
Network Working Group T. Dierks
Internet-Draft Independent
Obsoletes: 3268 , 4346 , 4366 , 5246 E. Rescorla
(if approved) RTFM, Inc.
Updates: 4492 (if approved) July 7, 2014
Intended status: Standards Track
Expires: January 8, 2015

 The Transport Layer Security (TLS) Protocol Version 1.3
 draft-ietf-tls-tls13-02

Abstract

 This document specifies Version 1.3 of the Transport Layer Security
 (TLS) protocol. The TLS protocol provides communications security
 over the Internet. The protocol allows client/server applications to
 communicate in a way that is designed to prevent eavesdropping,
 tampering, or message forgery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 8, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Dierks & Rescorla Expires January 8, 2015 [Page 1]

https://tools.ietf.org/pdf/rfc3268
https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS July 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 5
 1.1 . Requirements Terminology 6
 1.2 . Major Differences from TLS 1.2 6
 1.3 . Major Differences from TLS 1.1 6
 2. Goals . 8
 3. Goals of This Document . 8
 4. Presentation Language . 9
 4.1 . Basic Block Size . 9
 4.2 . Miscellaneous . 9
 4.3 . Vectors . 9
 4.4 . Numbers . 10
 4.5 . Enumerateds . 11
 4.6 . Constructed Types . 12
 4.6.1 . Variants . 12
 4.7 . Cryptographic Attributes 13
 4.8 . Constants . 15
 5. The Pseudorandom Function 15
 6. The TLS Record Protocol 16
 6.1 . Connection States . 17
 6.2 . Record Layer . 19
 6.2.1 . Fragmentation . 19
 6.2.2 . Record Payload Protection 20
 6.3 . Key Calculation . 22
 7. The TLS Handshaking Protocols 23
 7.1 . Change Cipher Spec Protocol 24
 7.2 . Alert Protocol . 24
 7.2.1 . Closure Alerts . 25
 7.2.2 . Error Alerts . 26
 7.3 . Handshake Protocol Overview 30
 7.4 . Handshake Protocol . 34

Dierks & Rescorla Expires January 8, 2015 [Page 2]

Internet-Draft TLS July 2014

 7.4.1 . Hello Messages . 35
 7.4.2 . Client Key Exchange Message 39
 7.4.3 . Server Key Exchange Message 47
 7.4.4 . Encrypted Extensions 48
 7.4.5 . Server Certificate 49
 7.4.6 . Certificate Request 52
 7.4.7 . Server Certificate Verify 53
 7.4.8 . Server Finished 55
 7.4.9 . Client Certificate 56
 7.4.10 . Client Certificate Verify 58
 8. Cryptographic Computations 58
 8.1 . Computing the Master Secret 59
 8.1.1 . Diffie-Hellman . 59
 9. Mandatory Cipher Suites 59
 10. Application Data Protocol 59
 11. Security Considerations 59
 12. IANA Considerations . 59
 13. References . 61
 13.1 . Normative References 61
 13.2 . Informative References 63
 Appendix A . Protocol Data Structures and Constant Values 67
 A.1 . Record Layer . 67
 A.2 . Change Cipher Specs Message 67
 A.3 . Alert Messages . 68
 A.4 . Handshake Protocol . 69
 A.4.1 . Hello Messages . 69
 A.4.2 . Server Authentication and Key Exchange Messages . . . 71
 A.4.3 . Client Authentication and Key Exchange Messages . . . 72
 A.4.4 . Handshake Finalization Message 72
 A.5 . The Cipher Suite . 72
 A.6 . The Security Parameters 74
 A.7 . Changes to RFC 4492 74
 Appendix B . Glossary . 75
 Appendix C . Cipher Suite Definitions 78
 Appendix D . Implementation Notes 79
 D.1 . Random Number Generation and Seeding 79
 D.2 . Certificates and Authentication 79
 D.3 . Cipher Suites . 79
 D.4 . Implementation Pitfalls 79
 Appendix E . Backward Compatibility 81
 E.1 . Compatibility with TLS 1.0/1.1 and SSL 3.0 81
 E.2 . Compatibility with SSL 2.0 82
 E.3 . Avoiding Man-in-the-Middle Version Rollback 84
 Appendix F . Security Analysis 84
 F.1 . Handshake Protocol . 84
 F.1.1 . Authentication and Key Exchange 85
 F.1.2 . Version Rollback Attacks 86
 F.1.3 . Detecting Attacks Against the Handshake Protocol . . . 87

