56-bit Export Cipher Suites For TLS
draft-ietf-tls-56-bit-ciphersuites-01.txt

1. Status of this Memo

This document is an Internet-Draft and is subject to all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or made obsolete by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

2. Introduction

This document describes several cipher suites to be used with the Transport Layer Security (TLS) protocol. Changes in US export regulations in 1999 permitted the export of software programs using 56-bit data encryption and 1024-bit key exchange. The cipher suites described in this document were designed to take advantage of this change in the regulations.

3. The CipherSuites

The following values define the CipherSuite codes used in the client hello and server hello messages.

The following CipherSuite definitions require that the server provide an RSA certificate that can be used for key exchange. The server may request either an RSA or a DSS signature-capable certificate in the certificate request message.

CipherSuite TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA = (0x00,0x62);
CipherSuite TLS_RSA_EXPORT1024_WITH_RC4_56_SHA = (0x00,0x64);
The following CipherSuite definitions are used for server-authenticated (and optionally client-authenticated) Diffie-Hellman. DHE denotes ephemeral Diffie-Hellman, where the Diffie-Hellman parameters are signed by a DSS certificate, which has been signed by the CA.

CipherSuite TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA = { 0x00,0x63 };
CipherSuite TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA = { 0x00,0x65 };
CipherSuite TLS_DHE_DSS_WITH_RC4_128_SHA = { 0x00,0x66 };

4. CipherSuite definitions

<table>
<thead>
<tr>
<th>CipherSuite</th>
<th>Is Exportable</th>
<th>Key Exchange Algorithm</th>
<th>Description</th>
<th>Key size limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA</td>
<td>*</td>
<td>RSA_EXPORT1024</td>
<td>RSA key exchange</td>
<td>RSA = 1024 bits</td>
</tr>
<tr>
<td>TLS_RSA_EXPORT1024_WITH_RC4_56_SHA</td>
<td>*</td>
<td>RSA_EXPORT1024</td>
<td>Ephemeral DH with DSS signatures</td>
<td>DH = 1024 bits</td>
</tr>
<tr>
<td>TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA</td>
<td>*</td>
<td>DHE_DSS_EXPORT1024</td>
<td>Ephemeral DH with DSS signatures</td>
<td>DH = 1024 bits</td>
</tr>
<tr>
<td>TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA</td>
<td></td>
<td>DHE_DSS_EXPORT1024</td>
<td>Ephemeral DH with DSS signatures</td>
<td>DH = 1024 bits</td>
</tr>
<tr>
<td>TLS_DHE_DSS_WITH_RC4_128_SHA</td>
<td></td>
<td>DHE_DSS</td>
<td>Ephemeral DH with DSS signatures</td>
<td>DH = 1024 bits</td>
</tr>
</tbody>
</table>

* Indicates IsExportable is True

Key size limit

The key size limit gives the size of the largest public key that can be legally used for encryption in cipher suites that are exportable.

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Type</th>
<th>Material Key</th>
<th>Expanded</th>
<th>Effective</th>
<th>IV</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC4_56</td>
<td>Stream</td>
<td>7</td>
<td>16</td>
<td>56</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>DES_CBC</td>
<td>Block</td>
<td>8</td>
<td>8</td>
<td>56</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

5. Implementation Notes

When an RSA_EXPORT1024 cipher suite is used, and the server’s RSA Key is larger than 1024 bits in length, then the server must send a server key exchange message to the client. This message is to contain a temporary RSA key, signed by the server. This temporary RSA key should be the maximum allowable length (i.e., 1024 bits).
Servers with a large RSA key will often maintain two temporary RSA keys: a 512-bit key used to support the RSA_EXPORT cipher suites, and a 1024-bit key used to support the RSA_EXPORT1024 cipher suites.

When 56-bit DES keys are derived for an export cipher suite, the additional export key derivation step must be performed. That is, the final read and write DES keys (and the IV) are not taken directly from the key_block.

6. References

7. Authors

John Banes Richard Harrington
Microsoft Corp. Qpass Inc.
jbanes@microsoft.com rharrington@qpass.com