A YANG Data Model for Resource Reservation Protocol (RSVP)
draft-ietf-teas-yang-rsvp-00

Abstract

This document defines a YANG data model for the configuration and management of RSVP Protocol. The model defines generic RSVP protocol building blocks that can be augmented and used by other RSVP extension models such as RVSP extensions to Traffic-Engineering (RSVP-TE). The model covers the RSVP protocol configuration, operational state, remote procedural calls, and event notifications data.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 7, 2016.
Table of Contents

1. Introduction ... 3
 1.1. Terminology 3
 1.2. Tree Diagram 3
 1.3. Prefixes in Data Node Names 4
 1.4. Open Issues and Next Steps 5
 1.4.1. Module Hierarchy 5
 1.4.2. Model Data Organization 5
 1.4.3. State Data 5
2. Design Considerations 6
 2.1. Base Model 6
 2.2. Feature Set 7
 2.3. Configuration Inheritance 7
 2.4. Vendor Configuration Models 8
3. Model Organization 8
4. RSVP Base YANG Model 8
 4.1. Configuration and State Data 10
 4.1.1. Interface Data 11
 4.1.2. Session Data 16
 4.1.3. Neighbor Data 16
 4.2. RPC and Notification Data 17
 4.3. YANG Module 17
5. RSVP-TE Generic YANG Model 39
 5.1. Configuration and State Data 40
 5.2. RPC and Notification Data 43
 5.3. YANG Module 43
6. RSVP-TE MPLS Packet Model 50
 6.1. Configuration and State Data 51
 6.2. RPC and Notification Data 53
 6.3. YANG Module 53
7. IANA Considerations 62
8. Security Considerations 63
1. Introduction

YANG [RFC6020] is a data definition language that was introduced to define the contents of a conceptual data store that allows networked devices to be managed using NETCONF [RFC6241]. YANG is proving relevant beyond its initial confines, as bindings to other interfaces (e.g. ReST) and encoding other than XML (e.g. JSON) are being defined. Furthermore, YANG data models can be used as the basis of implementation for other interface, such as CLI and programmatic APIs.

This document defines a YANG data model that can be used to configure and manage the RSVP protocol. This model covers generic protocol building blocks that can be augmented and used by other RSVP extension models- such as extensions for signaling RSVP-TE packet (or other technology specific) Label Switched Paths (LSP)s.

1.1. Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

1.2. Tree Diagram

A simplified graphical representation of the data model is presented in each section of the model. The following notations are used for the YANG model data tree representation.
<status> <flags> <name> <opts> <type>

<status> is one of:
 + for current
 x for deprecated
 o for obsolete

<flags> is one of:
 rw for read-write configuration data
 ro for read-only non-configuration data
 -x for execution rpcs
 -n for notifications

:name> is the name of the node

If the node is augmented into the tree from another module, its name is printed as <prefix>:<name>

<opts> is one of:
 ? for an optional leaf or node
 ! for a presence container
 * for a leaf-list or list
 Brackets [<keys>] for a list’s keys
 Curly braces {<condition>} for optional feature that make node conditional
 Colon : for marking case nodes
 Ellipses ("...") subtree contents not shown

Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":").

<type> is the name of the type for leafs and leaf-lists.

1.3. Prefixes in Data Node Names

In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>YANG module</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>yang</td>
<td>ietf-yang-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>inet</td>
<td>ietf-inet-types</td>
<td>[RFC6991]</td>
</tr>
</tbody>
</table>

Table 1: Prefixes and corresponding YANG modules
1.4. Open Issues and Next Steps

This document covers YANG models for data pertaining to the base RSVP, the generic RSVP-TE, and the packet RSVP-TE protocols. The current revision of this draft covers configuration and state data, but future revisions are expected to cover data for RPCs, and notifications.

1.4.1. Module Hierarchy

During discussions, some of the RSVP features were debated whether they should be present in the base RSVP model or in extension RSVP model (e.g. RSVP-TE model) especially that some features were defined in RSVP extension drafts for GMPLS or RSVP-TE states. For example, the RSVP Hello extensions defined in [RFC3209] with extensions to RSVP for TE states. However, RSVP Hellos extension can also apply to non RSVP-TE states, and some vendor implementations, allow it to be enabled independent of RSVP-TE features.

1.4.2. Model Data Organization

Throughout the model, the approach described in [I-D.openconfig-netmod-opstate] is adopted to represent data pertaining to configuration intended state, applied state and derived state data elements. Each container in the model hold a "config" and "state" sub-container. The "config" sub-container is used to represent the intended configurable parameters, and the state sub-container is used to represent both the applied configurable parameters and any derived state, such as counters or statistical information.

The decision to use this approach was made to better align with the MPLS consolidated model in [I-D.openconfig-mpls-consolidated-model], and maximize reusability of groupings defined in this document and allow for possible convergence between the two models.

1.4.3. State Data

Pure state data (for example, protocol derived data) can be modeled using two options:

- Contained inside the read-write container, under the "state" sub-container, as shown in Figure 2

- Contained inside a separate read-only container

The first option allows for reusing the same containers that hold configuration read-write data under a "config" sub-container, and by
adding the state data under the read-only "state" sub-container of
the container. For ephemeral or purely derived states (e.g. RSVP
sessions), and since in this case the state would hang off a read-
write parent container, it will be possible to delete the parent
container and removing such state.

The second option entails defining a new read-only parent container
in the model (e.g. neighbors-state) that holds the data.

This revision of the draft adopts the first option. Further
discussions on this topic are expected to close on the best choice to
adopt.

2. Design Considerations

2.1. Base Model

The base model discussed in this section covers base RSVP [RFC2205],
and enhancements that pertain to the base protocol operation. RSVP-
TE [RFC3209] and other traffic-engineering specific enhancements have
been deliberately left out of this model to enable users to configure
just the base RSVP protocol features in scenarios where traffic-
engineering is not enabled/required. The generic and packet specific
RSVP traffic-engineering model is an augmentation to the RSVP base
model and is discussed in this revision of the document the packet
RSVP-TE model is presented in Section 5.

Currently, the RSVP-TE module is presented as part of this draft, and
is mostly packet centric. It is expected that the RSVP-TE YANG model
will move to a separate document in the next revision.
2.2. Feature Set

The model in this revision of the document does not aim to be feature complete. The primary intent is to cover a set of standard generic features (listed below) that are commonly in use.

- Authentication ([RFC2747])
- Refresh Reduction ([RFC2961])
- Hellos ([RFC3209])
- Graceful Restart ([RFC3473], [RFC5063])

2.3. Configuration Inheritance

The defined data model supports configuration inheritance for neighbors, and interfaces. Data elements defined in the main container (e.g. the container that encompasses the list of interfaces, or neighbors) are assumed to apply equally to all elements of the list, unless overridden explicitly for a certain element (e.g. interface). Vendors are expected to augment the above container(s) to provide the list of inheritance command for their implementations.
2.4. Vendor Configuration Models

There are two main popular types of routing protocol configuration that vendors may support:

- **Protocol centric** - all the protocol related configuration is contained within the protocol itself. Configuration belonging to multiple instances of the protocol running in different routing-instances (e.g., VRFs) are contained under the default routing instance [I-D.ietf-netmod-routing-cfg]:

- **VRF centric** - all the protocol related configuration for a routing-instance is contained within this routing-instance.

On-going discussions within the IETF community have converged on adopting the VRF centric approach. The proposed model in this document adheres to this conclusion.

3. Model Organization

This document defines three YANG data models that cover the RSVP base, RSVP-TE generic, and RSVP-TE MPLS packet data that cover the configuration, state, RPCs, and notifications properties. The relationship between the different modules is depicted in Figure 1.

The presence of this container is expected to enable RSVP protocol functionality.

