Abstract

This document describes the conventions for using cryptographic algorithms GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, GOST R 34.11-94, along with Cryptographic Message Syntax (CMS). The CMS is used for digital signature, digest, authentication and encryption of arbitrary message contents.
1. Introduction

The Cryptographic Message Syntax [CMS] is used for digital signature, digest, authentication and encryption of arbitrary message contents. This companion specification describes the use of cryptographic algorithms GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001 and GOST R 34.11-94 in CMS, as proposed by the CRYPTO-PRO Company for "Russian Cryptographic Software Compatibility Agreement" community. This document does not describe these cryptographic algorithms; they are
defined in corresponding national standards.

The CMS values are generated using ASN.1 [X.208-88], using BER-encoding [X.209-88]. This document specifies the algorithm identifiers for each algorithm, including ASN.1 for object identifiers and any associated parameters.

The fields in the CMS employed by each algorithm are identified.

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Message Digest Algorithms

This section specifies the conventions for using the digest algorithm GOST R 34.11-94 employed by CMS.

Digest values are located in the DigestedData digest field and the Message Digest authenticated attribute. In addition, digest values are input to signature algorithms.

2.1. Message Digest Algorithm GOST R 34.11-94

Hash function GOST R 34.11-94 has been developed by "GUBS of Federal Agency Government Communication and Information" and "All-Russian Scientific and Research Institute of Standardization". The algorithm GOST R 34.11-94 produces a 256-bit hash value of the arbitrary finite bit length input. This document does not contain the full GOST R 34.11-94 specification, which can be found in [GOSTR3411] in Russian. [Schneler95] ch. 18.11, p. 454. contains a brief technical description in English.

The hash algorithm GOST R 34.11-94 has the following identifier:

\[
\text{id-GostR3411-94 OBJECT IDENTIFIER ::=}
\{ iso(1) member-body(2) ru(643) rans(2) cryptopro(2) gostr3411(9) \}
\]

The AlgorithmIdentifier parameters field MUST be present, and the parameters field MUST contain NULL. Implementations MAY accept the GOST R 34.11-94 AlgorithmIdentifiers with absent parameters as well as NULL parameters.

This function is always used with default parameters id-GostR3411-94-CryptoProParamSet (see section 8.2 of [CPALGS]).
When Message Digest authenticated attribute is present, DigestedData digest contains a 32-byte digest in little-endian representation:

GostR3411-94-Digest ::= OCTET STRING (SIZE (32))

3. Signature Algorithms

This section specifies the CMS procedures for GOST R 34.10-94 and GOST R 34.10-2001 signature algorithms.

Signature algorithm identifiers are located in the SignerInfo signatureAlgorithm field of SignedData. Also, signature algorithm identifiers are located in the SignerInfo signatureAlgorithm field of countersignature attributes.

Signature values are located in the SignerInfo signature field of SignedData. Also, signature values are located in the SignerInfo signature field of countersignature attributes.

3.1. Signature Algorithm GOST R 34.10-94

GOST R 34.10-94 has been developed by "GUBS of Federal Agency Government Communication and Information" and "All-Russian Scientific and Research Institute of Standardization". This signature algorithm MUST be used conjointly with GOST R 34.11-94 message digest algorithm. This document does not contain the full GOST R 34.10-94 specification, which is fully described in [GOSTR341094] in Russian, and a brief description in English can be found in [Schneier95] ch. 20.3, p. 495.

The GOST R 34.10-94 signature algorithm has the following public key algorithm identifier:

id-GostR3410-94-signature OBJECT IDENTIFIER ::= id-GostR3410-94

id-GostR3410-94 is defined in Section 2.3.1 of [CPPK].

Signature algorithm GOST R 34.10-94 generates a digital signature in the form of a binary 512-bit vector (<r'>256||<s>256). signatureValue contains its little endian representation.

GostR3410-94-Signature ::= OCTET STRING (SIZE (64))

3.2. Signature Algorithm GOST R 34.10-2001

GOST R 34.10-2001 has been developed by "GUBS of Federal Agency Government Communication and Information" and "All-Russian Scientific and Research Institute of Standardization". This signature algorithm
MUST be used conjointly with GOST R 34.11-94. This document does not contain the full GOST R 34.10-2001 specification, which is fully described in [GOSTR341001].

The signature algorithm GOST R 34.10-2001 has the following public key algorithm identifier:

\[
\text{id-GostR3410-2001-signature} \text{ OBJECT IDENTIFIER ::= id-GostR3410-2001}
\]

id-GostR3410-2001 is defined in Section 2.3.2 of [CPPK].

Signature algorithm GOST R 34.10-2001 generates a digital signature in the form of a binary 512-bit vector \(<r'>256||<s>256\). signatureValue contains its little endian representation.

