This document defines a YANG data model for Segment Routing (SR) topology and Segment Routing (SR) traffic engineering (TE) topology.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 6, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
1. Introduction

This document defines a YANG [RFC7950] data model for describing the presentations of Segment Routing (SR) topology and Segment Routing (SR) traffic engineering (TE) topology. The version of the model limits the transport type to an MPLS dataplane.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
The following terms are defined in [RFC7950] and are not redefined here:

- augment
- data model
- data node

1.2. Tree Diagrams

Tree diagrams used in this document follow the notation defined in [RFC8340].

2. Modeling Considerations

2.1. Segment Routing (SR) Topology

The Layer 3 network topology model is discussed in [RFC8346]. The Segment Routing (SR) topology model proposed in this document augments and uses the ietf-l3-unicast-igp-topology module defined in [RFC8346]. SR related attributes are covered in the ietf-sr-topology model.

```
+-------------------------------+
| Layer 3 Network Topology      |
| ietf-l3-unicast-topology      |
+-------------------------------+

V

+------------------------+
| SR Topology            |
| ietf-sr-topology       |
+------------------------+
```

2.2. Segment Routing (SR) TE Topology

When traffic engineering is enabled on an SR topology, there will be associations between objects in SR topologies and objects in TE topologies. An SR TE topology is both an SR topology and a layer 3 TE topology. Multiple inheritance is used to achieve such relations.
Each type of topologies is indicated by "network-types" defined in [RFC8345]. For the three types of topologies above, the data representations are:

L3 Topology:

/nd:networks/nd:network/nd:network-types/l3-unicast-topology

L3 TE Topology:

/nd:networks/nd:network/nd:network-types/l3-unicast-topology/l3-te

SR Topology:

SR TE Topology: (multiple inheritance)

/nd:networks/nd:network/nd:network-types/l3-unicast-topology/l3-te

2.3. Relations to ietf-segment-routing

[I-D.ietf-spring-sr-yang] defines ietf-segment-routing that is a model intended to be used on network elements to configure or operate segment routing; ietf-sr-topology defined in this document is intended to be used on a controller for the network-wide operations such as path computation.

SR topology model shares many modeling constructs defined in ietf-segment-routing. The module ietf-sr-topology uses the types and groupings defined in ietf-segment-routing.
2.4. Topology Type Modeling

A new topology type is defined in this document, to indicate a topology that is a Segment Routing (SR) topology on an MPLS dataplane.

```yang
augment /nw:networks/nw:network/nw:network-types /13t:l3-unicast-topology:
  +++-rw sr-mpls!
```

2.5. Topology Attributes

The Segment Routing attributes with topology-wide impacts are modeled by augmenting the container "13-topology-attributes" in the L3 topology model. SRGB (Segment Routing Global Block) is covered in this augmentation. A SR domain is mapped to a topology in this model.

```yang
augment /nw:networks/nw:network/l3t:l3-topology-attributes:
  +++-rw sr
    +++-rw srgb* [lower-bound upper-bound]
    +++-rw lower-bound    uint32
    +++-rw upper-bound    uint32
```

2.6. Node Attributes

The Segment Routing attributes within the node scope are modeled by augmenting the sub tree /nw:networks/nw:network/nw:node/ in the L3 topology model.

The SR attributes that have node-scope impact are modeled by augmenting the container "13-node-attributes" in the L3 topology model, including the SR capabilities, SRGB (Segment Routing Global Block), and SRLB (Segment Routing Local Block) specified on this mode. This model also provides the information about how these SR attributes are learned:
The SR attributes that are related to an IGP-Prefix segment are modeled by augmenting the list entry "prefix" in the L3 topology model:

augment /nw:networks/nw:network/nw:node/l3t:l3-node-attributes
 /l3t:prefix:
 +--rw sr
 +--rw sr! value-type? enumeration
 +--rw start-sid uint32
 +--rw range? uint32
 +--rw algorithm? identityref
 +--rw last-hop-behavior? enumeration
 [sid-last-hop-behavior]?
 +--rw is-local? boolean
 +--rw is-node? boolean
 +--ro is-readvertisment? boolean

2.7. Link Attributes

A link in the topology model connects the termination point on the source node to the termination point on the destination node. When such a link is instantiated, the bindings between the nodes and the corresponding Adj-SIDs are formed, and the resulting FIB entries are installed.

