfaces where more important sessions are to be completed at the expense of less important sessions. Which sessions are more or less important than others will not be discussed here. What is proposed here is extending SIP to synchronize SIP elements as to why a preemption event occurred and which type of preemption event occurred, as viewed by the element that performed the preemption of a session.

The SIP Reason Header is an application layer feedback mechanism to synchronize SIP elements of events; the particular event explained here deals with preemption of a session. Q.850 [5] provides an indication for preemption (cause=8) and for preemption "circuit reserved for reuse" (cause=9). Q.850 Cause=9 does not apply to IP because IP has no concept of circuits. Some domains wish to differentiate appropriate IP reasons for preemption of sessions and
topologically where the preemption event occurred. No other means exists today to give this feedback as to why a session was torn down for preemption grounds.

In the event that a session is terminated for a specific reason that can (or should) be shared with SIP Servers and UAs sharing dialog, the Reason Header [1] was created to be included in the BYE Request. This was not the only method for this new Header; [1] also discusses the CANCEL Method usage.

This document will define two use-cases in which new preemption Reason values are necessary:

Access Preemption Event - this is when a UA receives a new SIP session request message with a valid R-P value that is higher than the one associated with the currently active session at that UA. The UA must discontinue the existing session in order to accept the new one (based on local policy of some domains).

Network Preemption Event - this is when a network element - such as a router - reaches capacity on a particular interface and has the ability to statefully choose which session(s) will remain active when a new session/reservation is signaled for under the parameters outlined in SIP Preconditions in [3] that would otherwise overload that interface (perhaps adversely affecting all sessions). In this case, the router must terminate one or more reservations of lower priority in order to allow this higher priority reservation access to the requested amount of bandwidth (based on local policy of some domains).

This document will cover the semantics for these two cases, and request IANA registration of the new protocol value "Preemption" for the Reason Header field with 4 cause values for the above preemption conditions. Additionally, this document will create a new IANA Registry for reason-text strings that are not currently defined through existing SIP Response codes or Q.850 cause codes. This new Registry will be useful for future protocols used by the SIP Reason header.

This document will emphasize an existing SIP RFC [3] as the starting point for network preemption events. RFC 3312 set rules surrounding SIP interaction using a reservation protocol for QoS preconditions, using RSVP as the example protocol. That effort did not preclude other preconditions or future protocol work from becoming a means of preconditions. NSIS is a new reservation protocol effort that specifies a preemption operation similar to RSVP’s ResvErr message involving the NSIS NOTIFY message in [8] with a Transient error code 0x04000005 (Resources Pre-empted).
To be clear, it should be noted that SIP itself does not cause RSVP or NSIS reservation signaling to start or end. That operation is part of a separate API within each UA.

1.1 Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [6].

2. Access Preemption Events

As mentioned previously, Access Preemption Events (APE) occur at the user agent. It does not matter which UA in a unicast or multicast session this happens to (the UAC or UAS of a session). If local policy dictates in a particular domain, rules regarding the functionality of a UA, there must be a means by which that UA (not the user) informs the other UA(s) why a session was just torn down prematurely. The appropriate mechanism is to utilize the BYE Method. The user of the other far side UA will not understand why that session "just went away" without there being a means of informing the UA what occurred (if this event was purposeful). Through this type of indication to the preempted UA, it can indicate to the user of that device appropriately.

The rules within a domain surrounding informing of UA can be different than the rules of informing the user. Local policy should determine if the user should be informed of the specific reason. This indication in SIP will provide a means for the UA to react in a locally determined way if appropriate (play a certain tone or tone sequence, point towards a special announcement uri, causes the UA’s visual display to do something, etc).

The following diagram (Figure 1) illustrates the scenario here. UA1 invites UA2 to a session with the Resource Priority level of 3 (levels 1 and 2 are higher in this domain, and the namespace element is not necessary for this discussion).