The approach described in [I-D.openconfig-netmod-opstate] allows for modeling the intended and respective applied and derived state. The TE state data in this model falls into one of the following categories:

- State corresponding to applied configuration
- State corresponding to derived state, counters, stats, etc.
Data for such state is contained under the respective "state" sub-container of the intended object (e.g. interface) as shown in Figure 2.

module: ietf-rsvp
 +--rw rsvp!
 +--rw globals
 +-- rw config
 <<intended configuration>>
 +-- ro state
 <<applied configuration>>
 <<derived state associated with the tunnel>>
 +--rw interfaces
 +-- rw config
 <<intended configuration>>
 +-- ro state
 <<applied configuration>>
 <<derived state associated with the tunnel>>
 +--rw neighbors
 +-- rw config
 <<intended configuration>>
 +-- ro state
 <<applied configuration>>
 <<derived state associated with the tunnel>>
 +--rw sessions
 +-- rw config
 <<intended configuration>>
 +-- ro state
 <<applied configuration>>
 <<derived state associated with the tunnel>>

rpcs:
 +--x global-rpc
 +--x interfaces-rpc
 +--x neighbors-rpc
 +--x sessions-rpc

notifications:
 +--n global-notif
4.1. Configuration and State Data

Global Data

This branch of the data model covers global configuration and states that control RSVP protocol behavior.

module: ietf-rsvp
 +--rw rsvp!
 +--rw globals
 +--rw config
 +--ro state
 +--ro statistics
 +--ro discontinuity-time? yang:date-and-time
 +--ro packet
 +--ro sent? yang:counter32
 +--ro rcvd? yang:counter32
 +--ro tx-dropped? yang:counter32
 +--ro rx-dropped? yang:counter32
 +--ro tx-error? yang:counter32
 +--ro rx-error? yang:counter32
 +--ro protocol
 +--ro ack-sent? yang:counter32
 +--ro ack-rcvd? yang:counter32
 +--ro bundle-sent? yang:counter32
 +--ro bundle-rcvd? yang:counter32
 +--ro hello-sent? yang:counter32
 +--ro hello-rcvd? yang:counter32
 +--ro integrity-challenge-sent? yang:counter32
 +--ro integrity-challenge-rcvd? yang:counter32
 +--ro integrity-response-sent? yang:counter32
 +--ro integrity-response-rcvd? yang:counter32
 +--ro notify-sent? yang:counter32
 +--ro notify-rcvd? yang:counter32
 +--ro path-sent? yang:counter32
 +--ro path-rcvd? yang:counter32
 +--ro path-err-sent? yang:counter32
 +--ro path-err-rcvd? yang:counter32
4.1.1. Interface Data

This branch of the data model covers configuration and state elements relevant to one or all RSVP interfaces. Any data configuration applied at the "interfaces" container level are equally applicable to all interfaces - unless overridden by explicit configuration under a specific interface.
++ro ack-sent? yang:counter32
++ro ack-rcvd? yang:counter32
++ro bundle-sent? yang:counter32
++ro bundle-rcvd? yang:counter32
++ro hello-sent? yang:counter32
++ro hello-rcvd? yang:counter32
++ro integrity-challenge-sent? yang:counter32
++ro integrity-challenge-rcvd? yang:counter32
++ro integrity-response-sent? yang:counter32
++ro integrity-response-rcvd? yang:counter32
++ro notify-sent? yang:counter32
++ro notify-rcvd? yang:counter32
++ro path-sent? yang:counter32
++ro path-rcvd? yang:counter32
++ro path-err-sent? yang:counter32
++ro path-err-rcvd? yang:counter32
++ro path-tear-sent? yang:counter32
++ro path-tear-rcvd? yang:counter32
++ro resv-sent? yang:counter32
++ro resv-rcvd? yang:counter32
++ro resv-confirm-sent? yang:counter32
++ro resv-confirm-rcvd? yang:counter32
++ro resv-err-sent? yang:counter32
++ro resv-err-rcvd? yang:counter32
++ro resv-tear-sent? yang:counter32
++ro resv-tear-rcvd? yang:counter32
++ro summary-refresh-sent? yang:counter32
++ro summary-refresh-rcvd? yang:counter32
++ro unknown-recv? yang:counter32
++ro error
 ++ro authentication? yang:counter64
 ++ro checksum? yang:counter64
 ++ro packet-len? yang:counter64
++rw signaling-parameters
 ++rw config
 ++rw refresh-interval? uint32
 ++rw refresh-misses? uint32
 ++rw checksum? uint32
 ++rw patherr-state-removal? empty
++ro state
 ++ro refresh-interval? uint32
 ++ro refresh-misses? uint32
 ++ro checksum? uint32
 ++ro patherr-state-removal? empty
++rw refresh-reduction (refresh-reduction)?
 ++rw config
 ++rw bundle-message-max-size? uint32
 ++rw disable? empty
Internet-Draft RSVP YANG Data Model July 2015

---rw reliable-ack-hold-time? uint32
---rw reliable-ack-max-size? uint32
---rw reliable-retransmit-time? uint32
---rw reliable-srefresh? empty

---rw summary-max-size? uint32

---ro state
 ---ro bundle-message-max-size? uint32
 ---ro disable? empty
 ---ro reliable-ack-hold-time? uint32
 ---ro reliable-ack-max-size? uint32
 ---ro reliable-retransmit-time? uint32
 ---ro reliable-srefresh? empty
 ---ro summary-max-size? uint32

---rw rsvp-hellos {hellos}?

 ---rw config
 | ---rw interface-based? empty
 | ---rw hello-interval? uint32
 | ---rw hello-misses? uint32

 ---ro state
 | ---ro interface-based? empty
 | ---ro hello-interval? uint32
 | ---ro hello-misses? uint32

---rw authentication {authentication}?

 ---rw config
 | ---rw lifetime? uint32
 | ---rw window-size? uint32
 | ---rw challenge? empty
 | ---rw retransmits? uint32
 | ---rw (authentication-type)?
 | | ---:(string)
 | | | ---rw password? string
 | | | ---rw algorithm? identityref
 | | | | ---:(key-chain)
 | | | | | ---rw key-chain? string

 ---ro state
 | ---ro lifetime? uint32
 | ---ro window-size? uint32
 | ---ro challenge? empty
 | ---ro retransmits? uint32
 | ---ro (authentication-type)?
 | | ---:(string)
 | | | ---ro password? string
 | | | ---ro algorithm? identityref
 | | | | ---:(key-chain)
 | | | | | ---ro key-chain? string

---rw interface* [interface]

 | ---rw interface if:interface-ref
 | ---rw config
++-ro state
 ++-ro statistics
 ++-ro discontinuity-time? yang:date-and-time
 ++-ro packet
 ++-ro sent? yang:counter32
 ++-ro rcvd? yang:counter32
 ++-ro tx-dropped? yang:counter32
 ++-ro rx-dropped? yang:counter32
 ++-ro tx-error? yang:counter32
 ++-ro rx-error? yang:counter32
 ++-ro protocol
 ++-ro ack-sent? yang:counter32
 ++-ro ack-rcvd? yang:counter32
 ++-ro bundle-sent? yang:counter32
 ++-ro bundle-rcvd? yang:counter32
 ++-ro hello-sent? yang:counter32
 ++-ro hello-rcvd? yang:counter32
 ++-ro integrity-challenge-sent? yang:counter32
 ++-ro integrity-challenge-rcvd? yang:counter32
 ++-ro integrity-response-sent? yang:counter32
 ++-ro integrity-response-rcvd? yang:counter32
 ++-ro notify-sent? yang:counter32
 ++-ro notify-rcvd? yang:counter32
 ++-ro path-sent? yang:counter32
 ++-ro path-rcvd? yang:counter32
 ++-ro path-err-sent? yang:counter32
 ++-ro path-err-rcvd? yang:counter32
 ++-ro path-tear-sent? yang:counter32
 ++-ro path-tear-rcvd? yang:counter32
 ++-ro resv-sent? yang:counter32
 ++-ro resv-rcvd? yang:counter32
 ++-ro resv-confirm-sent? yang:counter32
 ++-ro resv-confirm-rcvd? yang:counter32
 ++-ro resv-err-sent? yang:counter32
 ++-ro resv-err-rcvd? yang:counter32
 ++-ro resv-tear-sent? yang:counter32
 ++-ro resv-tear-rcvd? yang:counter32
 ++-ro summary-refresh-sent? yang:counter32
 ++-ro summary-refresh-rcvd? yang:counter32
 ++-ro unknown-recv? yang:counter32
 ++-ro error
 ++-ro authentication? yang:counter64
 ++-ro checksum? yang:counter64
 ++-ro packet-len? yang:counter64
 ++-rw signaling-parameters
 ++-rw config
 | ++-rw refresh-interval? uint32
 | ++-rw refresh-misses? uint32
Internet-Draft RSVP YANG Data Model July 2015