A link in the topology model is mapped to an SR Adjacency Segment, formed by a pair of interfaces on two respective adjacent nodes. The SR Adjacency Segment attributes are modeled by augmenting the link attributes of the L3 topology model. The modeling structure is as follows:
augment /nw:networks/nw:network/nt:link/l3t:l3-link-attributes:
 +--rw sr!
 ++--rw value-type? enumeration
 ++--rw sid uint32
 ++--rw advertise-protection? enumeration
 ++--rw is-local? boolean
 ++--rw msd? uint8 {msd}?
 ++--rw address-family? enumeration
 ++--rw is-backup? boolean
 ++--rw is-part-of-set? boolean
 ++--rw is-persistent? boolean
 ++--rw is-on-lan? boolean
 ++--ro information-source? enumeration
 ++--ro information-source-state
 ++--ro credibility-preference? uint16

The usage of the leaf "advertise-protection" is described in
[I-D.ietf-spring-sr-yang].

Both IGP and BGP can be supported by the model, the leaf
"information-source" is used to indicate where the information is
from.

The bundling capability of the Adjacency Segment is achieved by re-
using the existing modeling construct (i.e. "bundle-stack-level")
under /nw:networks/nw:network/nt:link/tet:te
[I-D.ietf-teas-yang-te-topo]

3. Model Structure

The model tree structure of the Segment Routing (SR) topology module
is as shown below:

module: ietf-sr-topology
 augment /nw:networks/nw:network/nw:network-types
 /l3t:13-unicast-topology:
 +--rw sr-mpls!
 augment /nw:networks/nw:network/13t:13-topology-attributes:
 +--rw sr
 ++--rw srgb* [lower-bound upper-bound]
 ++--rw lower-bound uint32
 ++--rw upper-bound uint32
 augment /nw:networks/nw:network/nw:node/13t:13-node-attributes:
 +--rw sr
 ++--rw srgb* [lower-bound upper-bound]
 | +--rw lower-bound uint32
| +--rw upper-bound uint32
| +--rw sr1b* [lower-bound upper-bound]
| | +--rw lower-bound uint32
| | +--rw upper-bound uint32
| +--ro node-capabilities
| | +--ro transport-planes* [transport-plane]
| | | +--ro transport-plane identityref
| | +--ro entropy-readable-label-depth? uint8
| +--rw msd? uint8 {msd}??
| +--ro information-source? enumeration
| +--ro information-source-instance? string
| +--ro information-source-state
| | +--ro credibility-preference? uint16
augment /nw:networks/nw:network/nw:node/l3t:l3-node-attributes
 /l3t:prefix:
 +--rw sr!
 | +--rw value-type? enumeration
 | +--rw start-sid uint32
 | +--rw range? uint32
 | +--rw algorithm? identityref
 | +--rw last-hop-behavior? enumeration
 | | (sid-last-hop-behavior)?
 | +--rw is-local? boolean
 | +--rw is-node? boolean
 | +--ro is-readvertisment? boolean
augment /nw:networks/nw:network/nt:link/l3t:l3-link-attributes:
 +--rw sr!
 | +--rw value-type? enumeration
 | +--rw sid uint32
 | +--rw advertise-protection? enumeration
 | +--rw is-local? boolean
 | +--rw msd? uint8 {msd}?
 | +--rw address-family? enumeration
 | +--rw is-backup? boolean
 | +--rw is-part-of-set? boolean
 | +--rw is-persistent? boolean
 | +--rw is-on-lan? boolean
 | +--ro information-source? enumeration
 | +--ro information-source-instance? string
 | +--ro information-source-state
 | | +--ro credibility-preference? uint16
4. YANG Module