Dierks & Rescorla Expires January 8, 2015 [Page 3]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2014

 F.1.4 . Resuming Sessions 87
 F.2 . Protecting Application Data 88
 F.3 . Denial of Service . 88
 F.4 . Final Notes . 88
 Appendix G . Working Group Information 89
 Appendix H . Contributors . 89

Dierks & Rescorla Expires January 8, 2015 [Page 4]

Internet-Draft TLS July 2014

1. Introduction

 DISCLAIMER: This is a WIP draft of TLS 1.3 and has not yet seen
 significant security analysis.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this
 draft is maintained in GitHub. Suggested changes should be submitted
 as pull requests at https://github.com/tlswg/tls13-spec .
 Instructions are on that page as well. Editorial changes can be
 managed in GitHub, but any substantive change should be discussed on
 the TLS mailing list.

 The primary goal of the TLS protocol is to provide privacy and data
 integrity between two communicating applications. The protocol is
 composed of two layers: the TLS Record Protocol and the TLS Handshake
 Protocol. At the lowest level, layered on top of some reliable
 transport protocol (e.g., TCP [RFC0793]), is the TLS Record Protocol.
 The TLS Record Protocol provides connection security that has two
 basic properties:

 - The connection is private. Symmetric cryptography is used for
 data encryption (e.g., AES [AES], etc.). The keys for this
 symmetric encryption are generated uniquely for each connection
 and are based on a secret negotiated by another protocol (such as
 the TLS Handshake Protocol). The Record Protocol can also be used
 without encryption, i.e., in integrity-only modes.

 - The connection is reliable. Messages include an authentication
 tag which protects them against modification.

 - The Record Protocol can operate in an insecure mode but is
 generally only used in this mode while another protocol is using
 the Record Protocol as a transport for negotiating security
 parameters.

 The TLS Record Protocol is used for encapsulation of various higher-
 level protocols. One such encapsulated protocol, the TLS Handshake
 Protocol, allows the server and client to authenticate each other and
 to negotiate an encryption algorithm and cryptographic keys before
 the application protocol transmits or receives its first byte of
 data. The TLS Handshake Protocol provides connection security that
 has three basic properties:

 - The peer’s identity can be authenticated using asymmetric, or
 public key, cryptography (e.g., RSA [RSA], DSA [DSS], etc.). This
 authentication can be made optional, but is generally required for
 at least one of the peers.

Dierks & Rescorla Expires January 8, 2015 [Page 5]

https://github.com/tlswg/tls13-spec
https://tools.ietf.org/pdf/rfc0793

Internet-Draft TLS July 2014

 - The negotiation of a shared secret is secure: the negotiated
 secret is unavailable to eavesdroppers, and for any authenticated
 connection the secret cannot be obtained, even by an attacker who
 can place himself in the middle of the connection.

 - The negotiation is reliable: no attacker can modify the
 negotiation communication without being detected by the parties to
 the communication.

 One advantage of TLS is that it is application protocol independent.
 Higher-level protocols can layer on top of the TLS protocol
 transparently. The TLS standard, however, does not specify how
 protocols add security with TLS; the decisions on how to initiate TLS
 handshaking and how to interpret the authentication certificates
 exchanged are left to the judgment of the designers and implementors
 of protocols that run on top of TLS.

1.1 . Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2 . Major Differences from TLS 1.2

 draft-02

 - Increment version number.

 - Reworked handshake to provide 1-RTT mode.

 - Remove custom DHE groups.

 - Removed support for compression.

 - Removed support for static RSA and DH key exchange.

 - Removed support for non-AEAD ciphers

1.3 . Major Differences from TLS 1.1

 This document is a revision of the TLS 1.1 [RFC4346] protocol which
 contains improved flexibility, particularly for negotiation of
 cryptographic algorithms. The major changes are:

 - The MD5/SHA-1 combination in the pseudorandom function (PRF) has
 been replaced with cipher-suite-specified PRFs. All cipher suites
 in this document use P_SHA256.

Dierks & Rescorla Expires January 8, 2015 [Page 6]

https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/draft-02
https://tools.ietf.org/pdf/rfc4346

Internet-Draft TLS July 2014

 - The MD5/SHA-1 combination in the digitally-signed element has been
 replaced with a single hash. Signed elements now include a field
 that explicitly specifies the hash algorithm used.