++-rw refresh-reduction {refresh-reduction}?
 +-rw config
 | +-rw bundle-message-max-size? uint32
 | +-rw disable? empty
 | +-rw reliable-ack-hold-time? uint32
 | +-rw reliable-ack-max-size? uint32
 | +-rw reliable-retransmit-time? uint32
 | +-rw reliable-srefresh? empty
 | +-rw summary-max-size? uint32
 +--ro state
 | +-ro bundle-message-max-size? uint32
 | +-ro disable? empty
 | +-ro reliable-ack-hold-time? uint32
 | +-ro reliable-ack-max-size? uint32
 | +-ro reliable-retransmit-time? uint32
 | +-ro reliable-srefresh? empty
 | +-ro summary-max-size? uint32
++-rw rsvp-hellos {hellos}?
 +-rw config
 | +-rw interface-based? empty
 | +-rw hello-interval? uint32
 | +-rw hello-misses? uint32
 +--ro state
 | +-ro interface-based? empty
 | +-ro hello-interval? uint32
 | +-ro hello-misses? uint32
++-rw authentication {authentication}?
 +-rw config
 | +-rw lifetime? uint32
 | +-rw window-size? uint32
 | +-rw challenge? empty
 | +-rw retransmits? uint32
 | +-rw (authentication-type)?
 | | | +-rw password? string
 | | | +-rw algorithm? identityref
 | | | +-rw key-chain? string
 +--ro state
 | +-ro lifetime? uint32
 | +-ro window-size? uint32
4.1.2. Session Data

This branch of the data model covers configuration of elements relevant to RSVP neighbors. This would be discussed in detail in future revisions.

module: ietf-rsvp
 +-rw rsvp!
 +-rw sessions
 +-rw session* [src_port dst_port source destination]
 +-rw src_port uint16
 +-rw dst_port uint16
 +-rw source inet:ip-address
 +-rw destination inet:ip-address
 +-rw config
 +-rw state

4.1.3. Neighbor Data

This branch of the data model covers configuration of elements relevant to RSVP sessions. This would be discussed in detail in future revisions.
module: ietf-rsvp
 +--rw rsvp!
 +--rw neighbors
 +--rw neighbor* [address]
 +--rw address inet:ip-address
 +--rw neighbor-attributes
 +--rw config
 +--ro state
 +--ro epoch? uint32
 +--ro expiry-time? uint32
 +--ro graceful-restart
 +--ro enabled? boolean
 +--ro local-restart-time? uint32
 +--ro local-recovery-time? uint32
 +--ro nbr-restart-time? uint32
 +--ro nbr-recovery-time? uint32
 +--ro helper-mode
 +--ro helper-mode? boolean
 +--ro max-helper-restart-time? uint32
 +--ro max-helper-recovery-time? uint32
 +--ro nbr-restart-ttd? uint32
 +--ro nbr-recovery-ttd? uint32
 +--ro hello-status? enumeration {hellos}?
 +--ro interface? if:interface-ref
 +--ro neighbor-state? enumeration
 +--ro psb-count? uint32
 +--ro rsb-count? uint32
 +--ro refresh-reduction-capable? boolean
 +--ro restart-count? uint32
 +--ro restart-time? yang:date-and-time

4.2. RPC and Notification Data

TBD.

4.3. YANG Module

<CODE BEGINS> file "ietf-rsvp@2015-07-06.yang"
module ietf-rsvp {

 namespace "urn:ietf:params:xml:ns:yang:ietf-rsvp";

 /* Replace with IANA when assigned */
 prefix "rsvp";

 /* import ietf-inet-types { prefix inet; } */
 import ietf-interfaces {
 prefix "if";
}
import ietf-inet-types {
 prefix inet;
}

import ietf-yang-types {
 prefix "yang";
}

organization "IETF TEAS Working Group";

contact "TBA";

description "This module contains the RSVP YANG data model."

revision 2015-07-06 {
 description "Latest revision of RSVP yang module.";
 reference "RFC2205";
}

identity hash-algorithm {
 description "Base identity for message-digest algorithm";
}

identity MD5 {
 base hash-algorithm;
 description "MD5 hash algorithm";
 reference "RFC1321";
}

identity SHA-1 {
 base hash-algorithm;
 description "SHA-1 hash algorithm";
 reference "NIST, FIPS PUB 180-1: Secure Hash Standard";
}

/* RSVP features */
feature authentication {
 description "Indicates support for RSVP authentication";
}
feature error-statistics {
 description
 "Indicates support for error statistics";
}

feature global-statistics {
 description
 "Indicates support for global statistics";
}

feature graceful-restart {
 description
 "Indicates support for RSVP graceful restart";
}

feature hellos {
 description
 "Indicates support for RSVP hellos (RFC3209).";
}

feature notify {
 description
 "Indicates support for RSVP notify message (RFC3473).";
}

feature refresh-reduction {
 description
 "Indicates support for RSVP refresh reduction (RFC2961).";
}

feature per-interface-statistics {
 description
 "Indicates support for per interface statistics";
}

grouping graceful-restart_config {
 description
 "Configuration parameters relating to RSVP Graceful-Restart";
 leaf restart-time {
 type uint32;
 description
 "Graceful restart time (seconds).";
 reference
 }
}
leaf recovery-time {
 type uint32;
 description
 "RSVP state recovery time";
}

grouping graceful-restart {
 description
 "Top level grouping for RSVP graceful-restart parameters";
 container graceful-restart {
 if-feature graceful-restart;
 presence "Enable RSVP graceful restart on the node.";
 description
 "Top level container for RSVP graceful-restart";
 container config {
 description
 "Configuration parameters relating to graceful-restart";
 uses graceful-restart_config;
 } container state {
 config false;
 description
 "State information associated with RSVP graceful-restart";
 uses graceful-restart_config;
 }
 }
}

grouping authentication_config {
 description
 "Configuration parameters relating to RSVP authentication";
 leaf lifetime {
 type uint32 {
 range "30..86400";
 }
 description
 "Life time for each security association";
 reference
 "RFC 2747: RSVP Cryptographic Authentication";
 }
 leaf window-size {

type uint32 {
 range "1..64";
}
description
 "Window-size to limit number of out-of-order messages.";
reference
 "RFC 2747: RSVP Cryptographic Authentication";
}
leaf challenge {
 type empty;
description
 "Enable challenge messages.";
reference
 "RFC 2747: RSVP Cryptographic Authentication";
}
leaf retransmits {
 type uint32 {
 range "1..10000";
 }
description
 "Number of retransmits when messages are dropped.";
reference
 "RFC 2747: RSVP Cryptographic Authentication";
}
choice authentication-type {
 description
 "RSVP authentication choices";
case string {
 leaf password {
 type string;
description
 "An authentication key string";
 }
 leaf algorithm {
 type identityref {
 base hash-algorithm;
 }
 description
 "Cryptographic hash algorithm";
 }
}
case key-chain {
 description

"Configure RSVP authentication."
leaf key-chain {
 type string {
 length "1..32";
 }
 description
 "Key chain name to authenticate RSVP
 signaling messages."
 reference
 "RFC 2747: RSVP Crypto
graphic Authentication"
}
}
}

grouping authentication {
 description
 "Top level grouping for RSVP authentication parameters"
 container authentication {
 if-feature authentication;
 description
 "Top level container for RSVP authentication
 parameters"
 container config {
 description
 "Configuration parameters relating to
 RSVP authentication"
 uses authentication_config;
 }
 container state {
 config false;
 description
 "State information associated with RSVP
 authentication"
 uses authentication_config;
 }
 }
}

grouping rsvp-hellos_config {
 description
 "Configuration parameters relating to RSVP
 hellos"
 leaf interface-based {
 type empty;
 description "Enable interface-based
 Hello adjacency if present.";
 }
leaf hello-interval {
 type uint32 {
 range "3000..30000";
 }
 description
 "Configure interval between successive Hello messages in milliseconds.";
 reference
 "RFC 3209": RSVP-TE: Extensions to RSVP for LSP Tunnels.
}

leaf hello-misses {
 type uint32 {
 range "1..10";
 }
 description
 "Configure max number of consecutive missed Hello messages.";
 reference
}