<CODE BEGINS> file "ietf-sr-topology@2019-11-02.yang"
module ietf-sr-topology {
 yang-version 1.1;
 prefix "srt";

 import ietf-network {
 prefix "nw";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf-network-topology {
 prefix "nt";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf-l3-unicast-topology {
 prefix "l3t";
 reference "RFC 8346: A YANG Data Model for Layer 3 Topologies";
 }
 import ietf-segment-routing-common {
 prefix "sr-cmn";
 reference "I-D.ietf-spring-sr-yang: YANG Data Model for Segment Routing";
 }

 organization
 "IETF Traffic Engineering Architecture and Signaling (TEAS)
 Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/teas/>
 WG List: <mailto:teas@ietf.org>
 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>
 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>
 Editor: Vishnu Pavan Beeram
 <mailto:vbeeram@juniper.net>
 Editor: Tarek Saad
 <mailto:tsaad@cisco.com>
 Editor: Himanshu Shah

YANG data model for representing and manipulating Segment Routing Topologies.

Copyright (c) 2018 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices.

revision 2019-11-02 {
 description "Initial revision";
 reference
 "RFC XXXX: YANG Data Model for SR and SR TE Topologies";
}

feature msd {
 description
 "Support of signaling MSD (Maximum SID Depth) in IGP.";
}

grouping sr-topology-type {
 description
 "Identifies the SR-MPLS topology type. This type of network topologies use Segment Routing (SR) technology over the MPLS data plane";
 container sr-mpls {
 presence "Indicates SR-MPLS topology";
 description
 "Its presence identifies the SR topology type."
 }
}

 description

}
"Defines the SR topology type.";
uses sr-topology-type;
}

augment "/nw:networks/nw:network/l3t:l3-topology-attributes" {
when "./nw:network-types/l3t:l3-unicast-topology/srt:sr-mpls" {
 description "Augment only for SR topology.";
}
description "Augment topology configuration";
uses sr-topology-attributes;
}

augment "/nw:networks/nw:network/nw:node/l3t:l3-node-attributes" {
when "./..../nw:network-types/l3t:l3-unicast-topology/
 + "srt:sr-mpls" {
 description "Augment only for SR topology.";
}
description "Augment node configuration.";
uses sr-node-attributes;
}

augment "/nw:networks/nw:network/nw:node/l3t:l3-node-attributes" + "/l3t:prefix" {
when "./..../nw:network-types/l3t:l3-unicast-topology/
 + "srt:sr-mpls" {
 description "Augment only for SR topology.";
}
description "Augment node prefix.";
uses sr-node-prefix-attributes;
}

augment "/nw:networks/nw:network/nt:link/l3t:l3-link-attributes" {
when "./..../nw:network-types/l3t:l3-unicast-topology/
 + "srt:sr-mpls" {
 description "Augment only for SR topology.";
}
description "Augment link configuration";
uses sr-link-attributes;
}

grouping sr-topology-attributes {
 description "SR topology scope attributes.";
 container sr {
 description
 "Containing SR attributes.";
 uses sr-cmn:srgb;
 } // sr
} // sr-topology-attributes
grouping information-source-attributes {
 description "The attributes identifying source that has provided the related information, and the source credibility.";
 leaf information-source {
 type enumeration {
 enum "unknown" {
 description "The source is unknown.";
 }
 enum "locally-configured" {
 description "Configured entity.";
 }
 enum "ospfv2" {
 description "OSPFv2.";
 }
 enum "ospfv3" {
 description "OSPFv3.";
 }
 enum "isis" {
 description "ISIS.";
 }
 enum "bgp-ls" {
 description "BGP-LS.";
 reference "RFC 7752: North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP";
 }
 enum "system-processed" {
 description "System processed entity.";
 }
 enum "other" {
 description "Other source.";
 }
 }
 config false;
 description "Indicates the type of the information source.";
 }
 leaf information-source-instance {
 type string;
 config false;
 description "The name indicating the instance of the information source.";
 }
 container information-source-state {
 config false;
 description
"The container contains state attributes related to the information source."
leaf credibility-preference {
 type uint16;
 description
 "The preference value to calculate the traffic engineering database credibility value used for tie-break selection between different information-source values. Higher value is more preferable.";
}