GostR3410-2001-Signature ::= OCTET STRING (SIZE (64))

4. Key Management Algorithms

This chapter describes the key agreement and key transport algorithms, based on VKO GOST R 34.10-94 and VKO GOST R 34.10-2001 key derivation algorithms, and the CryptoPro and GOST 28147-89 key wrap algorithms, described in [CPALGS]. They MUST be used only with content encryption algorithm GOST 28147-89, defined in section 5 of this document.

4.1. Key Agreement Algorithms

This section specifies the conventions employed by CMS implementations that support key agreement using both VKO GOST R 34.10-94 and VKO GOST R 34.10-2001 algorithms, described in [CPALGS].

Key agreement algorithm identifiers are located in the EnvelopedData RecipientInfos KeyAgreeRecipientInfo keyEncryptionAlgorithm and AuthenticatedData RecipientInfos KeyAgreeRecipientInfo keyEncryptionAlgorithm fields.

Wrapped content-encryption keys are located in the EnvelopedData RecipientInfos KeyAgreeRecipientInfo RecipientEncryptedKeys encryptedKey field. Wrapped message-authentication keys are located in the AuthenticatedData RecipientInfos KeyAgreeRecipientInfo RecipientEncryptedKeys encryptedKey field.

4.1.1. Key Agreement Algorithms Based on GOST R 34.10-94/2001 Public Keys

The EnvelopedData RecipientInfos KeyAgreeRecipientInfo field is used as follows:
originator MUST be the originatorKey alternative. The originatorKey algorithm field MUST contain the object identifier id-GostR3410-94 or id-GostR3410-2001 and corresponding parameters (defined in sections 2.3.1, 2.3.2 of [CPPR]).

The originatorKey publicKey field MUST contain the sender’s public key.

keyEncryptionAlgorithm MUST be the id-GostR3410-94-CryptoPro-ESDH or the id-GostR3410-2001-CryptoPro-ESDH algorithm identifier, depending on the recipient public key algorithm. The algorithm identifier parameter field for these algorithms is KeyWrapAlgorithm, and this parameter MUST be present. The KeyWrapAlgorithm denotes the algorithm and parameters used to encrypt the content-encryption key with the pairwise key-encryption key generated using the VKO GOST R 34.10-94 or the VKO GOST R 34.10-2001 key agreement algorithms.

The algorithm identifiers and parameter syntax is:

\[
\text{id-GostR3410-94-CryptoPro-ESDH OBJECT IDENTIFIER ::=}
\{ \text{iso(1) member-body(2) ru(643) rans(2) cryptopro(2)}
\text{ gostR3410-94-CryptoPro-ESDH(97) } \}
\]

\[
\text{id-GostR3410-2001-CryptoPro-ESDH OBJECT IDENTIFIER ::=}
\{ \text{iso(1) member-body(2) ru(643) rans(2) cryptopro(2)}
\text{ gostR3410-2001-CryptoPro-ESDH(96) } \}
\]

KeyWrapAlgorithm ::= AlgorithmIdentifier

When keyEncryptionAlgorithm is id-GostR3410-94-CryptoPro-ESDH, KeyWrapAlgorithm algorithm MUST be the id-Gost28147-89-CryptoPro-KeyWrap algorithm identifier.

\[
\text{id-Gost28147-89-CryptoPro-KeyWrap OBJECT IDENTIFIER ::=}
\{ \text{iso(1) member-body(2) ru(643) rans(2) cryptopro(2)}
\text{ keyWrap(13) cryptoPro(1) } \}
\]

The CryptoPro Key Wrap algorithm is described in sections 6.3 and 6.4 of [CPALGS].

When keyEncryptionAlgorithm is id-GostR3410-2001-CryptoPro-ESDH, KeyWrapAlgorithm algorithm MUST be either the id-Gost28147-89-CryptoPro-KeyWrap or id-Gost28147-89-None-KeyWrap algorithm identifier.
id-Gost28147-89-None-KeyWrap OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
 keyWrap(13) none(0) }

The GOST 28147-89 Key Wrap algorithm is described in sections 6.1 and 6.2 of [CPALGS].

KeyWrapAlgorithm algorithm parameters MUST be present. The syntax for KeyWrapAlgorithm algorithm parameters is

Gost28147-89-KeyWrapParameters ::= SEQUENCE {
 encryptionParamSet Gost28147-89-ParamSet,
 ukm OCTET STRING (SIZE (8)) OPTIONAL
}

Gost28147-89-ParamSet ::= OBJECT IDENTIFIER

Gost28147-89-KeyWrapParameters ukm MUST be absent.

KeyAgreeRecipientInfo ukm MUST be present, and contain eight octets.

encryptedKey MUST encapsulate Gost28147-89-EncryptedKey, where maskKey MUST be absent.