grouping rsvp-hellos {
 description
 "Top level grouping for RSVP hellos parameters";
 container rsvp-hellos {
 if-feature hellos;
 description
 "Top level container for RSVP hello parameters";
 container config {
 description
 "Configuration parameters relating to RSVP hellos";
 uses rsvp-hellos_config;
 }
 container state {
 config false;
 description
 "State information associated with RSVP"
grouping signaling-parameters-config {
 description
 "Configuration parameters relating to RSVP signaling";
 leaf refresh-interval {
 type uint32;
 description
 "Set interval between successive refreshes";
 }
 leaf refresh-misses {
 type uint32;
 description
 "Set max number of consecutive missed messages for state expiry";
 }
 leaf checksum {
 type uint32;
 description
 "Enable RSVP message checksum computation";
 }
 leaf patherr-state-removal {
 type empty;
 description
 "State-Removal flag in Path Error message if present.";
 }
}

grouping signaling-parameters {
 description
 "Top level grouping for RSVP signaling parameters";
 container signaling-parameters {
 description
 "Top level container for RSVP signaling parameters";
 container config {
 description
 "Configuration parameters relating to RSVP signaling parameters";
 uses signaling-parameters-config;
 }
 container state {
 config false;
 }
 }
}
grouping interface-attributes {
 description
 "Top level grouping for RSVP interface properties";
 container config {
 description
 "Configuration parameters relating to RSVP interface parameters";
 }
 container state {
 config false;
 description
 "State information associated with RSVP interface parameters";
 uses statistics_state {
 if-feature per-interface-statistics;
 }
 }
}

grouping refresh-reduction_config {
 description
 "Configuration parameters relating to RSVP refresh reduction";
 leaf bundle-message-max-size {
 type uint32 {
 range "512..65000";
 }
 description
 "Configure maximum size (bytes) of a single RSVP Bundle message.";
 }
 leaf disable {
 type empty;
 description
 "Disable refresh reduction if present.";
 }
 leaf reliable-ack-hold-time {
 type uint32 {
 range "100..5000";
 }
 }
}
description
 "Configure hold time in milliseconds for
 sending RSVP ACK message(s).";
}
leaf reliable-ack-max-size {
 type uint32 {
 range "20..65000";
 }
 description
 "Configure max size of a single RSVP ACK
 message.";
}
leaf reliable-retransmit-time {
 type uint32 {
 range "100..10000";
 }
 description
 "Configure min delay in milliseconds to
 wait for an ACK before a retransmit.";
}
leaf reliable-srefresh {
 type empty;
 description
 "Configure use of reliable messaging for
 summary refresh if present.";
}
leaf summary-max-size {
 type uint32 {
 range "20..65000";
 }
 description
 "Configure max size (bytes) of a single
 RSVP summary refresh message.";
}

grouping refresh-reduction {
 description
 "Top level grouping for RSVP refresh reduction
 parameters";
 container refresh-reduction {
 if-feature refresh-reduction;
 description
 "Top level container for RSVP refresh reduction
 parameters";
 container config {
 description
 "Configuration parameters relating to
RSVP refresh reduction;
 uses refresh-reduction_config;
}

container state {
 config false;
 description
 "State information associated with RSVP refresh reduction";
 uses refresh-reduction_config;
}

grouping neighbor-derived_state {
 description
 "Derived state at neighbor level.";

 leaf epoch {
 type uint32;
 description
 "Neighbor epoch.";
 }

 leaf expiry-time {
 type uint32;
 units seconds;
 description
 "Neighbor expiry time after which the neighbor state is purged if no states associated with it";
 }

 container graceful-restart {
 description
 "Graceful restart information.";

 leaf enabled {
 type boolean;
 description
 "'true' if graceful restart is enabled for the neighbor.";
 }

 leaf local-restart-time {
 type uint32;
 units seconds;
 description
 "Local node restart time";
 }
 }
}
leaf local-recovery-time {
 type uint32;
 units seconds;
 description
 "Local node recover time";
}

leaf nbr-restart-time {
 type uint32;
 units seconds;
 description
 "Neighbor restart time";
}

leaf nbr-recovery-time {
 type uint32;
 units seconds;
 description
 "Neighbor recover time";
}

container helper-mode {
 description
 "Helper mode information ";

 leaf helper-mode {
 type boolean;
 description
 "'true' if helper mode is enabled.";
 }

 leaf max-helper-restart-time {
 type uint32;
 units seconds;
 description
 "The time the router or switch waits after it
 discovers that a neighboring router has gone down
 before it declares the neighbor down";
 }

 leaf max-helper-recovery-time {
 type uint32;
 units seconds;
 description
 "The amount of time the router retains the state of its
 RSVP neighbors while they undergo a graceful restart";
 }
}
leaf nbr-restart-ttd {
 type uint32;
 units seconds;
 description
 "Number of seconds remaining for neighbor to send
 Hello message after restart."
}

leaf nbr-recovery-ttd {
 type uint32;
 units seconds;
 description
 "Number of seconds remaining for neighbor to
 refresh.";
}

} // helper-mode
} // graceful-restart

leaf hello-status {
 if-feature hellos;
 type enumeration {
 enum "enabled" {
 description
 "Enabled";
 }
 enum "disabled" {
 description
 "Disabled";
 }
 enum "restarting" {
 description
 "Restarting";
 }
 }
 description
 "Hello status";
}

leaf interface {
 type if:interface-ref;
 description
 "Interface to this neighbor.";
}

leaf neighbor-state {
 type enumeration {
 enum "up" {
 description

"up";
}

enum "down" {
 description
 "down";
}

enum "hello-disable" {
 description
 "hello-disable";
}

enum "restarting" {
 description
 "restarting";
}

description
 "Neighbor state";
}

leaf psb-count {
 type uint32;
 description
 "Number of PSB state currently referencing the neighbor.";
}

leaf rsb-count {
 type uint32;
 description
 "Number of RSB state currently referencing the neighbor.";
}

leaf refresh-reduction-capable {
 if-feature refresh-reduction;
 type boolean;
 description
 "Whether neighbor is refresh reduction capable.";
}

leaf restart-count {
 type uint32;
 description
 "Number of times this neighbor restart";
}

leaf restart-time {
 type yang:date-and-time;
description
 "Last restart time of the neighbor";
} // neighbor-derived_state

grouping statistics_state {
 description "RSVP statistic attributes.";
 container statistics {
 description "RSVP statistics";

 leaf discontinuity-time {
 type yang:date-and-time;
 description "The time on the most recent occasion at which any one or more of the statistic counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time the local management subsystem re-initialized itself.";
 }

 container packet {
 description "Packet statistics.";
 leaf sent {
 type yang:counter32;
 description "Packet sent count";
 }

 leaf rcvd {
 type yang:counter32;
 description "Packet received count";
 }

 leaf tx-dropped {
 type yang:counter32;
 description "Packet tx dropped count";
 }

 leaf rx-dropped {
 type yang:counter32;
 description "Packet rx dropped count";
 }
 }
 }
} // statistics_state
leaf tx-error {
 type yang:counter32;
 description
 "Packet tx error count";
}

leaf rx-error {
 type yang:counter32;
 description
 "Packet rx error count";
}

container protocol {
 description
 "RSVP protocol statistics.";
 leaf ack-sent {
 if-feature refresh-reduction;
 type yang:counter32;
 description
 "Hello sent count";
 }

 leaf ack-rcvd {
 if-feature refresh-reduction;
 type yang:counter32;
 description
 "Hello received count";
 }

 leaf bundle-sent {
 if-feature refresh-reduction;
 type yang:counter32;
 description
 "Bundle sent count";
 }

 leaf bundle-rcvd {
 if-feature refresh-reduction;
 type yang:counter32;
 description
 "Bundle received count";
 }

 leaf hello-sent {
 if-feature hellos;
 type yang:counter32;
 description
 }
}
"Hello sent count";
)

leaf hello-rcvd {
 if-feature hellos;
 type yang:counter32;
 description
 "Hello received count";
}

leaf integrity-challenge-sent {
 if-feature authentication;
 type yang:counter32;
 description
 "Integrity Challenge sent count";
}

leaf integrity-challenge-rcvd {
 if-feature authentication;
 type yang:counter32;
 description
 "Integrity Challenge received count";
}