// information-source-attributes

grouping sr-node-attributes {
 description "SR node scope attributes.";
 container sr {
 description
 "Containing SR attributes.";
 uses sr-cmn:srgb;
 uses sr-cmn:srlb;
 uses sr-cmn:node-capabilities;
 leaf msd {
 if-feature "msd";
 type uint8;
 description
 "Node MSD is the lowest MSD supported by the node.";
 }
 // Operational state data
 uses information-source-attributes;
 } // sr
} // sr-node-attributes

grouping sr-node-prefix-attributes {
 description "Containing SR attributes for a prefix.";
 container sr {
 presence "Presence indicates SR is enabled.";
 description
 "Containing SR attributes for a prefix.";
 uses sr-cmn:prefix-sid-attributes;
 uses sr-cmn:last-hop-behavior;
 leaf is-local {
 type boolean;
 default false;
 description
 "'true' if the SID is local.";
 }
 leaf is-node {
leaf is-readvertisment {
 type boolean;
 config false;
 description
 "'true' if the prefix to which this Prefix-SID is attached,
 has been propagated by the router from another
 topology by redistribution.";
}

} // sr
} // sr-node-prefix-attributes

grouping sr-link-attributes {
 description "SR link scope attributes";
 container sr {
 presence "Presence indicates SR is enabled.";
 description
 "Containing SR attributes.";
 uses sr-cmn:sid-value-type;
 leaf sid {
 type uint32;
 mandatory true;
 description
 "Adjacency SID, which can be either IGP-Adjacency SID
 or BGP PeerAdj SID, depending on the context.";
 }
 leaf advertise-protection {
 type enumeration {
 enum "single" {
 description
 "A single Adj-SID is associated
 with the adjacency and reflects
 the protection configuration.";
 }
 enum "dual" {
 description
 "Two Adj-SIDs will be associated
 with the adjacency if interface
 is protected. In this case
 one will be enforced with
 backup flag set, the other
will be enforced to backup flag unset. In case, protection is not configured, a single Adj-SID will be advertised with backup flag unset.

```yang
leaf is-backup {
    type boolean;
    default false;
    description
    "'true' if the SID is a backup."
}
leaf is-part-of-set {
```
type boolean;
default false;
description
 "'true' if the SID is part of a set.";
}
leaf is-persistent {
 type boolean;
default true;
description
 "'true' if the SID is persistently allocated.";
}
leaf is-on-lan {
 type boolean;
default false;
description
 "'true' if on a lan.";
}
uses information-source-attributes;
} // sr
} // sr-tp-attributes

5. IANA Considerations

RFC Ed.: In this section, replace all occurrences of ‘XXXX’ with the actual RFC number (and remove this note).

This document registers the following namespace URIs in the IETF XML registry [RFC3688]:

--
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--

--
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--

This document registers the following YANG modules in the YANG Module Names registry [RFC6020]:

6. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

nw:network-types/l3t:l3-unicast-topology/sr-mpls
This subtree specifies the SR topology type. Modifying the configurations can make SR topology type invalid and cause interruption to all SR networks.

/nw:networks/nw:network/l3t:l3-topology-attributes/sr
This subtree specifies the topology-wide configurations, including the SRGB (Segment Routing Global Block). Modifying the configurations here can cause traffic disabled or rerouted in this topology and the connected topologies.
This subtree specifies the SR configurations for nodes. Modifying the configurations in this subtree can add, remove, or modify SR nodes, causing traffic disabled or rerouted in the specified nodes and the related TE topologies.

This subtree specifies the configurations for SR Adjacency Segments. Modifying the configurations in this subtree can add, remove, or modify SR Adjacency Segments causing traffic disabled or rerouted on the specified SR adjacencies, the related nodes, and the related SR topologies.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

Unauthorized access to this subtree can disclose the SR topology type.

Unauthorized access to this subtree can disclose the topology-wide configurations, including the SRGB (Segment Routing Global Block).

Unauthorized access to this subtree can disclose the operational state information of the SR nodes.

Unauthorized access to this subtree can disclose the operational state information of SR Adjacency Segments.

