Abs tract

This document describes the use of Transport Layer Security (TLS) to provide a secure connection for the transport of Syslog messages. This document describes the security threats to Syslog and how TLS can be used to counter such threats.
Table of Contents

1. Introduction ... 3
1.1. Terminology .. 3
2. Security Requirements for Syslog 3
3. TLS to Secure Syslog 4
4. Protocol Elements 4
 4.1. Port Assignment 5
 4.2. Initiation 5
 4.3. Sending data 6
 4.3.1. Frame Length 6
 4.4. Closure .. 6
5. Security Considerations 7
 5.1. Authentication 7
 5.2. Generic Certificate 7
 5.3. Cipher Suites 8
6. IANA Considerations 8
 6.1. Port Number 8
7. Acknowledgments .. 8
8. Normative References 8
Authors’ Addresses 9
Intellectual Property and Copyright Statements 10
1. Introduction

This document describes the use of Transport Layer Security (TLS [6]) to provide a secure connection for the transport of Syslog messages. This document describes the security threats to Syslog and how TLS can be used to counter such threats.

1.1. Terminology

The following definitions are used in this document:

- A sender is an application that can generate and send a Syslog [2] message to another application.
- A receiver is an application that can receive a Syslog message.
- A relay is an application that can receive Syslog messages and forward them to another receiver.
- A collector is an application that can receive messages but does not relay them to any other receiver.
- A TLS client is an application that can initiate a TLS connection by sending a Client Hello to a peer.
- A TLS server is an application that can receive a Client Hello from a peer and reply with a Server Hello.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].

2. Security Requirements for Syslog

Syslog messages may pass several hops to arrive at the intended receiver. Some intermediary networks may not be trusted by the sender/relay, receiver, or all because the network is in a different security domain or at a different security level from the receiver, relay, or sender. Another security concern is that the sender/relay, or receiver itself is in an insecure network.

There are several threats to be addressed for Syslog security. The primary threats are:

- Masquerade. An unauthorized sender/relay may send messages to a legitimate receiver, or an unauthorized receiver tries to deceive a legitimate sender/relay into sending Syslog messages to it.
Modification. An attacker between the sender/relay and receiver may modify an in-transit Syslog message from the sender/relay and then forward the message to receiver. Such modification may make the receiver misunderstand the message or cause the receiver to behave in undesirable ways.

Disclosure. An unauthorized entity may examine the content of the Syslog messages, gaining unauthorized access to the information. Some data in Syslog messages is sensitive and may be useful to an attacker, such as the password of an authorized administrator or user.

The secondary threat is:

Message stream modification. An attacker may delete a Syslog message from a series of messages, replay a message or alter the delivery sequence. Syslog protocol itself is not based on message order, but an event in a Syslog message may relate semantically to events in other messages, so message ordering may be important to understanding a sequence of events.

The following threats are deemed to be of lesser importance for Syslog, and are not addressed in this document:

- Denial of Service
- Traffic Analysis

3. TLS to Secure Syslog

TLS can be used as a secure transport to counter all the primary and secondary threats to Syslog described in section 2:

- Confidentiality to counter disclosure of the message contents
- Integrity check to counter modifications to a message
- Peer authentication to counter masquerade
- Sequence number along with integrity check to counter message stream modification

4. Protocol Elements
4.1. Port Assignment

A Syslog sender/relay is always a TLS client and a Syslog receiver is always a TLS server.

The TCP port NNN has been allocated as the default port for Syslog over TLS, as defined in this document.

Note to RFC Editor: please replace NNN with the IANA-assigned value, and remove this note.

4.2. Initiation

The sender/relay should initiate a connection to the receiver and then send the TLS Client Hello to begin the TLS handshake. When the TLS handshake has finished the sender/relay may then send the first Syslog message.

TLS uses certificate [4] to authenticate the peers. When a sender/relay authenticates a receiver it MUST validate the certificate. It SHOULD check the common name (CN) of the certificate against the host name of the receiver if it has knowledge of a common name/host name mapping. If the common name does not match the host name, the sender/relay SHOULD send an "access_denied" error alert using the TLS alert protocol to terminate the handshake, and then it SHOULD close the connection.

When a receiver authenticates a sender/relay, the receiver MUST validate the certificate. A sender’s (or relay’s) certificate may be:

- An unique certificate, which is issued to a host and whose Common Name may be host name, IP address, MAC, or device ID.

- A generic certificate, which is issued to a class of application or device. For example, all cable modems from a vendor may be issued the same generic certificate.

A sender/relay certificate may be issued by an operator when a device/application is being provisioned or by a vendor when the device/application is manufactured. This document does not define how the sender/relay certificate is issued.

Syslog applications SHOULD be implemented in a manner that permits administrators to select the cryptographic level they desire. It SHOULD be an administrator decision, as a matter of local policy, what security level (e.g. cryptographic algorithms and length of keys) is required.
TLS permits the resumption of an earlier TLS session or the use of another active session when a new session is requested, in order to save the expense of another full TLS handshake. The security parameters of the resumed session are reused for the requested session. The security parameters SHOULD be checked against security requirement of requested session to make sure the resumed session provides proper security.