 - Substantial cleanup to the client’s and server’s ability to
 specify which hash and signature algorithms they will accept.
 Note that this also relaxes some of the constraints on signature
 and hash algorithms from previous versions of TLS.

 - Addition of support for authenticated encryption with additional
 data modes.

 - TLS Extensions definition and AES Cipher Suites were merged in
 from external [TLSEXT] and [RFC3268].

 - Tighter checking of EncryptedPreMasterSecret version numbers.

 - Tightened up a number of requirements.

 - Verify_data length now depends on the cipher suite (default is
 still 12).

 - Cleaned up description of Bleichenbacher/Klima attack defenses.

 - Alerts MUST now be sent in many cases.

 - After a certificate_request, if no certificates are available,
 clients now MUST send an empty certificate list.

 - TLS_RSA_WITH_AES_128_CBC_SHA is now the mandatory to implement
 cipher suite.

 - Added HMAC-SHA256 cipher suites.

 - Removed IDEA and DES cipher suites. They are now deprecated and
 will be documented in a separate document.

 - Support for the SSLv2 backward-compatible hello is now a MAY, not
 a SHOULD, with sending it a SHOULD NOT. Support will probably
 become a SHOULD NOT in the future.

 - Added limited "fall-through" to the presentation language to allow
 multiple case arms to have the same encoding.

 - Added an Implementation Pitfalls sections

 - The usual clarifications and editorial work.

Dierks & Rescorla Expires January 8, 2015 [Page 7]

https://tools.ietf.org/pdf/rfc3268

Internet-Draft TLS July 2014

2. Goals

 The goals of the TLS protocol, in order of priority, are as follows:

 1. Cryptographic security: TLS should be used to establish a secure
 connection between two parties.

 2. Interoperability: Independent programmers should be able to
 develop applications utilizing TLS that can successfully exchange
 cryptographic parameters without knowledge of one another’s code.

 3. Extensibility: TLS seeks to provide a framework into which new
 public key and record protection methods can be incorporated as
 necessary. This will also accomplish two sub-goals: preventing
 the need to create a new protocol (and risking the introduction
 of possible new weaknesses) and avoiding the need to implement an
 entire new security library.

 4. Relative efficiency: Cryptographic operations tend to be highly
 CPU intensive, particularly public key operations. For this
 reason, the TLS protocol has incorporated an optional session
 caching scheme to reduce the number of connections that need to
 be established from scratch. Additionally, care has been taken
 to reduce network activity.

3. Goals of This Document

 This document and the TLS protocol itself are based on the SSL 3.0
 Protocol Specification as published by Netscape. The differences
 between this protocol and SSL 3.0 are not dramatic, but they are
 significant enough that the various versions of TLS and SSL 3.0 do
 not interoperate (although each protocol incorporates a mechanism by
 which an implementation can back down to prior versions). This
 document is intended primarily for readers who will be implementing
 the protocol and for those doing cryptographic analysis of it. The
 specification has been written with this in mind, and it is intended
 to reflect the needs of those two groups. For that reason, many of
 the algorithm-dependent data structures and rules are included in the
 body of the text (as opposed to in an appendix), providing easier
 access to them.

 This document is not intended to supply any details of service
 definition or of interface definition, although it does cover select
 areas of policy as they are required for the maintenance of solid
 security.

Dierks & Rescorla Expires January 8, 2015 [Page 8]

Internet-Draft TLS July 2014

4. Presentation Language

 This document deals with the formatting of data in an external
 representation. The following very basic and somewhat casually
 defined presentation syntax will be used. The syntax draws from
 several sources in its structure. Although it resembles the
 programming language "C" in its syntax and XDR [RFC4506] in both its
 syntax and intent, it would be risky to draw too many parallels. The
 purpose of this presentation language is to document TLS only; it has
 no general application beyond that particular goal.

4.1 . Basic Block Size

 The representation of all data items is explicitly specified. The
 basic data block size is one byte (i.e., 8 bits). Multiple byte data
 items are concatenations of bytes, from left to right, from top to
 bottom. From the byte stream, a multi-byte item (a numeric in the
 example) is formed (using C notation) by:

 value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
 ... | byte[n-1];

 This byte ordering for multi-byte values is the commonplace network
 byte order or big-endian format.