Gost28147-89-EncryptedKey ::= SEQUENCE {
 encryptedKey Gost28147-89-Key,
 maskKey [0] IMPLICIT Gost28147-89-Key OPTIONAL,
 macKey Gost28147-89-MAC
}

Using the secret key, corresponding to the originatorKey publicKey, and the recipient’s public key, the algorithm VKO GOST R 34.10-94 or VKO GOST R 34.10-2001 (described in [CPALGS]) is applied to produce the KEK.

Then the key wrap algorithm, specified by KeyWrapAlgorithm, is applied to produce CEK_ENC, CEK_MAC, and UKM.

Gost28147-89-KeyWrapParameters encryptionParamSet is used for all encryption operations.

The resulting encrypted key (CEK_ENC) is placed in Gost28147-89-EncryptedKey encryptedKey field, its mac (CEK_MAC) is placed in Gost28147-89-EncryptedKey macKey field, and UKM is placed in KeyAgreeRecipientInfo ukm field.

4.2. Key Transport Algorithms
This section specifies the conventions employed by CMS implementations that support key transport using both VKO GOST R 34.10-94 and VKO GOST R 34.10-2001 algorithms, described in [CPALGS].

Key transport algorithm identifiers are located in the EnvelopedData RecipientInfos KeyTransRecipientInfo keyEncryptionAlgorithm field.

Key transport encrypted content-encryption keys are located in the EnvelopedData RecipientInfos KeyTransRecipientInfo encryptedKey field.

4.2.1. Key Transport Algorithm Based on GOST R 34.10-94/2001 Public Keys

The EnvelopedData RecipientInfos KeyTransRecipientInfo field is used as follows:

- version MUST be 0 or 3.
- keyEncryptionAlgorithm and parameters MUST be identical to the recipient public key algorithm and parameters.
- encryptedKey encapsulates GostR3410-KeyTransport, which consists of encrypted content-encryption key, its MAC, GOST 28147-89 algorithm parameters used for key encryption, sender’s ephemeral public key, and UKM (UserKeyingMaterial, see [CMS], 10.2.6).
- transportParameters MUST be present.
- ephemeralPublicKey MUST be present, and its parameters, if present, MUST be equal to the recipient public key parameters;

GostR3410-KeyTransport ::= SEQUENCE {
 sessionEncryptedKey Gost28147-89-EncryptedKey,
 transportParameters [0] IMPLICIT GostR3410-TransportParameters OPTIONAL
}

GostR3410-TransportParameters ::= SEQUENCE {
 encryptionParamSet OBJECT IDENTIFIER,
 ephemeralPublicKey [0] IMPLICIT SubjectPublicKeyInfo OPTIONAL,
 ukm OCTET STRING
}

Using the secret key, corresponding to the GostR3410-TransportParameters ephemeralPublicKey, and the recipient’s public key, the algorithm VKO GOST R 34.10-94 or VKO GOST R 34.10-2001 (described in [CPALGS]) is applied to produce the KEK.
Then the CryptoPro key wrap algorithm is applied to produce CEK_ENC,
CEK_MAC, and UKM. GostR3410-TransportParameters encryptionParamSet is
used for all encryption operations.

The resulting encrypted key (CEK_ENC) is placed in
Gost28147-89-EncryptedKey encryptedKey field, its mac (CEK_MAC) is
placed in Gost28147-89-EncryptedKey macKey field, and UKM is placed in GostR3410-TransportParameters ukm field.

5. Content Encryption Algorithms

This section specifies the conventions employed by CMS
implementations that support content encryption using GOST 28147-89.

Content encryption algorithm identifiers are located in the
EnvelopedData EncryptedContentInfo contentEncryptionAlgorithm and the
EncryptedData EncryptedContentInfo contentEncryptionAlgorithm fields.

Content encryption algorithms are used to encipher the content
located in the EnvelopedData EncryptedContentInfo encryptedContent
field and the EncryptedData EncryptedContentInfo encryptedContent
field.

5.1. Content Encryption Algorithm GOST 28147-89

This section specifies the use of GOST 28147-89 algorithm for data
encipherment.

GOST 28147-89 is fully described in [GOST28147] (in Russian).

This document specifies the following OID for this algorithm:

id-Gost28147-89 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
gost28147-89(21) }

Algorithm parameters MUST be present and have the following
structure:

Gost28147-89-Parameters ::=
 SEQUENCE {
 iv Gost28147-89-IV,
 encryptionParamSet OBJECT IDENTIFIER
 }

Gost28147-89-IV ::= OCTET STRING (SIZE (8))

encryptionParamSet specifies the set of corresponding
6. MAC Algorithms

This section specifies the conventions employed by CMS implementations that support the message authentication code (MAC) based on GOST R 34.11-94.