<table>
<thead>
<tr>
<th>UA1</th>
<th>UA2</th>
<th>UA3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INVITE (R-P:3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>200 OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>ACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>RTP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
After the session between UA1 and UA2 is established, UA3 invites UA2 to a new session with an R-P of 2 (a higher priority than the current session between UA1 and UA2). Local policy within this domain dictates that UA2 must preempt all existing calls of lower priority in order to accept a higher priority call.

What Reason value could be inserted above to mean "preemption" at a UA? There are several choices: 410 "Gone", 480 "Temporarily Unavailable", 486 "Busy Here", and 503 "Service Unavailable". The use of any here is questionable because the session is already established. It is further complicated if there needs to be a difference in the Reason value for an Access versus a Network Preemption Event (which is a requirement here). The limits of Q.850 have been stated previously in this document.

It should be possible to configure UAs receiving a preemption indication to indicate to the user no particular type of preemption occurred. There are some domains that might prefer their users to remain unaware of the specifics of network behavior. This should not ever prevent a known preemption indication from being sent in a BYE from a UA.

2.1 Effects of Preemption at the User Agent

If 2 UAs are in a session, and one UA must preempt that session to accept another session, a BYE Method message is the appropriate mechanism to perform this task. However, taking this a step further, if a UA is the common point of a 3-way (or more) adhoc conference participants and must preempt all sessions in that conference due to a higher priority session request received (that this UA must accept), then a BYE message must be sent to all UAs in that adhoc conference.
2.2 Reason Header Requirements for Access Preemption Events

The following is a list of requirements for adding an appropriate Reason value for an Access Preemption Event (APE) as described above and shown in Figure 1:

APE_REQ#1 - create a means by which one UA can inform another UA (within the same active session) that the active session between the two devices is being purposely preempted at one UA for a higher priority session request from another UA.

APE_REQ#2 - create a means by which all relevant SIP elements can be informed of this Access Preemption Event to a specific session. For example: perhaps SIP Servers that have incorporated a Record-Route header into that session set-up need to be informed of this occurrence.

APE_REQ#3 - create a means of informing all participants in an adhoc conference that the primary UA (the mixer) has preempted the conference by accepting a higher priority session request.

APE_REQ#4 - create a separate indication for the access preemption event than one used for a Network Preemption Event (described in the next section) in the session BYE message.

APE_REQ#5 - create a means to generate a specific indication of a preemption event at the user agent to inform all relevant SIP entities, yet have the ability to generalize this indication (based on local policy) to the receiving UA such that this UA cannot display more information than the domain wants the user to see.

3. Network Preemption Events

Network Preemption Events (NPE) are those instances in which a intermediate router between SIP user agents preempts one or more sessions at one of its interfaces to place a higher priority session through that interface. Within RSVP, there exists a means to execute this functionality in [7]: ResvErr messages - which travel downstream towards appropriate receivers. The ResvErr message has the ability to carry within it a code why a reservation is being torn down. The ResvErr does not travel upstream to the other UA. This document here proposes a SIP message be generated to synchronize all relevant SIP elements to this preemption event, including the upstream UA. Creating another Reason value describing
that a network element preempted the session is necessary in certain domains.

Two diagrams (Figures 2 and 3) illustrate a network preemption scenario with RSVP. NSIS, not shown in examples here, can be imagined here from [8] with a NOTIFY error message indicating a reservation has been preempted with the Transient ERROR_SPEC 0x00000005. SIP behavior will be identical using either reservation protocol.

UA1 invites UA2 to a session with the Resource Priority level of 3 (levels 1 and 2 are higher is this domain) and is accepted. This SIP signaling translated the Resource Priority value to an appropriate RSVP priority level for that flow. The link between Router 1 and Router 2 became saturated with this session reservation between UA1 and UA2 (in this example).