4.2 . Miscellaneous

 Comments begin with "/*" and end with "*/".

 Optional components are denoted by enclosing them in "[[]]" double
 brackets.

 Single-byte entities containing uninterpreted data are of type
 opaque.

4.3 . Vectors

 A vector (single-dimensioned array) is a stream of homogeneous data
 elements. The size of the vector may be specified at documentation
 time or left unspecified until runtime. In either case, the length
 declares the number of bytes, not the number of elements, in the
 vector. The syntax for specifying a new type, T’, that is a fixed-
 length vector of type T is

 T T’[n];

 Here, T’ occupies n bytes in the data stream, where n is a multiple
 of the size of T. The length of the vector is not included in the

Dierks & Rescorla Expires January 8, 2015 [Page 9]

https://tools.ietf.org/pdf/rfc4506

Internet-Draft TLS July 2014

 encoded stream.

 In the following example, Datum is defined to be three consecutive
 bytes that the protocol does not interpret, while Data is three
 consecutive Datum, consuming a total of nine bytes.

 opaque Datum[3]; /* three uninterpreted bytes */
 Datum Data[9]; /* 3 consecutive 3 byte vectors */

 Variable-length vectors are defined by specifying a subrange of legal
 lengths, inclusively, using the notation <floor..ceiling>. When
 these are encoded, the actual length precedes the vector’s contents
 in the byte stream. The length will be in the form of a number
 consuming as many bytes as required to hold the vector’s specified
 maximum (ceiling) length. A variable-length vector with an actual
 length field of zero is referred to as an empty vector.

 T T’<floor..ceiling>;

 In the following example, mandatory is a vector that must contain
 between 300 and 400 bytes of type opaque. It can never be empty.
 The actual length field consumes two bytes, a uint16, which is
 sufficient to represent the value 400 (see Section 4.4). On the
 other hand, longer can represent up to 800 bytes of data, or 400
 uint16 elements, and it may be empty. Its encoding will include a
 two-byte actual length field prepended to the vector. The length of
 an encoded vector must be an even multiple of the length of a single
 element (for example, a 17-byte vector of uint16 would be illegal).

 opaque mandatory<300..400>;
 /* length field is 2 bytes, cannot be empty */
 uint16 longer<0..800>;
 /* zero to 400 16-bit unsigned integers */

4.4 . Numbers

 The basic numeric data type is an unsigned byte (uint8). All larger
 numeric data types are formed from fixed-length series of bytes
 concatenated as described in Section 4.1 and are also unsigned. The
 following numeric types are predefined.

 uint8 uint16[2];
 uint8 uint24[3];
 uint8 uint32[4];
 uint8 uint64[8];

 All values, here and elsewhere in the specification, are stored in
 network byte (big-endian) order; the uint32 represented by the hex

Dierks & Rescorla Expires January 8, 2015 [Page 10]

Internet-Draft TLS July 2014

 bytes 01 02 03 04 is equivalent to the decimal value 16909060.

 Note that in some cases (e.g., DH parameters) it is necessary to
 represent integers as opaque vectors. In such cases, they are
 represented as unsigned integers (i.e., leading zero octets are not
 required even if the most significant bit is set).

4.5 . Enumerateds

 An additional sparse data type is available called enum. A field of
 type enum can only assume the values declared in the definition.
 Each definition is a different type. Only enumerateds of the same
 type may be assigned or compared. Every element of an enumerated
 must be assigned a value, as demonstrated in the following example.
 Since the elements of the enumerated are not ordered, they can be
 assigned any unique value, in any order.

 enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;

 An enumerated occupies as much space in the byte stream as would its
 maximal defined ordinal value. The following definition would cause
 one byte to be used to carry fields of type Color.

 enum { red(3), blue(5), white(7) } Color;

 One may optionally specify a value without its associated tag to
 force the width definition without defining a superfluous element.

 In the following example, Taste will consume two bytes in the data
 stream but can only assume the values 1, 2, or 4.

 enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

 The names of the elements of an enumeration are scoped within the
 defined type. In the first example, a fully qualified reference to
 the second element of the enumeration would be Color.blue. Such
 qualification is not required if the target of the assignment is well
 specified.