MAC algorithm identifiers are located in the AuthenticatedData macAlgorithm field.

MAC values are located in the AuthenticatedData mac field.

6.1. HMAC with GOST R 34.11-94

HMAC_GOSTR3411 (K,text) function is based on hash function GOST R 34.11-94, as defined in section 3 of [CPALGS].

This document specifies the following OID for this algorithm:

 id-HMACGostR3411-94 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
 hmacgostr3411(10) }

This algorithm has the same parameters, as GOST R 34.11-94 digest algorithm, and uses the same OIDs for their identification (see [CPPK]).

7. Using with S/MIME

This section defines use of the algorithms defined in this document together with S/MIME [RFC 3851].

7.1. Parameter micalg

When using the algorithms defined in this document, micalg parameter SHOULD be set to "gostr3411-94", otherwise it MUST be set to "unknown".

7.2. Attribute SMIMECapabilities

The SMIMECapability value which indicates support for the GOST R 34.11-94 digest algorithm is the SEQUENCE with the capabilityID field containing the object identifier id-GostR3411-94 and no parameters. The DER encoding is:

```
30 08 06 06 2A 85 03 02 02 09
```
The SMIMECapability value which indicates support for the GOST 28147-89 encryption algorithm is the SEQUENCE with the capabilityID field containing the object identifier id-Gost28147-89 and no parameters. The DER encoding is:

```
30 08 06 06  2A 85 03 02  02 15
```

If the sender wishes to indicate support for a specific parameter set, SMIMECapability parameters MUST contain the Gost28147-89-Parameters structure. Recipients MUST ignore the Gost28147-89-Parameters iv field, and assume that the sender supports parameters, specified in Gost28147-89-Parameters encryptionParamSet field.

The DER encoding for the SMIMECapability, indicating support for GOST 28147-89 with id-Gost28147-89-CryptoPro-A-ParamSet (see [CPALGS]) is:

```
30 1D 06 06  2A 85 03 02  02 15 30 13  04 08 00 00 
00 00 00 00 00 00 06 07  2A 85 03 02  02 1F 01
```

8. Security Considerations

Conforming applications MUST use unique values for ukm and iv. Recipients MAY verify that ukm and iv, specified by the sender, are unique.

It is RECOMMENDED that software applications verify signature values, subject public keys and algorithm parameters to conform to [GOSTR341001] [GOSTR341094] standards prior to their use.

Cryptographic algorithm parameters affect algorithm strength. The use of parameters not listed in [CPALGS] is NOT RECOMMENDED (see Security Considerations section of [CPALGS]).

Use of the same key for signature and key derivation is NOT RECOMMENDED. When signed CMS documents are used as an analogue to a manual signing, in the context of Russian Federal Digital Signature Law [RFDSL], signer certificate MUST contain the keyUsage extension, it MUST be critical, and keyUsage MUST NOT include keyEncipherment or keyAgreement (see [PROFILE], section 4.2.1.3). Application SHOULD be submitted for examination by an authorized agency in appropriate levels of target_of_evaluation (TOE), according to [RFDSL], [RFLLIC] and [CRYPTOLIC].

9. Appendix Examples

Examples here are stored in the same format as the examples in [RFC4134], and can be extracted using the same program.
9.1. Signed message

This message is signed using the sample certificate from section 4.2 of [CPPK]. The public key (x,y) from the same section can be used to verify the message signature.

```
0 296: SEQUENCE {
    4 9: OBJECT IDENTIFIER signedData
15 281: [0] {
19 277: SEQUENCE {
23 1: INTEGER 1
26 12: SET {
28 10: SEQUENCE {
30 6: OBJECT IDENTIFIER id-GostR3411-94
38 0: NULL

    }

    }

40 27: SEQUENCE {
42 9: OBJECT IDENTIFIER data
53 14: [0] {
55 12: OCTET STRING 73 61 6D 70 6C 65 20 74 65 78 74 0A

    }

    }

69 228: SET {
72 225: SEQUENCE {
75 1: INTEGER 1
78 129: SEQUENCE {
81 109: SEQUENCE {
83 31: SET {
85 29: SEQUENCE {
87 3: OBJECT IDENTIFIER commonName
92 22: UTF8String 'GostR3410-2001 example'

    }

    }

116 18: SET {
118 16: SEQUENCE {
120 3: OBJECT IDENTIFIER organizationName
125 9: UTF8String 'CryptoPro'

    }

    }

136 11: SET {
138 9: SEQUENCE {
140 3: OBJECT IDENTIFIER countryName
```
9.2. Enveloped message using Key Agreement