After the session between UA1 and UA2 is established, UA3 invites UA4 to a new session with an Resource Priority level of 2 (a higher priority than the current reservation between UA1 and UA2). Again, the priority value within the Resource-Priority header of this INVITE is translated into an appropriate RSVP priority (that is also higher in relative priority to the UA1_UA2 session/RSVP flow). When this second (higher priority session) is signaled, one Path message goes from UA3 to UA4, resulting in the RESV message going from UA4 back to UA3. Because this link between the two routers is at capacity (at Int7 in Figure 5), Router 1 will (in this example) make the decision, or will communicate with another network entity that will make the decision to preempt lower priority BW to ensure this higher priority session reservation is completed. A ResvErr message is sent to UA2. The result is that UA2 will know that there has been a preemption event in a router (because the ResvErr message has an error code within it stating "preemption"), UA1 at this point will not know anything of this preemption. If there are any SIP Proxies in between UAs 1 & 2 (perhaps that inserted a Record-Route Header), each will need to be informed also as to why this reservation was
torn down.

Figure 3 shows the call flow with Router 2 from Figure 2 included at the RSVP layer sending the ResvErr message. A complete call flow including all UAs and Routers is not shown here for diagram complexity reasons. The complete signaling between UA3 and UA4 is also not included.

![Call Flow Diagram](https://example.com/call-flow-diagram.png)

Figure 3. Network Preemption with obscure Reason

What Reason value could be inserted above to mean "preemption at a router interface"? There are several choices: 410 "Gone", 480 "Temporarily Unavailable", 486 "Busy Here", and 503 "Service Unavailable". The use of any here is questionable because the session is already established. It is further complicated if there needs to be a difference in the Reason value for an Access versus a Network Preemption Event. The limits of Q.850 [5] have already been stated previously showing there is nothing in that spec to indicate a problem in an IP network.
To generically state that all preemptions are equal is possible, but
will not provide adequate information. Therefore, another Reason
Header value is necessary to differentiate the APE from the NPE.

3.1 Reason Header Requirements for Network Preemption Events

The following are the requirements for the appropriate SIP signaling
in reaction to a Network Preemption Event (NPE):

NPE_REQ#1 - create a means of informing the far end UA that a
Network Preemption Event has occurred in an
intermediate router.

NPE_REQ#2 - create a means by which all relevant SIP elements can
be informed of a Network Preemption Event to a
specific session.

For example: perhaps SIP Servers that have incorporated a Record-
Route header into that session set-up.

NPE_REQ#3 - create a means of informing all participants in an
adhoc conference that the primary UA (the mixer) has
been preempted by a Network Preemption Event.

NPE_REQ#4 - create a separate description of the Network
Preemption Event relative to an Access Preemption
Event in SIP.

4. Including a Hybrid Infrastructure

If it is the case that User 1 is in a non-IP portion of
infrastructure (using a TDM phone) in a session with a UA through a
SIP gateway, and the TDM portion had the ability to preempt the
session and indicate to the SIP gateway when it did such a
preemption, the SIP GW would need to be able to convey this
preemption event into the SIP portion of this session just as if
user 1 were a UA in the session. Below is a diagram of this:

* TDM network *
* +----------+
* User 1 |
* 0 =========>| SIP GW1 =============> UA2
* /\ ^ +----------+
* / \ * *
************ ************ |
| Preemption ------------->|
4.1 Hybrid Infrastructure Requirements

The following are the requirements unique to the topology involving both IP infrastructure and TDM (or non-IP) infrastructure.

HYB_REQ#1 - create a means of informing the far end UA in a dialog through a SIP gateway with a Non-IP phone that the TDM portion of the session indicated to the SIP gateway that a preemption event terminated the session.

HYB_REQ#2 - create a means of identifying this preemption event uniquely with respect to an access preemption and network preemption event.