leaf integrity-response-sent {
 if-feature authentication;
 type yang:counter32;
 description
 "Integrity Response sent count";
}

leaf integrity-response-rcvd {
 if-feature authentication;
 type yang:counter32;
 description
 "Integrity Response received count";
}

leaf notify-sent {
 if-feature refresh-reduction;
 type yang:counter32;
 description
 "Notify sent count";
}

leaf notify-rcvd {
 if-feature refresh-reduction;
 type yang:counter32;

description
 "Notify received count";
}

leaf path-sent {
 type yang:counter32;
 description
 "Path sent count";
}

leaf path-rcvd {
 type yang:counter32;
 description
 "Path received count";
}

leaf path-err-sent {
 type yang:counter32;
 description
 "Path error sent count";
}

leaf path-err-rcvd {
 type yang:counter32;
 description
 "Path error received count";
}

leaf path-tear-sent {
 type yang:counter32;
 description
 "Path tear sent count";
}

leaf path-tear-rcvd {
 type yang:counter32;
 description
 "Path tear received count";
}

leaf resv-sent {
 type yang:counter32;
 description
 "Resv sent count";
}

leaf resv-rcvd {
 type yang:counter32;
description
 "Resv received count";
}

leaf resv-confirm-sent {
 type yang:counter32;
 description
 "Confirm sent count";
}

leaf resv-confirm-rcvd {
 type yang:counter32;
 description
 "Confirm received count";
}

leaf resv-err-sent {
 type yang:counter32;
 description
 "Resv error sent count";
}

leaf resv-err-rcvd {
 type yang:counter32;
 description
 "Resv error received count";
}

leaf resv-tear-sent {
 type yang:counter32;
 description
 "Resv tear sent count";
}

leaf resv-tear-rcvd {
 type yang:counter32;
 description
 "Resv tear received count";
}

leaf summary-refresh-sent {
 if-feature refresh-reduction;
 type yang:counter32;
 description
 "Summary refresh sent count";
}

leaf summary-refresh-rcvd {
if-feature refresh-reduction;
type yang:counter32;
description
"Summary refresh received count";
}

leaf unknown-recv {
type yang:counter32;
description
"Unknown packet received count";
}
} // rsvp

container error {
description
"Error statistics.";
leaf authentication {
type yang:counter64;
description
"The total number of packets received with an authentication failure.";
}
leaf checksum {
type yang:counter64;
description
"The total number of packets received with an invalid checksum value.";
}
leaf packet-len {
type yang:counter64;
description
"The total number of packets received with an invalid packet length.";
}
} // error
} // statistics
} // statistics_state

grouping global-attributes {
description
"Top level grouping for RSVP global properties";
container config {
description
"Configuration globals properties";
}
container state {
 config false;
 description
 "State information associated with RSVP
global properties";
 uses statistics_state {
 if-feature global-statistics;
 }
}

grouping session-attributes {
 description
 "Top level grouping for RSVP session properties";
 container config {
 description
 "Configuration for session properties";
 }
 container state {
 config false;
 description
 "State information associated with RSVP
session properties";
 }
}

grouping neighbor-attributes {
 description
 "Top level grouping for RSVP neighbor properties";
 container neighbor-attributes {
 description
 "Top level container for RSVP neighbor properties";
 }
 container config {
 description
 "Configuration for neighbor properties";
 }
 container state {
 config false;
 description
 "State information associated with RSVP
neighbor properties";
 uses neighbor-derived_state;
 }
}

container rsvp {
 presence "Enable RSVP feature";
}
description "RSVP feature container";
container globals {
 description "RSVP global properties.";
 uses global-attributes;
 uses graceful-restart;
}

container interfaces {
 description "RSVP interfaces container";
 uses interface-attributes;
 uses signaling-parameters;
 uses refresh-reduction;
 uses rsvp-hellos;
 uses authentication;

 list interface {
 key "interface";
 description "RSVP interfaces.";
 leaf interface {
 type if:interface-ref;
 description "RSVP interface.";
 }
 uses interface-attributes;
 uses signaling-parameters;
 uses refresh-reduction;
 uses rsvp-hellos;
 uses authentication;
 }
}

container sessions {
 description "RSVP sessions container";
 list session {
 key "src_port dst_port source destination";
 description "List of RSVP sessions";
 leaf src_port {
 type uint16;
 description "RSVP source port";
 reference "RFC2205";
 }
 leaf dst_port {
 type uint16;
 description "RSVP destination port";
 }
 }
}
5. RSVP-TE Generic YANG Model

This section contains the augmentation of the RSVP base YANG model for signalling Traffic-Engineering (RSVP-TE) Label Switched Paths (LSPs). New module is introduced that augment the RSVP-TE generic module to cover data items that are technology agnostic.

This model imports and augments the base RSVP YANG model (presented in Section 4.3). It also imports and augments the TE YANG model defined in [I-D.saad-teas-yang-te] to enable configuration of RSVP-TE attributes on TE tunnels.
The following subsections provide overview of the parts of the RSVP-TE generic model pertaining to configuration and state data.

5.1. Configuration and State Data

There are three types of configuration and state data nodes in this module:

- those augmenting or extending the base RSVP module
- those augmenting or extending the base TE generic module
- those that are specific to the RSVP-TE module

Below is a YANG tree representation for data items defined in the RSVP-TE generic module:

```yang
template module: ietf-rsvp-te
augment /rsvp:rsvp/rsvp:globals:
augment /rsvp:rsvp/rsvp:interfaces:
augment /rsvp:rsvp/rsvp:interfaces/rsvp:interface:
augment /rsvp:rsvp/rsvp:sessions:
augment /rsvp:rsvp/rsvp:neighbors:
augment /ietf-te:te/ietf-te:tunnels/ietf-te:tunnel:
  +--rw config
    |   +--rw lsp-source?               inet:ip-address
    |   +--rw lsp-signaled-name?        string
    |   +--rw lsp-priority-setup?       uint8
    |   +--rw lsp-priority-hold?        uint8
    |   +--rw local-recording-desired?  empty
    |   +--rw se-style-desired?         empty
    |   +--rw path-reevaluation-request? empty
    |   +--rw soft-preemption-desired?  empty
    |   +--rw end-to-end-routing?       empty
    |   +--rw boundary-rerouting?       empty
    |   +--rw segment-based-rerouting?  empty
    |   +--rw lsp-integrety-required?   empty
    |   +--rw contiguous-lsp?           empty
    |   +--rw lsp-stitching-desired?    empty
    |   +--rw preplanned-lsp?           empty
    |   +--rw oob-mapping?              empty
  +--ro state
    +--ro lsp-source?                 inet:ip-address
    +--ro lsp-signaled-name?          string
    +--ro lsp-priority-setup?         uint8
    +--ro lsp-priority-hold?          uint8
    +--ro local-recording-desired?    empty
    +--ro se-style-desired?           empty
```
++--ro path-reevaluation-request? empty
++--ro soft-preemption-desired? empty
++--ro end-to-end-routing? empty
++--ro boundary-rerouting? empty
++--ro segment-based-rerouting? empty
++--ro lsp-integrity-required? empty
++--ro contiguous-lsp? empty
++--ro lsp-stitching-desired? empty
++--ro preplanned-lsp? empty
++--ro oob-mapping? empty