This message is encrypted using the sample certificate from section 4.2 of [CPPK] as a recipient certificate. The private key 'd' from the same section can be used to decrypt this message.
0 420: SEQUENCE {
4 9: OBJECT IDENTIFIER envelopedData
15 405: [0] {
19 401: SEQUENCE {
23 1: INTEGER 2
26 336: SET {
30 332: [1] {
34 1: INTEGER 3
37 101: [0] {
39 99: [1] {
41 28: SEQUENCE {
43 6: OBJECT IDENTIFIER id-GostR3410-2001
51 18: SEQUENCE {
53 7: OBJECT IDENTIFIER : id-GostR3410-2001-CryptoPro-XchA-ParamSet
62 7: OBJECT IDENTIFIER : id-GostR3411-94-CryptoProParamSet
71 67: BIT STRING, encapsulates {
74 64: OCTET STRING
74 64: B3 55 39 F4 67 81 97 2B A5 C4 D9 84 1F 27 FB 81
74 64: ED 08 32 E6 9A D4 F2 00 78 B8 FF 83 64 EA D2 1D
74 64: B0 78 3C 7D FE 03 C1 F4 06 E4 3B CC 16 B9 C5 F6
74 64: F6 19 37 1C 17 B8 A0 AA C7 D1 A1 94 B3 A5 36 20
74 64: }
74 64: }
140 10: [1] {
142 8: OCTET STRING 2F F0 F6 D1 86 4B 32 8A
152 30: SEQUENCE {
154 6: OBJECT IDENTIFIER id-GostR3410-2001-CryptoPro-ESDH
162 20: SEQUENCE {
164 7: OBJECT IDENTIFIER id-Gost28147-89-None-KeyWrap
173 9: SEQUENCE {
175 7: OBJECT IDENTIFIER : id-Gost28147-89-CryptoPro-A-ParamSet
184 179: SEQUENCE {
187 176: SEQUENCE {
190 129: SEQUENCE {
193 109: SEQUENCE {
195 31: SET {
197 29: SEQUENCE {
199 3: OBJECT IDENTIFIER commonName

Leontiev, Chudov Standards Track [Page 14]
UTF8String 'GostR3410-2001 example'

SET {
 SEQUENCE {
 OBJECT IDENTIFIER organizationName
 UTF8String 'CryptoPro'
 }
}

SET {
 SEQUENCE {
 OBJECT IDENTIFIER countryName
 PrintableString 'RU'
 }
}

SET {
 SEQUENCE {
 OBJECT IDENTIFIER emailAddress
 IA5String 'GostR3410-2001@example.com'
 }
}

INTEGER
 2B F5 C6 1E C2 11 BD 17 C7 DC D4 62 66 B4 2E 21

OCTET STRING, encapsulates {
 OCTET STRING
 16 A3 1C E7 CE 4E E9 0D F1 EC 74 69 04 68 1E C7
 9F 3A ED B8 3B 1F 1D 4A 7E F9 A5 D9 CB 19 D5 E8
}

OCTET STRING
 93 FD 86 7E

OCTET STRING
 93 FD 86 7E

SEQUENCE {
 OBJECT IDENTIFIER data
}

SEQUENCE {
 OBJECT IDENTIFIER id-Gost28147-89
}

SEQUENCE {
 OCTET STRING B7 35 E1 7A 07 35 A2 1D
}

OBJECT IDENTIFIER id-Gost28147-89-CryptoPro-A-ParamSet

[0] 39 B1 8A F4 BF A9 E2 65 25 B6 55 C9
9.3. Enveloped message using Key Transport

This message is encrypted using the sample certificate from section 4.2 of [CPPK] as a recipient certificate. The private key ‘d’ from the same section can be used to decrypt this message.

```plaintext
0  423: SEQUENCE {
   4   9:  OBJECT IDENTIFIER envelopedData
  15  408:  [0] {
19  404:   SEQUENCE {
23   1:    INTEGER 0
26  339:   SET {
30  335:    SEQUENCE {
34   1:     INTEGER 0
37  129:    SEQUENCE {
40  109:     SEQUENCE {
42   31:      SET {
44  29:       SEQUENCE {
46   3:        OBJECT IDENTIFIER commonName
51   3:         UTF8String 'GostR3410-2001 example'
75  18:      SET {
77  16:       SEQUENCE {
79   3:        OBJECT IDENTIFIER organizationName
84   9:         UTF8String 'CryptoPro'
95  11:      SET {
97   9:       SEQUENCE {
99   3:        OBJECT IDENTIFIER countryName
```