5. Preemption Reason Header Cause Codes and Semantics

This document defines the following new protocol value for the protocol field of the Reason header field in RFC 3326 [1]:

Preemption: The cause parameter contains a preemption cause code

We define the following preemption cause codes:

<table>
<thead>
<tr>
<th>Value</th>
<th>Default Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UA Preemption</td>
<td>The session has been preempted by a UA</td>
</tr>
<tr>
<td>2</td>
<td>Reserved Resources Preempted</td>
<td>The session preemption has been initiated within the network via a purposeful RSVP preemption occurrence, and not a link error</td>
</tr>
<tr>
<td>3</td>
<td>Generic Preemption</td>
<td>This is a limited use preemption indication to be used on the final leg to the preempted UA to generalize the event</td>
</tr>
<tr>
<td>4</td>
<td>Non-IP Preemption</td>
<td>The session preemption has occurred in a non-IP portion of the infrastructure and this is the Reason cause code given by the SIP Gateway</td>
</tr>
</tbody>
</table>

Example syntax is as follows for each of the above preemption types:

Reason: preemption ;cause=1 ;text="UA Preemption"
Reason: preemption ;cause=2 ;text="Reserved Resources Preempted"
Reason: preemption ;cause=3 ;text="Generic Preemption"
Reason: preemption ;cause=4 ;text="Non-IP Preemption"

Sections 5.1, 5.2, 5.3 and 5.4 provide use cases and extended definitions for the above four cause codes with message flow diagrams.

5.1 Access Preemption Event Reason Code

The more elaborate description of the Access Preemption Event cause=1 is as follows:

A user agent in a session has purposely preempted a session and is informing the far end user agent, or user agents (if part of a conference), and SIP Proxies (if stateful of the session’s transactions)

An example usage of this header value would be:

Reason: preemption ;cause=1 ;text="UA Preemption"

5.1.1 Access Preemption Event Call Flow

The following diagram (Figure 5) replicates the call flow from Figure 1 - but with an appropriate Reason value indication that was proposed in section 4.1 above:
UA1 invites UA2 to a session with the Resource Priority level of 3 (levels 1 and 2 are higher in this domain). After the session between UA1 and UA2 is established, UA3 invites UA2 to a new session with an R-P of 2 (a higher priority than the current session to UA1). Local policy within this domain dictates that UA2 must preempt all existing calls of lower priority in order to accept a higher priority call.

UA2 sends a BYE Request message with a Reason header with a value: UA Preemption. This will inform the far end UA (UA1), and all relevant SIP elements (for example: SIP Proxies). The cause code is unique to what is proposed in the RSVP Preemption Event for differentiation purposes.

5.2 Network Preemption Events Reason Code

The more elaborate description of the Reserved Resources Preempted Event cause=2 is as follows:

A router has preempted a reservation flow and generated a reservation error message, a ResvErr traveling downstream in RSVP, a NOTIFY in NSIS. The UA receiving the preemption error message generates a BYE request towards the far side UA with a Reason Header with this value indicating that somewhere in between two or more UAs, a router has administratively preempted this session.

An example usage of this header value would be:

Reason: Preemption ;cause=2 ;text="Reserved Resources Preempted"

5.2.1 Network Preemption Event Call Flow

The following diagram (Figure 6) replicates the call flow from Figure 5 - but with an appropriate Reason value indication that was proposed in section 4.2 above.

UA1 Rtr2 UA2
| | |
| INVITE with QoS Preconditions (R-P:3) |
|-->|
| ** |
| * - QoS Preconditions established UA1-UA2 * |
| Polk Expires March 12th, 2006
[Page 12]
Above is the call flow with Router 2 from Figure 2 included at the RSVP layer sending the Resv messages. A complete call flow including all UAs and Routers is not here for diagram complexity reasons. The signaling between UA3 and UA4 is also not included.

Upon receipt of the ResvErr message with the preemption error code, UA2 can now appropriately inform UA1 why this event occurred. This BYE message will also inform all relevant SIP elements, synchronizing them. The cause value is unique to that proposed in section 4.1 for Access Preemption Events for differentiation purposes.