4.3. Sending data

All Syslog messages MUST be sent as TLS "application data". It is possible that there are multiple Syslog messages in one TLS record, or a Syslog message is transferred in multiple TLS records. The application data is defined with the following ABNF [5] expression:

APPLICATION-DATA = 1*SYSLOG-FRAME

SYSLOG-FRAME = FRAME-LEN SP SYSLOG-MSG

FRAME-LEN = NONZERO-DIGIT *DIGIT

SP = %d32

NONZERO-DIGIT = %d49-57

DIGIT = %d48 / NONZERO-DIGIT

SYSLOG-MSG is defined in Syslog [2] protocol.

4.3.1. Frame Length

The frame length is the octet count of a Syslog frame including the FRAME-HEADER and SP parts. A receiver MUST use the frame length field to delimit a Syslog message. There is no upper limit for a frame length per se. However, in order to establish a baseline for interoperability, the specification requires that a receiver MUST be able to process frame with size up to and including 2048 octets. It SHOULD be able to receive frame with size up to and including 8192 octets.

4.4. Closure

A Syslog sender/relay MUST close the associated TLS connection if the connection is not expected to deliver Syslog message later. It MUST send a TLS close_notify alert before closing the connection. A sender/relay MAY choose not to wait for the receiver’s close_notify alert and simply close the connection, thus generating an incomplete close on the receiver side. Once the receiver gets close_notify from
the sender/relay, it MUST reply with a close_notify unless it becomes
aware that the connection has already been closed by the sender/relay
(e.g., the closure was indicated by TCP).

When no data is received from a connection for a long time (where the
application decides what "long" means), a receiver MAY close a
connection. The receiver MUST attempt to initiate an exchange of
close_notify alerts with the sender/relay before closing the
connection. Receivers those are unprepared to receive any more data
MAY close the connection after sending the close_notify alert, thus
generating an incomplete close on the sender/relay side. When the
sender/relay has received the close_notify alert from the receiver
and still has pending data to send, it SHOULD send the pending data
before sending the close_notify alert.

5. Security Considerations

5.1. Authentication

TLS supports three authentication modes: authentication of both
parties, server authentication with an unauthenticated client, and
total anonymity.

TLS authentication and the establishment of secrets is based on
certificates and asymmetric cryptography. This makes TLS transport
much more expensive than non-TLS plain transport. An attacker may
initialize many TLS connections to a receiver as a denial of service
attack. Since a receiver may act upon received data, for Syslog over
TLS, the receiver SHOULD authenticate the sender/relay to ensure that
information received is authentic.

For the deployment where confidentiality is a concern, receiver
authentication is required for sender/relay to make sure it is
talking to the right peer. It is up to the operator to decide
whether confidentiality is a concern for a specific deployment.

5.2. Generic Certificate

When a certificate is issued to a class of device or application, the
certificate may be shared by multiple hosts. Multiple hosts know the
private key of the certificate. When the certificate in one host is
compromised, then the certificate for all hosts that share the
certificate is compromised. An attacker may impersonate a legitimate
sender to send Syslog message to a receiver.
5.3. Cipher Suites

TLS [6] specifies a mandatory cipher suite to enable minimum interoperability for TLS implementation. This specification does not specify a mandatory cipher suite other than the one in TLS specification, and the one for TLS applies to this specification for minimum interoperability purpose.

If there is update to TLS specification in the future, the latest mandatory cipher suite in the update will apply to this specification, too. The implementors and deployers should be aware of the strengths of the public keys algorithm in the suite for exchanging symmetric keys, which is elaborated in BCP86 [3]. The implementors and deployers should also be aware of the latest TLS and other IETF cryptography standards including BCP86.

6. IANA Considerations

6.1. Port Number

IANA is requested to assign a TCP port number in the range 1..1023 in the http://www.iana.org/assignments/port-numbers registry which will be the default port for Syslog over TLS, as defined in this document.

7. Acknowledgments

Authors appreciate Eric Rescorla, Rainer Gerhards, Tom Petch, Anton Okmianski, Balazs Scheidler, Bert Wijnen, and Chris Lonvick for their effort on issues resolving discussion. Authors would also like to appreciate Balazs Scheidler, Tom Petch and other persons for their input on security threats of Syslog. The authors would like to acknowledge David Harrington for his detailed reviews of the content and grammar of the document.

8. Normative References

Authors’ Addresses

Miao Fuyou
Huawei Technologies
No. 3, Xinxi Rd
Shangdi Information Industry Base
Haidian District, Beijing 100085
P. R. China

Phone: +86 10 8288 2008
Email: miaofy@huawei.com
URI: www.huawei.com

Ma Yuzhi
Huawei Technologies
No. 3, Xinxi Rd
Shangdi Information Industry Base
Haidian District, Beijing 100085
P. R. China

Phone: +86 10 8288 2008
Email: myz@huawei.com
URI: www.huawei.com
Full Copyright Statement

Copyright (C) The IETF Trust (2006).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).