| GostR3410-2001-keyagree.bin
| MIIBpAYJKoZIbvcNAQcDoIIB1TCCAZECAQIxggFQoYIBTAIBA6BlowMwAHGKoUDAgITMBgYqFAwICJlAQyFwICHgEDQwAEQLNVOfRngZcrpcTZhB8n+4HtCDlmtTyAH14/4NK6lDsHg8ff4DwfQG5DvMFrnnF9vY2NwxuKCqx9Gh1L01NiChCgQIL/D20Y2LMoowHgYKoUDDAgJgMBQGByqFwICDQAwCQYIKoUDDAgIfATCBszCBsDCB
gTBtMR8wQYDVQODDBZHb3N0UjM0MTATMjAwMSBlXGtFtcGxlM1RwEAYDVQQKDwAD
| cnlwG9Qcm8xzaJByNBAYTA1JVSkmwJwYJYoZIhvcNAQkBhFhpHb3N0UjM0MTAT
| MjAwMUB1eGtFtcGxlNmNvbQJ/XGBhsIrvRfh3NrrzQuIQQgMCgIEBajHOFoTukN
| 8ex0aQROHsefo240x8dSn75pdLdXoBAST/Y2+MDgCSCqGS1b3DQEHATAdBgYq
| hQMCAhUwXhdc1oh0ByqFwICwmgxvS/qeJlJbZVvQ==
| <GostR3410-2001-keyagree.bin

Leontiev, Chudov
Standards Track

[Page 16]
Internet-Draft Using GOST with CMS December 2005

104 2: PrintableString 'RU'
 : }
 : }
108 41: SET {
110 39: SEQUENCE {
112 9: OBJECT IDENTIFIER emailAddress
123 26: IA5String 'GostR3410-2001@example.com'
 : }
 : }
151 16: INTEGER
 : 2B F5 C6 1E C2 11 BD 17 C7 DC D4 62 66 B4 2E 21
 : }
169 28: SEQUENCE {
171 6: OBJECT IDENTIFIER id-GostR3410-2001
179 18: SEQUENCE {
181 7: OBJECT IDENTIFIER
189 18: SEQUENCE {
190 7: OBJECT IDENTIFIER
198 167: OCTET STRING, encapsulates {
202 164: SEQUENCE {
205 40: SEQUENCE {
207 32: OCTET STRING
213 16: : 6A 2F A8 21 06 95 68 9F E4 47 AA 9E CB 61 15
211 19: : 2B 7E 41 60 BC 5D 8D FB F5 3D 28 1B 18 9A F9 75
241 4: OCTET STRING
247 120: [0] {
249 7: OBJECT IDENTIFIER
256 99: [0] {
260 28: SEQUENCE {
262 6: OBJECT IDENTIFIER id-GostR3410-2001
269 18: SEQUENCE {
272 7: OBJECT IDENTIFIER
279 67: BIT STRING 1 unused bits, encapsulates {
290 64: OCTET STRING
295 16: : 4D 2B 2F 33 90 E6 DC A3 DD 55 2A CD DF E0 EF FB
293 16: : 31 F7 73 7E 4E FF BF 78 89 8A 2B C3 CD 31 94 04

Leontiev, Chudov Standards Track [Page 17]
Appendix A
SN.1 Modules

Additional ASN.1 modules, referenced here, can be found in [CPALGS].

10.1. GostR3410-EncryptionSyntax

GostR3410-EncryptionSyntax
{ iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
 other(1) modules(1) gostR3410-EncryptionSyntax(5) 2 }
DEFINITIONS ::=
BEGIN
-- EXPORTS All --
-- The types and values defined in this module are exported for
-- use in the other ASN.1 modules contained within the Russian
-- Cryptography "GOST" & "GOST R" Specifications, and for the use
-- of other applications which will use them to access Russian
-- Cryptography services. Other applications may use them for
-- their own purposes, but this will not constrain extensions and
-- modifications needed to maintain or improve the Russian
-- Cryptography service.
IMPORTS
id-CryptoPro-algorithms,
gost28147-89-EncryptionSyntax,
gostR3410-94-PKISyntax,
gostR3410-2001-PKISyntax,
ALGORITHM-IDENTIFIER,
cryptographic-Gost-Useful-Definitions
FROM Cryptographic-Gost-Useful-Definitions -- in [CPALGS]
 { iso(1) member-body(2) ru(643) rans(2)
crypto(2) other(1) modules(1)
cryptographic-Gost-Useful-Definitions(0) 1 }
idx-GostR3410-94
FROM GostR3410-94-PKISyntax -- in [CPALGS]
gostR3410-94-PKISyntax
id-GostR3410-2001
FROM GostR3410-2001-PKISyntax -- in [CPALGS]
gostR3410-2001-PKISyntax
Gost28147-89-ParamSet,
Gost28147-89-EncryptedKey
FROM Gost28147-89-EncryptionSyntax -- in [CPALGS]
gost28147-89-EncryptionSyntax
SubjectPublicKeyInfo
FROM PKIX1Explicit88 {iso(1) identified-organization(3)
dod(6) internet(1) security(5) mechanisms(5) pkix(7)
id-mod(0) id-pkix1-explicit-88(1)}
;
-- CMS/PKCS#7 key agreement algorithms & parameters
Gost28147-89-KeyWrapParameters ::=
SEQUENCE {
 encryptionParamSet Gost28147-89-ParamSet,
 ukm OCTET STRING (SIZE (8)) OPTIONAL
}
id-Gost28147-89-CryptoPro-KeyWrap OBJECT IDENTIFIER ::=
{ id-CryptoPro-algorithms keyWrap(13) cryptoPro(1) }
id-Gost28147-89-None-KeyWrap OBJECT IDENTIFIER ::=
{ id-CryptoPro-algorithms keyWrap(13) none(0) }
Gost28147-89-KeyWrapAlgorithms ALGORITHM-IDENTIFIER ::=
{ Gost28147-89-KeyWrapParameters IDENTIFIED BY