5.3 Generic Preemption Event Reason Code

The more elaborate description of the Generic Preemption Event cause=3 is as follows:

This cause code is for infrastructures that do not wish to provide the preempted UA a more precise reason that just "preemption". It is possible that UAs will have code that will indicate the type of preemption event that is contained in the
Reason header, and certain domains have expressed this as not being optimal, and wanted to generalize the indication. This MUST NOT be the initial indication within these domains, as valuable traffic analysis and other NM applications will be generalized as well. If this cause value is to be implemented, it SHOULD only be done at the final SIP Proxy in such a way that the cause value indicating which type of preemption event actually occurred is changed to this generalized preemption indication to be received by the preempted UA.

An example usage of this header value would be:

Reason: preemption ;cause=3 ;text="Generic Preemption"

5.4 Non-IP Preemption Event Reason Code

The more elaborate description of the Non-IP Preemption Event cause=4 is as follows:

A session exists in a hybrid IP/Non-IP infrastructure and the preemption event occurs in the Non-IP portion, and was indicated by that portion that this call termination was due to preemption. This is the indication that would be generated by a SIP Gateway towards the SIP UA that is being preempted, traversing whichever SIP Proxies are involved in session signaling (a question of server state).

An example usage of this header value would be:

Reason: preemption ;cause=4 ;text="Non-IP Preemption"

5.4.1 Non-IP Preemption Event Call Flow

The following is a simple call flow diagram of the Non-IP preemption event.

```
UA1                   SIP GW1 . User3 .
|                     |
| INVITE (R-P:1)      |
--------------------->
<p>| 200 OK              |
|&lt;---------------------|</p>
<table>
<thead>
<tr>
<th>ACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>RTP</td>
</tr>
</tbody>
</table>
<---------------------|
```
Figure 7. Non-IP Preemption Flow

In this case, UA1 signals User3 to a session. Once established, there is a preemption event in the Non-IP portion of the session/call, and the TDM portion has the ability to inform the SIP GW of this type of event. This Non-IP signal can be translated into SIP signaling (into the BYE session termination message). Within this BYE there should be a Reason header indicating such an event to synchronize all SIP elements.

6. Security Considerations

Eavesdropping on this header field should not prevent proper operation of the SIP protocol, although some domains utilizing this mechanism for notifying and synchronizing SIP elements will likely want the integrity to be assured. It is therefore RECOMMENDED to apply integrity protection when using this header to prevent unwanted changes to the field and snooping of the messages. The accepted choices to provide integrity protection in SIP are TLS and S/MIME.

7. IANA Considerations

This document adds to one existing IANA Registry and creates one new Registry. The existing IANA Registry for the SIP Reason Header is as follows:

<table>
<thead>
<tr>
<th>Protocol Value</th>
<th>Protocol Cause</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP</td>
<td>Status code</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>Q.850</td>
<td>Cause value in decimal</td>
<td>ITU-T Q.850</td>
</tr>
</tbody>
</table>

This document adds to that Registry with the following entry (including the ‘*’ comment):

<table>
<thead>
<tr>
<th>Protocol Value</th>
<th>Protocol Cause</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preemption</td>
<td>Cause value in decimal*</td>
<td>RFC XXXX [this document]</td>
</tr>
</tbody>
</table>

* see the separate "Preemption" Registry for default reason-text strings

The cause values created by the Preemption Protocol namespace in this document are defined in section 7.1 below. Each cause value
has a Reason-text string as a general description of what the cause value is for. This is shown for the existing Reason header in section 2 of RFC 3326. Before this document, the Reason-text was taken from the SIP Response code string from all SIP Response codes, or the default description from Q.850 cause codes. There currently is no place to register new reason-text strings other than from those two sources. Because this document defines a new Reason header protocol namespace, a new IANA Registry is created in section 7.2 below just for this and future Reason header protocol namespaces (other than SIP Response codes or Q.850 cause values) to register their respective general descriptive text string. These text strings are non-binding, and merely the default for human understanding, but deemed important enough to have their own Registry.