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Companion YANG Model for Non-NMDA Compliant Implementations

The YANG module ietf-sr-topology defined in this document is designed to be used in conjunction with implementations that support the Network Management Datastore Architecture (NMDA) defined in [RFC8342]. In order to allow implementations to use the model even in cases when NMDA is not supported, the following companion module, ietf-sr-topology-state, is defined as state model, which mirrors the module ietf-sr-topology defined earlier in this document. However, all data nodes in the companion module are non-configurable, to represent the applied configuration or the derived operational states.

The companion module, ietf-sr-topology-state, is redundant and SHOULD NOT be supported by implementations that support NMDA.

As the structure of the companion module mirrors that of the corresponding NMDA model, the YANG tree of the companion module is not depicted separately.

A.1. SR Topology State Module

<CODE BEGINS> file "ietf-sr-topology-state@2019-11-02.yang"
module ietf-sr-topology-state {
 yang-version 1.1;
 prefix "srt-s";

 import ietf-sr-topology {
 prefix "srt";
 }

 import ietf-network-state {
 prefix "nw-s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }

 import ietf-network-topology-state {
 prefix "nt-s";
 reference "RFC 8345: A YANG Data Model for Network Topologies";
 }

 import ietf-l3-unicast-topology-state {
 prefix "l3t-s";
 reference "RFC 8346: A YANG Data Model for Layer 3 Topologies";
 }

 import ietf-segment-routing-common {
 prefix "sr-cmn";
 reference "I-D.ietf-spring-sr-yang: YANG Data Model for Segment Routing";
 }
</CODE>
organization

"IETF Traffic Engineering Architecture and Signaling (TEAS)
Working Group";

contact

"WG Web: <http://tools.ietf.org/wg/teas/>
WG List: <mailto:teas@ietf.org>

Editor: Xufeng Liu
<mailto:xufeng.liu.ietf@gmail.com>

Editor: Igor Bryskin
<mailto:Igor.Bryskin@huawei.com>

Editor: Vishnu Pavan Beeram
<mailto:vbeeram@juniper.net>

Editor: Tarek Saad
<mailto:tsaad@cisco.com>

Editor: Himanshu Shah
<mailto:hshah@ciena.com>

Editor: Stephane Litkowski
<mailto:stephane.litkowski@orange.com>";

description

"YANG data model for representing operational state information
of Segment Routing Topologies, when NMDA is not supported.

Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the
RFC itself for full legal notices.";

revision 2019-11-02 {

description "Initial revision";

reference
"RFC XXXX: YANG Data Model for SR and SR TE Topologies";
}
augment "/nw-s:networks/nw-s:network/nw-s:network-types/"
 + "l3t-s:l3-unicast-topology" {
 description
 "Defines the SR topology type."
 uses srt:sr-topology-type;
}
augment "/nw-s:networks/nw-s:network/"
 + "l3t-s:l3-topology-attributes" {
 when "../nw-s:network-types/l3t-s:l3-unicast-topology/
 + "srt-s:sr-mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment topology configuration"
 uses srt:sr-topology-attributes;
}
augment "/nw-s:networks/nw-s:network/nw-s:node/"
 + "l3t-s:l3-node-attributes" {
 when "../..//nw-s:network-types/l3t-s:l3-unicast-topology/
 + "srt-s:sr-mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment node configuration."
 uses srt:sr-node-attributes;
}
augment "/nw-s:networks/nw-s:network/nw-s:node/"
 + "l3t-s:l3-node-attributes/l3t-s:prefix" {
 when "../..//nw-s:network-types/l3t-s:l3-unicast-topology/
 + "srt-s:sr-mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment node prefix.";
 uses srt:sr-node-prefix-attributes;
}
augment "/nw-s:networks/nw-s:network/nt-s:link/"
 + "l3t-s:l3-link-attributes" {
 when "../..//nw-s:network-types/l3t-s:l3-unicast-topology/
 + "srt-s:sr-mpls" {
 description "Augment only for SR topology.";
 }
 description "Augment link configuration"
 uses srt:sr-link-attributes;
grouping sr-topology-attributes {
 description "SR topology scope attributes.";
 container sr {
 description "Containing SR attributes."
 uses sr-cmn:srgb;
 } // sr
} // sr-topology-attributes

Appendix B. Data Tree Example

This section contains an example of an instance data tree in the JSON encoding [RFC7951]. The example instantiates "ietf-sr-topology" for the topology that is depicted in the following diagram.