Leontiev, Chudov Standards Track [Page 19]
id-Gost28147-89-CryptoPro-KeyWrap } |
{ Gost28147-89-KeyWrapParameters IDENTIFIED BY
id-Gost28147-89-None-KeyWrap }

id-Gost3410-2001-CryptoPro-ESDH OBJECT IDENTIFIER ::=
{ id-CryptoPro-algorithms
 gostR3410-2001-CryptoPro-ESDH(96) }

id-Gost3410-94-CryptoPro-ESDH OBJECT IDENTIFIER ::=
{ id-CryptoPro-algorithms
 gostR3410-94-CryptoPro-ESDH(97) }

-- CMS/PKCS#7 key transport algorithms & parameters
-- OID for CMS/PKCS#7 Key transport is id-Gost3410-94 from
-- GostR3410-94-PKISyntax or id-Gost3410-2001 from
-- GostR3410-2001-PKISyntax
-- Algorithms for CMS/PKCS#7 Key transport are
-- GostR3410-94-PublicKeyAlgorithms from
-- GostR3410-94-PKISyntax or
-- GostR3410-2001-PublicKeyAlgorithms from
-- GostR3410-2001-PKISyntax
-- SMIMECapability for CMS/PKCS#7 Key transport are
-- id-GostR3410-94 from GostR3410-94-PKISyntax or
-- id-GostR3410-2001 from GostR3410-2001-PKISyntax

id-GostR3410-94-KeyTransportSMIMECapability
 OBJECT IDENTIFIER ::= id-GostR3410-94

id-GostR3410-2001-KeyTransportSMIMECapability
 OBJECT IDENTIFIER ::= id-GostR3410-2001

GostR3410-KeyTransport ::=
 SEQUENCE
 { sessionEncryptedKey Gost28147-89-EncryptedKey,
 transportParameters [0]
 }
 IMPLICIT GostR3410-TransportParameters OPTIONAL

GostR3410-TransportParameters ::=
 SEQUENCE
 { encryptionParamSet Gost28147-89-ParamSet,
 ephemeralPublicKey [0]
 }
 IMPLICIT SubjectPublicKeyInfo OPTIONAL,
 ukm OCTET STRING (SIZE(8))

END -- GostR3410-EncryptionSyntax

10.2. GostR3410-94-SignatureSyntax

GostR3410-94-SignatureSyntax
 { iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
 other(1) modules(1) gostR3410-94-SignatureSyntax(3) 1 }

DEFINITIONS ::=
BEGIN
-- EXPORTS All --
-- The types and values defined in this module are exported for
-- use in the other ASN.1 modules contained within the Russian
-- Cryptography "GOST" & "GOST R" Specifications, and for the use
-- of other applications which will use them to access Russian
-- Cryptography services. Other applications may use them for
-- their own purposes, but this will not constrain extensions and
-- modifications needed to maintain or improve the Russian
-- Cryptography service.

IMPORTS
gostR3410-94-PKISyntax, ALGORITHM-IDENTIFIER,
cryptographic-Gost-Useful-Definitions
FROM Cryptographic-Gost-Useful-Definitions -- in [CPALGS]
(iso(1) member-body(2) ru(643) rans(2)
cryptopro(2) other(1) modules(1)
cryptographic-Gost-Useful-Definitions(0) 1)
id-GostR3410-94,
GostR3410-94-PublicKeyParameters
FROM GostR3410-94-PKISyntax -- in [CPALGS]
gostR3410-94-PKISyntax
;
-- GOST R 34.10-94 signature data type
GostR3410-94-Signature ::= OCTET STRING (SIZE (64))
-- GOST R 34.10-94 signature algorithm & parameters
GostR3410-94-CMSSignatureAlgorithms ALGORITHM-IDENTIFIER ::= {
 GostR3410-94-PublicKeyParameters IDENTIFIED BY
 id-GostR3410-94
}