7.1 "Preemption" Namespace Registry

RFC [XXXX] (this document) creates the new SIP "Reason Header" [1] protocol namespace: "Preemption", with 4 defined cause codes:

In instances where this namespace is used to indicate preemption at a UA, the following syntax shall be used (the reason-text is a default string, it is not mandatory, and may be different):

 Reason: preemption ;cause=1 ;text="UA Preemption"

 Section 5.1 of this document describes in detail the semantics of this cause code.

 The default text above is part of a new IANA Registry for default text strings for any new protocol namespace cause code. See section 7.2 below for the details.

In instances where this namespace is used to indicate preemption based on receipt of an RSVP ResvErr message at a SIP UA, the following syntax shall be used (the reason-text is a default string, it is not mandatory, and may be different):

 Reason: preemption ;cause=2 ;text="Reserved Resources Preempted"

 Section 5.2 of this document describes in detail the semantics of this cause code.

 The default text above is part of a new IANA Registry for default text strings for any new protocol namespace cause code. See section 7.2 below for the details.

In instances where this namespace is used to indicate a generalized preemption event to the destination UA from a Proxy that modifies the Reason value only during this last SIP hop shall use the following syntax (the reason-text is a default
string, it is not mandatory, and may be different):

Reason: preemption ;cause=3 ;text="Generic Preemption"

Section 5.3 of this document describes in detail the semantics of this cause code.

The default text above is part of a new IANA Registry for default text strings for any new protocol namespace cause code. See section 7.2 below for the details.

In instances where this namespace is used to indicate preemption from a Non-IP portion of a call leg, a SIP Gateway shall use the following syntax to inform the SIP infrastructure of this event with (the reason-text is a default string, it is not mandatory, and may be different):

Reason: preemption ;cause=4 ;text=" Non-IP Preemption"

Section 5.4 of this document describes in detail the semantics of this cause code.

The default text above is part of a new IANA Registry for default text strings for any new protocol namespace cause code. See section 7.2 below for the details.

Additional definitions of the preemption namespace and its cause codes MUST be defined in Standards Track documents.

7.2 Default Reason-Text IANA Registry for the SIP Reason Header

Below is the creation of a new IANA Registry for SIP Reason Header reason-text strings, associated with their respective protocol type and Reason-param cause values. Per RFC 3326, the Reason-text string is a quoted default string with only human understandability meant. These strings can be changed by local policy.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Reason-param</th>
<th>Reason-Text</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preemption</td>
<td>Cause=1</td>
<td>UA Preemption</td>
<td>RFC XXXX [this document]</td>
</tr>
<tr>
<td>Preemption</td>
<td>Cause=2</td>
<td>Reserved Resources</td>
<td>RFC XXXX [this document] Preempted</td>
</tr>
<tr>
<td>Preemption</td>
<td>Cause=3</td>
<td>Generic Preemption</td>
<td>RFC XXXX [this document]</td>
</tr>
<tr>
<td>Preemption</td>
<td>Cause=4</td>
<td>Non-IP Preemption</td>
<td>RFC XXXX [this document]</td>
</tr>
</tbody>
</table>

8. Contributions

The following individuals contributed to this effort:
The author thanks these individuals greatly for their aid in this effort.

9. Acknowledgements

To Haluk Keskiner for providing a valued sanity check. To Dean Willis, Rohan Mahy and Allison Mankin for their belief in and backing of this effort. To Adam Roach and Arun Kumar for helpful comments to this document.

Thanks to Mike Pierce for helpful comments and catching a flaw in this spec late in the process (before it was too late).

10. Normative References

10.1 Informative Reference

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.