The corresponding instance data tree is depicted below. Note that some lines have been wrapped to adhere to the 72-character line limitation of RFCs.

{
 "ietf-network:networks": {
 "network": [
 {
 "network-types": {
 "ietf-l3-unicast-topology:l3-unicast-topology": {
 "ietf-sr-topology:sr-mpls": {}
 }
 },
 "network-id": "sr-topo-example",
 "ietf-l3-unicast-topology:l3-topology-attributes": {
 "ietf-sr-topology:sr": {
 "srgb": [
 {
 "lower-bound": 16000,
 "upper-bound": 23999
 }
]
 }
 }
 },
 "node": [
 {
 "node-id": "D1",
 "ietf-network-topology:termination-point": [
 {
 "tp-id": "1-0-1",
 "ietf-l3-unicast-topology:l3-termination-point-attributes": {
 "unnumbered-id": 101
 }
 },
 {
 "tp-id": "1-2-1",
 "ietf-l3-unicast-topology:l3-termination-point-attributes": {
 "unnumbered-id": 121
 }
 },
 {
 "tp-id": "1-3-1",
 "ietf-l3-unicast-topology:l3-termination-point-attributes": {
 "unnumbered-id": 131
 }
 }
]
 }
],
 "ietf-l3-unicast-topology:l3-node-attributes": {
 "router-id": ["203.0.113.1"],
 "prefix": [
 "prefix": "203.0.113.1/32",
 "prefix": "203.0.113.0/32"
]
 }
 }
 }
}
"ietf-sr-topology:sr": {
 "start-sid": 101,
 "range": 1,
 "is-local": false,
 "is-node": true
}
],
"ietf-sr-topology:sr": {
 "srgb": [
 {
 "lower-bound": 16000,
 "upper-bound": 23999
 }
],
 "srlb": [
 {
 "lower-bound": 15000,
 "upper-bound": 15999
 }
]
}
}
,
"node-id": "D2",
"ietf-network-topology:termination-point": [
 {
 "tp-id": "2-0-1",
 "ietf-l3-unicast-topology:l3-termination-point-attributes": {
 "unnumbered-id": 201
 }
 },
 {
 "tp-id": "2-1-1",
 "ietf-l3-unicast-topology:l3-termination-point-attributes": {
 "unnumbered-id": 211
 }
 },
 {
 "tp-id": "2-3-1",
 "ietf-l3-unicast-topology:l3-termination-point-attributes": {
 "unnumbered-id": 231
 }
 }
],
"ietf-l3-unicast-topology:l3-node-attributes": {
 "router-id": ["203.0.113.2"]
}
"prefix": [
 {
 "prefix": "203.0.113.2/32",
 "ietf-sr-topology:sr": {
 "start-sid": 102,
 "range": 1,
 "is-local": false,
 "is-node": true
 }
 },
 {
 "ietf-sr-topology:sr": {
 "srgb": [
 {
 "lower-bound": 16000,
 "upper-bound": 23999
 }
],
 "srlb": [
 {
 "lower-bound": 15000,
 "upper-bound": 15999
 }
]
 }
 }
],
"ietf-sr-topology:sr": {
 "node-id": "D3",
 "ietf-network-topology:termination-point": [{
 "tp-id": "3-1-1",
 "ietf-l3-unicast-topology:l3-termination-point-attributes": {
 "unnumbered-id": 311
 }
 }, {
 "tp-id": "3-2-1",
 "ietf-l3-unicast-topology:l3-termination-point-attributes": {
 "unnumbered-id": 321
 }
 }],
 "ietf-l3-unicast-topology:l3-node-attributes": {
 "router-id": ["203.0.113.3"],
 "prefix": [
 "prefix": "203.0.113.3/32",
 "prefix": "203.0.113.2/32",
 "prefix": "203.0.113.1/32"
]
 }
}
"ietf-sr-topology:sr": {
 "start-sid": 101,