END -- GostR3410-94-SignatureSyntax

10.3. GostR3410-2001-SignatureSyntax

GostR3410-2001-SignatureSyntax
(iso(1) member-body(2) ru(643) rans(2) cryptopro(2)
 other(1) modules(1) gostR3410-2001-SignatureSyntax(10) 1)
DEFINITIONS ::= BEGIN
-- EXPORTS All --
-- The types and values defined in this module are exported for
-- use in the other ASN.1 modules contained within the Russian
-- Cryptography "GOST" & "GOST R" Specifications, and for the use
-- of other applications which will use them to access Russian
-- Cryptography services. Other applications may use them for
-- their own purposes, but this will not constrain extensions and
-- modifications needed to maintain or improve the Russian
-- Cryptography service.
IMPORTS
gostR3410-2001-PKISyntax, ALGORITHM-IDENTIFIER,
cryptographic-Gost-Useful-Definitions
FROM Cryptographic-Gost-Useful-Definitions -- in [CPALGS]
 { iso(1) member-body(2) ru(643) rans(2)
cryptopro(2) other(1) modules(1)
cryptographic-Gost-Useful-Definitions(0) 1 }

id-GostR3410-2001,
GostR3410-2001-PublicKeyParameters -- in [CPALGS]
FROM GostR3410-2001-PKISyntax
 gostR3410-2001-PKISyntax

; -- GOST R 34.10-2001 signature data type
GostR3410-2001-Signature ::= OCTET STRING (SIZE (64))

-- GOST R 34.10-2001 signature algorithms and parameters
GostR3410-2001-CMSSignatureAlgorithms
 ALGORITHM-IDENTIFIER ::= { GostR3410-2001-PublicKeyParameters IDENTIFIED BY
 id-GostR3410-2001 }

END -- GostR3410-2001-SignatureSyntax

11. Acknowledgments

This document was created in accordance with "Russian Cryptographic
Software Compatibility Agreement", signed by FGUE STC "Atlas",
CRYPTO-PRO, Factor-TS, MD PREI, Infotecs GmbH, SPRCIS (SPbRCZI),
Cryptocom, R-Alpha. The aim of this agreement is to achieve mutual
compatibility of the products and solutions.

The authors wish to thank:

Microsoft Corporation Russia for providing information about
company products and solutions, and also for technical consulting
in PKI.

RSA Security Russia and Demos Co Ltd for active collaboration and
critical help in creation of this document.

Russ Hously (Vigil Security, LLC, housley@vigilsec.com) and
Vasilij Sakharov (DEMODS Co Ltd, svp@dol.ru) for encouraging the
authors to create this document.

12. References

12.1. Normative references:

12.2. Informative references:

[RFDSL] "Russian Federal Digital Signature Law", 10 Jan 2002 N 1-FZ.

Contact Information

Serguei Leontiev
CRYPTO-PRO
38, Obraztsova,
Moscow, 127018, Russian Federation
EMail: lse@cryptopro.ru

Gregory Chudov
CRYPTO-PRO
38, Obraztsova,
Moscow, 127018, Russian Federation
EMail: chudov@cryptopro.ru

Vladimir Popov
CRYPTO-PRO
38, Obraztsova,
Moscow, 127018, Russian Federation
EMail: vpopov@cryptopro.ru
Alexandr Afanasiev
Factor-TS
office 711, 14, Presnenskij val,
Moscow, 123557, Russian Federation
EMail: afa1@factor-ts.ru

Nikolaj Nikishin
Infotecs GmbH
p/b 35, 80-5, Leningradskij prospekt,
Moscow, 125315, Russian Federation
EMail: nikishin@infotecs.ru

Boleslav Izotov
FGUE STC "Atlas"
38, Obraztsova,
Moscow, 127018, Russian Federation
EMail: izotov@nii.voskhod.ru

Elena Minaeva
MD PREI
build 3, 6A, Vtoroj Troitskij per.,
Moscow, Russian Federation
EMail: evminaeva@mail.ru

Igor Ovcharenko
MD PREI
Office 600, 14, B.Novodmitrovskaya,
Moscow, Russian Federation
EMail: igori@mo.msk.ru

Serguei Murugov
R-Alpha
4/1, Raspletina,
Moscow, 123060, Russian Federation
EMail: msm@top-cross.ru
Igor Ustinov
Cryptocom
office 239, 51, Leninskij prospekt,
Moscow, 119991, Russian Federation
EMail: igus@cryptocom.ru

Anatolij Erkin
SPRCIS (SPbRCZI)
1, Obrucheva,
St.Petersburg, 195220, Russian Federation
EMail: erkin@nevsky.net

Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Full Copyright Statement

Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the ISOC's procedures with respect to rights in ISOC Documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at

Leontiev, Chudov Standards Track [Page 26]

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).