++--ro lsp-source? inet:ip-address
++--ro lsp-signaled-name? string
++--ro lsp-priority-setup? uint8
++--ro lsp-priority-hold? uint8
++--ro local-recording-desired? empty
++--ro se-style-desired? empty
++--ro path-reevaluation-request? empty
++--ro soft-preemption-desired? empty
++--ro end-to-end-routing? empty
++--ro boundary-rerouting? empty
++--ro segment-based-rerouting? empty
++--ro lsp-integrity-required? empty
++--ro contiguous-lsp? empty
++--ro lsp-stitching-desired? empty
++--ro preplanned-lsp? empty
++--ro oob-mapping? empty
++--ro incoming-explicit-route
 ++--ro explicit-route-subobjects* [subobject-index]
 ++--ro subobject-index uint32
 ++--ro (type)?
 ++--:(ipv4-address)
 ++--ro v4-address? inet:ipv4-address
 ++--ro v4-prefix-length? uint8
 ++--ro v4-loose? boolean
 ++--:(ipv6-address)
 ++--ro v6-address? inet:ipv6-address
 ++--ro v6-prefix-length? uint8
 ++--ro v6-loose? boolean
 ++--:(as-number)
 ++--ro as-number? uint16
 ++--:(unnumbered-link)
 ++--ro router-id? inet:ip-address
 ++--ro interface-id? uint32
 ++--:(label)
 ++--ro value? uint32
++--ro outgoing-explicit-route
+--ro explicit-route-subobjects* [subobject-index]
 +--ro subobject-index uint32
 +--ro (type)?
 +--:(ipv4-address)
 | +--ro v4-address? inet:ipv4-address
 | +--ro v4-prefix-length? uint8
 | +--ro v4-loose? boolean
 +--:(ipv6-address)
 | +--ro v6-address? inet:ipv6-address
 | +--ro v6-prefix-length? uint8
 | +--ro v6-loose? boolean
 +--:(as-number)
 | +--ro as-number? uint16
 +--:(unnumbered-link)
 | +--ro router-id? inet:ip-address
 | +--ro interface-id? uint32
 +--:(label)
 | +--ro value? uint32
 +--ro path-record-route
 +--ro record-route-subobjects* [subobject-index]
 +--ro subobject-index uint32
 +--ro (type)?
 +--:(ipv4-address)
 | +--ro v4-address? inet:ipv4-address
 | +--ro v4-prefix-length? uint8
 | +--ro v4-flags? uint8
 +--:(ipv6-address)
 | +--ro v6-address? inet:ipv6-address
 | +--ro v6-prefix-length? uint8
 | +--ro v6-flags? uint8
 +--:(label)
 | +--ro value? uint32
 | +--ro flags? uint8
 +--ro resv-record-route
 +--ro record-route-subobjects* [subobject-index]
 +--ro subobject-index uint32
 +--ro (type)?
 +--:(ipv4-address)
 | +--ro v4-address? inet:ipv4-address
 | +--ro v4-prefix-length? uint8
 | +--ro v4-flags? uint8
 +--:(ipv6-address)
 | +--ro v6-address? inet:ipv6-address
 | +--ro v6-prefix-length? uint8
 | +--ro v6-flags? uint8
 +--:(label)
 | +--ro value? uint32
 | +--ro flags? uint8
5.2. RPC and Notification Data

TBD.

5.3. YANG Module

<CODE BEGINS> file "ietf-rsvp-te@2015-07-06.yang"
module ietf-rsvp-te {

 namespace "urn:ietf:params:xml:ns:yang:ietf-rsvp-te";

 prefix "rsvp-te";

 import ietf-rsvp {
 prefix rsvp;
 }

 import ietf-te {
 prefix ietf-te;
 }

 import ietf-inet-types {
 prefix inet;
 }

 /* Import TE generic types */
 import ietf-te-types {
 prefix ietf-te-types;
 }

 organization
 "IETF TEAS Working Group";

 contact "TBA";

 description
 "This module contains the RSVP YANG generic data model.";

 revision 2015-07-06 {
 description "Latest revision to RSVP-TE generic YANG module";
 reference "RFC3209";
 }

 /**
 * RSVP-TE LSPs groupings.
 */

 grouping lsp-record-route-information_state {

description "recorded route information grouping";
container path-record-route {
 when "../origin-type != 'ingress'" {
 description "Applicable on non-ingress LSPs only";
 }
 description "RSVP Path recorded route information";
 list record-route-subobjects {
 key "subobject-index";
 description "";
 leaf subobject-index {
 type uint32;
 description "RRO subobject index";
 }
 uses ietf-te-types:record-route-subobject;
 }
}

container resv-record-route {
 when "../origin-type != 'egress'" {
 description "Applicable on non-egress LSPs only";
 }
 description "RSVP Resv recorded route information";
 list record-route-subobjects {
 key "subobject-index";
 description "";
 leaf subobject-index {
 type uint32;
 description "RRO subobject index";
 }
 uses ietf-te-types:record-route-subobject;
 }
}

grouping lsp-explicit-route-information_state {
 description "RSVP-TE LSP explicit-route information";
 container incoming-explicit-route {
 when "../origin-type != 'ingress'" {
 description "Applicable on non-ingress LSPs only";
 }
 description "Incoming explicit route information";
 list explicit-route-subobjects {
 key "subobject-index";
 description "";
 leaf subobject-index {
 type uint32;
 description "ERO subobject index";
 }
 uses ietf-te-types:explicit-route-subobject;
 }
 }
}
grouping lsp-attributes-flags_config {
 description "Configuration parameters relating to RSVP-TE LSP attribute flags";
 leaf end-to-end-routing {
 type empty;
 description "End-to-end routing desired";
 reference "RFC4920, RFC5420";
 }
 leaf boundary-rerouting {
 type empty;
 description "Boundary rerouting desired";
 reference "RFC4920, RFC5420";
 }
 leaf segment-based-rerouting {
 type empty;
 description "Segment-based rerouting desired";
 reference "RFC4920, RFC5420";
 }
 leaf lsp-integrety-required {
 type empty;
 description "LSP integrity desired";
 reference "RFC4875";
 }
 leaf contiguous-lsp {
 type empty;
 }
}

container outgoing-explicit-route {
 when "../origin-type != 'egress'" {
 description "Applicable on non-egress LSPs only";
 }
 description "Outgoing explicit route information";
 list explicit-route-subobjects {
 key "subobject-index";
 description "";
 leaf subobject-index {
 type uint32;
 description "ERO subobject index";
 }
 uses ietf-te-types:explicit-route-subobject;
 }
}

description "Contiguous LSP";
reference "RFC5151";
}
leaf lsp-stitching-desired {
 type empty;
 description "Stitchced LSP";
 reference "RFC5150";
}
leaf preplanned-lsp {
 type empty;
 description "Preplanned LSP";
 reference "RFC6001";
}
leaf oob-mapping {
 type empty;
 description
 "Mapping is done out-of-band";
 reference "RFC6511";
}
}

grouping lsp-session-attributes-obj-flags_config {
 description
 "Configuration parameters relating to RSVP-TE LSP
 session attribute flags";
 reference
 "RFC4859: Registry for RSVP-TE Session Flags";
 leaf local-recording-desired {
 type empty;
 description "Path recording is desired.";
 reference "RFC3209";
 }
 leaf se-style-desired {
 type empty;
 description "SE Style desired";
 reference "RFC3209";
 }
 leaf path-reevaluation-request {
 type empty;
 description "Path re-evaluation request";
 reference "RFC4736";
 }
 leaf soft-preemption-desired {
 type empty;
 description "Soft-preemption is desired";
 reference "RFC5712";
 }
}
grouping lsp-properties_config {
 description
 "Configuration parameters relating to RSVP-TE LSP
 session attribute flags";
 leaf lsp-source {
 type inet:ip-address;
 description
 "LSP source address.";
 }
 leaf lsp-signaled-name {
 type string;
 description
 "Sets the session name to use in the session
 attribute object.";
 }
 leaf lsp-priority-setup {
 type uint8 {
 range "0..7";
 }
 description
 "RSVP session attributes setup priority";
 }
 leaf lsp-priority-hold {
 type uint8 {
 range "0..7";
 }
 description
 "RSVP session attributes hold priority";
 }
 uses lsp-session-attributes-obj-flags_config;
 uses lsp-attributes-flags_config;
}

grouping tunnel-properties {
 description
 "Top level grouping for LSP properties.";
 container config {
 description
 "Configuration parameters relating to
 LSP properties";
 uses lsp-properties_config;
 }
 container state {
 config false;
 description
 "State information associated with LSP
 properties";
 uses lsp-properties_config;
 }
}
grouping global-soft-preemption_config {
 description
 "Configuration for global RSVP-TE soft preemption";
 leaf soft-preemption-timeout {
 type uint16 {
 range 0..300;
 }
 default 0;
 description
 "Timeout value for soft preemption to revert
to hard preemption";
 }
}

grouping global-soft-preemption {
 description
 "Top level group for RSVP-TE soft-preemption";
 container global-soft-preemption {
 presence "Enables soft preemption on a node.";
 description
 "Top level container for RSVP-TE soft-preemption";
 container config {
 description
 "Configuration parameters relating to RSVP
soft preemption support";
 uses global-soft-preemption_config;
 }
 container state {
 description "State parameters relating to RSVP
soft preemption support";
 uses global-soft-preemption_config;
 }
 }
}