 "range": 1,
 "is-local": false,
 "is-node": true
}
],
"ietf-sr-topology:sr": {
 "srgb": [
 {
 "lower-bound": 16000,
 "upper-bound": 23999
 }
],
 "srlb": [
 {
 "lower-bound": 15000,
 "upper-bound": 15999
 }
]
}
}
],
"ietf-network-topology:link": [
 {
 "link-id": "D1,1-2-1,D2,2-1-1",
 "source": {
 "source-node": "D1",
 "source-tp": "1-2-1"
 },
 "destination": {
 "dest-node": "D2",
 "dest-tp": "2-1-1"
 },
 "ietf-l3-unicast-topology:l3-link-attributes": {
 "metric1": "100",
 "ietf-sr-topology:sr": {
 "sid": 121,
 "is-local": true
 }
 }
 },
 {
 "link-id": "D2,2-1-1,D1,1-2-1",
 "source": {
 "source-node": "D2",
 "source-tp": "2-1-1"
 },
 "destination": {
 "dest-node": "D1",
 "dest-tp": "1-2-1"
 },
 "ietf-l3-unicast-topology:l3-link-attributes": {
 "metric1": "100",
 "ietf-sr-topology:sr": {
 "sid": 121,
 "is-local": true
 }
 }
 }
]
"source-tp": "2-1-1"
},
"destination": {
"dest-node": "D1",
"dest-tp": "1-2-1"
},
"ietf-l3-unicast-topology:l3-link-attributes": {
"metric1": "100",
"ietf-sr-topology:sr": {
"sid": 211,
"is-local": true
}
}
},
{
"link-id": "D1,1-3-1,D3,3-1-1",
"source": {
"source-node": "D1",
"source-tp": "1-3-1"
},
"destination": {
"dest-node": "D3",
"dest-tp": "3-1-1"
},
"ietf-l3-unicast-topology:l3-link-attributes": {
"metric1": "100",
"ietf-sr-topology:sr": {
"sid": 131,
"is-local": true
}
}
}
},
{
"link-id": "D3,3-1-1,D1,1-3-1",
"source": {
"source-node": "D3",
"source-tp": "3-1-1"
},
"destination": {
"dest-node": "D1",
"dest-tp": "1-3-1"
},
"ietf-l3-unicast-topology:l3-link-attributes": {
"metric1": "100",
"ietf-sr-topology:sr": {
"sid": 311,
"is-local": true
}
}


```json

}

},

"link-id": "D2,2-3-1,D3,3-2-1",
"source": {
  "source-node": "D2",
  "source-tp": "2-3-1"
},
"destination": {
  "dest-node": "D3",
  "dest-tp": "3-2-1"
},
"ietf-l3-unicast-topology:l3-link-attributes": {
  "metric1": "100",
  "ietf-sr-topology:sr": {
    "sid": 231,
    "is-local": true
  }
}
},

"link-id": "D3,3-2-1,D2,2-3-1",
"source": {
  "source-node": "D3",
  "source-tp": "3-2-1"
},
"destination": {
  "dest-node": "D2",
  "dest-tp": "2-3-1"
},
"ietf-l3-unicast-topology:l3-link-attributes": {
  "metric1": "100",
  "ietf-sr-topology:sr": {
    "sid": 321,
    "is-local": true
  }
}
```


Appendix C. Contributors

Jeff Tantsura
Email: jefftant.ietf@gmail.com

Yingzhen Qu
Email: yingzhen.qu@huawei.com

Authors’ Addresses

Xufeng Liu
Volta Networks
EMail: xufeng.liu.ietf@gmail.com

Igor Bryskin
Individual
EMail: i_bryskin@yahoo.com

Vishnu Pavan Beeram
Juniper Networks
EMail: vbeeram@juniper.net

Tarek Saad
Juniper Networks
EMail: tsaad@juniper.net

Himanshu Shah
Ciena
EMail: hshah@ciena.com

Stephane Litkowski
Cisco
EMail: slitkows.ietf@gmail.com