/**
 * RSVP-TE generic global properties.
 */

/*** End of RSVP-TE generic global properties. ***/
grouping rsvp-te-interface-attributes {
 description
 "Top level grouping for RSVP-TE interface properties.";
 container rsvp-te-interface-attributes {
 description
 "Top level container for RSVP-TE interface properties";
 container config {
 description
 "Configuration parameters relating to RSVP-TE bandwidth";
 }
 container state {
 config false;
 description
 "State information associated with RSVP-TE bandwidth";
 }
 }
}
/*** End of RSVP-TE generic groupings/*** /

/* RSVP-TE global properties */
augment "/rsvp:rsvp/rsvp:globals" {
 description
 "RSVP-TE augmentation to RSVP globals";
}

/* Linkage to the base RSVP all links */
augment "/rsvp:rsvp/rsvp:interfaces" {
 description
 "RSVP-TE generic data augmentation pertaining to interfaces";
 /* To be added */
}

/* Linkage to per RSVP interface */
augment "/rsvp:rsvp/rsvp:interfaces/rsvp:interface" {
 description
 "RSVP-TE generic data augmentation pertaining to specific interface";
 /* To be added */
}

/* add augmentation for sessions neighbors */
augment "/rsvp:rsvp/rsvp:sessions" {
 description
 "RSVP-TE generic data augmentation pertaining to session";
}
6. RSVP-TE MPLS Packet Model

This section describes the MPLS packet RSVP-TE YANG module that augments the RSVP-TE generic module to signal packet MPLS LSPs. RSVP-TE YANG modules for other dataplane technologies (e.g., OTN or WDM) will be defined in separate modules and in other drafts.

The following subsections describe the configuration and state data pertaining to RSVP-TE packet MPLS YANG data model.
6.1. Configuration and State Data

The following are possible types of configuration and state data
nodes in this module:

- those augmenting or extending the generic RSVP-TE module
- those augmenting or extending the base TE generic module
- those that are specific to the RSVP-TE packet module

Below is a YANG tree representation for data items defined in the
RSVP-TE packet MPLS module:

module: ietf-rsvp-te-psc
augment /rsvp:rsvp/rsvp:globals:
 +-rw config
 +-rw rsvp-frr-local-revert!
 +-rw rsvp-frr-local-revert-delay? uint32
 +-ro state
 +-ro rsvp-frr-local-revert!
 +-ro rsvp-frr-local-revert-delay? uint32
augment /rsvp:rsvp/rsvp:interfaces:
augment /rsvp:rsvp/rsvp:interfaces/rsvp:interface:
augment /rsvp:rsvp/rsvp:sessions:
augment /ietf-te:te/ietf-te:tunnels/ietf-te:tunnel:
 +-rw config
 +-rw local-protection-desired? empty
 +-rw bandwidth-protection-desired? empty
 +-rw node-protection-desired? empty
 +-rw non-php-desired? empty
 +-rw entropy-label-cap? empty
 +-rw oam-mep-entities-desired? empty
 +-rw oam-mip-entities-desired? empty
 +-ro state
 +-ro local-protection-desired? empty
 +-ro bandwidth-protection-desired? empty
 +-ro node-protection-desired? empty
 +-ro non-php-desired? empty
 +-ro entropy-label-cap? empty
 +-ro oam-mep-entities-desired? empty
 +-ro oam-mip-entities-desired? empty
augment /ietf-te:te/ietf-te:interfaces/ietf-te:interface:
 +-rw config
 | +-rw (bandwidth-value)?
 | | +-:(absolute)
 | | | +-rw absolute-value? uint32
---:
| | | | | | | | | | | | | | | | | |---:(percentage)
| | |---:rw percent-value? uint32
|---:rw (bc-model-type)?
|---:(bc-model-rdm)
| |---:rw bc-model-rdm
| | |---:rw bandwidth-psc-constraints
| | | |---:rw maximum-reservable? uint32
| | |---:rw bc-value* uint32
|---:(bc-model-mam)
| |---:rw bc-model-mam
| | |---:rw bandwidth-psc-constraints
| | | |---:rw maximum-reservable? uint32
| | |---:rw bc-value* uint32
|---:(bc-model-mar)
| |---:rw bc-model-mar
| | |---:rw bandwidth-psc-constraints
| | | |---:rw maximum-reservable? uint32
| | |---:rw bc-value* uint32
|---:ro state
| |---:ro (bandwidth-value)?
| | | |---:(absolute)
| | | | |---:ro absolute-value? uint32
| | |---:(percentage)
| | | |---:ro percent-value? uint32
|---:ro (bc-model-type)?
|---:(bc-model-rdm)
| |---:ro bc-model-rdm
| | |---:ro bandwidth-psc-constraints
| | | |---:ro maximum-reservable? uint32
| | |---:ro bc-value* uint32
|---:(bc-model-mam)
| |---:ro bc-model-mam
| | |---:ro bandwidth-psc-constraints
| | | |---:ro maximum-reservable? uint32
| | |---:ro bc-value* uint32
|---:(bc-model-mar)
| |---:ro bc-model-mar
| | |---:ro bandwidth-psc-constraints
| | | |---:ro maximum-reservable? uint32
| | |---:ro bc-value* uint32
|---:ro interface-softpreemption-state
| |---:ro soft-preempted-bandwidth? uint32
|---:ro lsps* [source destination tunnel-id lsp-id extended-tunnel-id]
| | |---:ro source leafref
| |---:ro destination leafref
| |---:ro tunnel-id leafref
|---:ro lsp-id leafref
6.2. RPC and Notification Data

TBD.

6.3. YANG Module

<CODE BEGINS> file "ietf-rsvp-te-psc@2015-07-06.yang"
module ietf-rsvp-te-psc {

prefix "rsvp-te-psc";

import ietf-rsvp {
 prefix rsvp;
}

import ietf-te {
 prefix ietf-te;
}

import ietf-te-psc-types {
 prefix ietf-te-psc-types;
}

import ietf-te-types {
 prefix ietf-te-types;
}

organization
 "IETF TEAS Working Group";

contact "TBA";

description
 "Latest update to RSVP-TE packet YANG data model."

revision 2015-07-06 {
 description "Update to RSVP-TE packet YANG initial revision.";
 reference "RFC3209, RFC6511, RFC6790, RFC7260, RFC4859, RFC4090";
}

/* RSVP-TE LSPs packet groupings */
grouping lsp-attributes-flags-psc_config {
 description
 "Configuration parameters relating to RSVP-TE LSP
 packet attribute flags";
 leaf non-php-desired {
 type empty;
 description
 "Non-PHP is desired";
 reference "RFC6511";
 }
 leaf entropy-label-cap {
 type empty;
 description "Entropy label capability";
 reference "RFC6790";
 }
 leaf oam-mep-entities-desired {

type empty;
description "OAM MEP entities desired";
reference "RFC7260";
}
leaf oam-mip-entities-desired {
type empty;
description "OAM MIP entities desired";
reference "RFC7260";
}

grouping lsp-session-attributes-obj-flags-psc_config {
description "Configuration parameters relating to RSVP-TE LSP packet session attribute flags";
reference "RFC4859": Registry for RSVP-TE Session Flags";
leaf local-protection-desired {
type empty;
description "Fastreroute local protection is desired.";
reference "RFC4859": Registry for RSVP-TE Session Flags";
}
leaf bandwidth-protection-desired {
type empty;
description "Request FRR bandwidth protection on LSRs if present.";
reference "RFC4090";
}
leaf node-protection-desired {
type empty;
description "Request FRR node protection on LSRs if present.";
reference "RFC4090";
}
}

grouping lsp-properties-psc {
description "Top level grouping for LSP properties.";
container config {
description "Configuration parameters relating to LSP properties";
uses lsp-session-attributes-obj-flags-psc_config;
uses lsp-attributes-flags-psc_config;
}
container state {
 config false;
 description
 "State information associated with LSP properties";
 uses lsp-session-attributes-obj-flags-psc_config;
 uses lsp-attributes-flags-psc_config;
}

/* End of RSVP-TE LSPs packet groupings */

/* RSVP-TE packet interface groupings */
grouping rsvp-te-interface_state {
 description
 "The RSVP-TE interface state grouping";
 leaf over-subscribed-bandwidth {
 type uint32;
 description
 "The amount of over-subscribed bandwidth on the interface";
 }
}

grouping rsvp-te-interface-softpreemption_state {
 description
 "The RSVP-TE interface preemption state grouping";
 container interface-softpreemption-state {
 description
 "The RSVP-TE interface preemption state grouping";
 leaf soft-preempted-bandwidth {
 type uint32;
 description
 "The amount of soft-preempted bandwidth on this interface";
 }
 }
}

list lsps {
 key
 "source destination tunnel-id lsp-id " +
 "extended-tunnel-id";
 description
 "List of LSPs that are soft-preempted";
 leaf source {
 type leafref {
 "ietf-te:source";
 }
 }
 description
 "List of LSPs that are soft-preempted";
leaf sender-template {
 type leafref {
 + "ietf-te:sender-template";
 }
 description
 "Tunnel sender address extracted from
 SENDER TEMPLATE object";
 reference "RFC3209";
}

leaf destination {
 type leafref {
 + "ietf-te:destination";
 }
 description
 "Tunnel endpoint address extracted from
 SESSION object";
 reference "RFC3209";
}

leaf tunnel-id {
 type leafref {
 + "ietf-te:tunnel-id";
 }
 description
 "Tunnel identifier used in the SESSION
 that remains constant over the life
 of the tunnel.";
 reference "RFC3209";
}

leaf lsp-id {
 type leafref {
 + "ietf-te:lsp-id";
 }
 description
 "Identifier used in the SENDER TEMPLATE
 and the FILTER_SPEC that can be changed
 to allow a sender to share resources with
 itself.";
 reference "RFC3209";
}

leaf extended-tunnel-id {
 type leafref {
 + "ietf-te:extended-tunnel-id";
 }
 description
 "Extended Tunnel ID of the LSP.";
 reference "RFC3209";
}

leaf type {
 type leafref {

 "ietf-te:type";
}
description "LSP type P2P or P2MP";

/* End of RSVP-TE interface groupings */

/* RSVP-TE FRR groupings */
grouping rsvp-te-frr-backups_config {
 description
 "Top level container for RSVP-TE FRR backup parameters";
 leaf backup-bandwidth {
 type uint32;
 description
 "Maximum bandwidth this facility backup
 is allowed to protect";
 }
 leaf backup-bandwidth-classtype {
 type uint32;
 description
 "Type of primary LSP bandwidth that the
 backup is allowed to protect.";
 }
 choice type {
 description
 "FRR backup tunnel type";
 case static-tunnel {
 list static-backups {
 key "tunnel-name";
 description
 "List of static backup tunnels that
 protect the RSVP-TE interface.";
 leaf tunnel-name {
 type string;
 description "FRR Backup tunnel";
 }
 }
 }
 case auto-tunnel {
 leaf auto-backup-protection {
 type identityref {
 base ietf-te-psc-types:backup-protection-type;
 }
 default
 ietf-te-psc-types:backup-protection-node-link;
 }
 }
 }
}
description
 "Describes whether the backup should offer protection against link, node, or either";
}
leaf auto-backup-path-computation {
 type identityref {
 base
 ietf-te-types:path-computation-srlg-type;
 }
 description
 "FRR backup computation type";
}

grouping rsvp-te-frr-backups {
 description
 "Top level grouping for RSVP-TE FRR backup properties.";
 container rsvp-te-frr-backups {
 if-feature ietf-te-types:frr-te;
 description
 "Top level container for RSVP-TE FRR backup properties.";
 container config {
 description
 "Configuration parameters for interface RSVP-TE FRR backup properties";
 uses rsvp-te-frr-backups_config;
 }
 container state {
 config false;
 description
 "State parameters for interface RSVP-TE FRR backup properties";
 uses rsvp-te-frr-backups_config;
 }
 }
}

grouping lps-backup-info_state {
 description "Backup/bypass LSP related information";
 container backup-info {
 description
 "backup information";

 leaf backup-tunnel-name {
 type string;
 }
 }
}
description
"If an LSP has an FRR backup LSP that can protect it, this field identifies the tunnel name of the backup LSP. Otherwise, this field is empty."
}

leaf backup-frr-on {
type uint8;
description
"Whether currently this backup is carrying traffic"
}

leaf backup-protected-lsp-num {
type uint32;
description
"Number of LSPs protected by this backup"
}

}

grouping rsvp-frr-local-revert_config {
description "RSVP-TE FRR local revertive grouping";
container rsvp-frr-local-revert {
 presence "Enable RSVP FRR local revertive recovery mode.";
description
"RSVP-TE global properties container";
leaf rsvp-frr-local-revert-delay {
type uint32;
description
"Time to wait after primary link is restored before node attempts local revertive procedures.";
}
}

}

/*** End of RSVP-TE FRR backup information ***/

grouping globals-properties {
description
"Top level grouping for globals properties";
container config {
description
"Configuration parameters relating to global RSVP-TE packet properties";
uses rsvp-frr-local-revert_config;
container state {
 config false;
 description
 "State parameters relating to
global RSVP-TE packet properties";
 uses rsvp-frr-local-revert_config;
 }

/* RSVP-TE global properties */
augment "/rsvp:rsvp/rsvp:globals" {
 description
 "RSVP-TE augmentation to RSVP globals";
 uses globals-properties;
}

grouping rsvp-te-interface-attributes-psc {
 description
 "Top level grouping for RSVP-TE packet interface
properties.";
 container config {
 description
 "Configuration parameters relating to RSVP-TE
bandwidth";
 uses ietf-te-psc-types:bandwidth-psc-reservable;
 }
 container state {
 config false;
 description
 "State information associated with RSVP-TE
bandwidth";
 uses ietf-te-psc-types:bandwidth-psc-reservable;
 uses rsvp-te-interface-softpreemption_state;
 uses rsvp-te-interface_state;
 }
}

/* Linkage to the base RSVP all links */
augment "/rsvp:rsvp/rsvp:interfaces" {
 description "TBD";
 /* To be added */
}

/* Linkage to per RSVP link */
augment "/rsvp:rsvp/rsvp:interfaces/rsvp:interface" {
 description "TBD";
 /* To be added */
}
7. IANA Considerations

This document registers the following URIs in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made.

URI: urn:ietf:params:xml:ns:yang:ietf-rsvp XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-rsvp-te XML: N/A, the requested URI is an XML namespace.
This document registers a YANG module in the YANG Module Names registry \[RFC6020\].

prefix: ietf-rsvp reference: RFC3209

prefix: ietf-rsvp-te reference: RFC3209

8. Security Considerations

The YANG module defined in this memo is designed to be accessed via the NETCONF protocol \[RFC6241\]. The lowest NETCONF layer is the secure transport layer and the mandatory-to-implement secure transport is SSH \[RFC6242\]. The NETCONF access control model \[RFC6536\] provides means to restrict access for particular NETCONF users to a pre-configured subset of all available NETCONF protocol operations and content.

There are a number of data nodes defined in the YANG module which are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., <edit-config>) to these data nodes without proper protection can have a negative effect on network operations.

9. Acknowledgement

The authors would like to thank Lou Berger for reviewing and providing valuable feedback on this document.

10. References

10.1. Normative References

[I-D.ietf-netmod-routing-cfg]

[I-D.saad-teas-yang-te]

10.2. Informative References

[I-D.openconfig-mpls-consolidated-model]
George, J., Fang, L., eric.osborne@level3.com, e., and R. Shakir, "MPLS / TE Model for Service Provider Networks", draft-openconfig-mpls-consolidated-model-00 (work in progress), March 2015.

[I-D.openconfig-netmod-opstate]

Authors’ Addresses

Vishnu Pavan Beeram
Juniper Networks

Email: vbeeram@juniper.net

Tarek Saad
Cisco Systems Inc

Email: tsaad@cisco.com

Rakesh Gandhi
Cisco Systems Inc

Email: rgandhi@cisco.com

Xufeng Liu
Ericsson

Email: xufeng.liu@ericsson.com

Himanshu Shah
Ciena

Email: tsaad@cisco.com