 Color color = Color.blue; /* overspecified, legal */
 Color color = blue; /* correct, type implicit */

 For enumerateds that are never converted to external representation,
 the numerical information may be omitted.

 enum { low, medium, high } Amount;

Dierks & Rescorla Expires January 8, 2015 [Page 11]

Internet-Draft TLS July 2014

4.6 . Constructed Types

 Structure types may be constructed from primitive types for
 convenience. Each specification declares a new, unique type. The
 syntax for definition is much like that of C.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } [[T]];

 The fields within a structure may be qualified using the type’s name,
 with a syntax much like that available for enumerateds. For example,
 T.f2 refers to the second field of the previous declaration.
 Structure definitions may be embedded.

4.6.1 . Variants

 Defined structures may have variants based on some knowledge that is
 available within the environment. The selector must be an enumerated
 type that defines the possible variants the structure defines. There
 must be a case arm for every element of the enumeration declared in
 the select. Case arms have limited fall-through: if two case arms
 follow in immediate succession with no fields in between, then they
 both contain the same fields. Thus, in the example below, "orange"
 and "banana" both contain V2. Note that this is a new piece of
 syntax in TLS 1.2.

 The body of the variant structure may be given a label for reference.
 The mechanism by which the variant is selected at runtime is not
 prescribed by the presentation language.

 struct {
 T1 f1;
 T2 f2;

 Tn fn;
 select (E) {
 case e1: Te1;
 case e2: Te2;
 case e3: case e4: Te3;

 case en: Ten;
 } [[fv]];
 } [[Tv]];

Dierks & Rescorla Expires January 8, 2015 [Page 12]

Internet-Draft TLS July 2014

 For example:

 enum { apple, orange, banana } VariantTag;

 struct {
 uint16 number;
 opaque string<0..10>; /* variable length */
 } V1;

 struct {
 uint32 number;
 opaque string[10]; /* fixed length */
 } V2;

 struct {
 select (VariantTag) { /* value of selector is implicit */
 case apple:
 V1; /* VariantBody, tag = apple */
 case orange:
 case banana:
 V2; /* VariantBody, tag = orange or banana */
 } variant_body; /* optional label on variant */
 } VariantRecord;

4.7 . Cryptographic Attributes

 The two cryptographic operations -- digital signing, and
 authenticated encryption with additional data (AEAD) -- are
 designated digitally-signed, and aead-ciphered, respectively. A
 field’s cryptographic processing is specified by prepending an
 appropriate key word designation before the field’s type
 specification. Cryptographic keys are implied by the current session
 state (see Section 6.1).

 A digitally-signed element is encoded as a struct DigitallySigned:

 struct {
 SignatureAndHashAlgorithm algorithm;
 opaque signature<0..2^16-1>;
 } DigitallySigned;

 The algorithm field specifies the algorithm used (see
 Section 7.4.2.3.1 for the definition of this field). Note that the
 algorithm field was introduced in TLS 1.2, and is not in earlier
 versions. The signature is a digital signature using those
 algorithms over the contents of the element. The contents themselves
 do not appear on the wire but are simply calculated. The length of
 the signature is specified by the signing algorithm and key.

Dierks & Rescorla Expires January 8, 2015 [Page 13]

Internet-Draft TLS July 2014

 In RSA signing, the opaque vector contains the signature generated
 using the RSASSA-PKCS1-v1_5 signature scheme defined in [RFC3447].
 As discussed in [RFC3447], the DigestInfo MUST be DER-encoded [X680]
 [X690]. For hash algorithms without parameters (which includes
 SHA-1), the DigestInfo.AlgorithmIdentifier.parameters field MUST be
 NULL, but implementations MUST accept both without parameters and
 with NULL parameters. Note that earlier versions of TLS used a
 different RSA signature scheme that did not include a DigestInfo
 encoding.

 In DSA, the 20 bytes of the SHA-1 hash are run directly through the
 Digital Signing Algorithm with no additional hashing. This produces
 two values, r and s. The DSA signature is an opaque vector, as
 above, the contents of which are the DER encoding of:

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER
 }

 Note: In current terminology, DSA refers to the Digital Signature
 Algorithm and DSS refers to the NIST standard. In the original SSL
 and TLS specs, "DSS" was used universally. This document uses "DSA"
 to refer to the algorithm, "DSS" to refer to the standard, and it
 uses "DSS" in the code point definitions for historical continuity.

 In AEAD encryption, the plaintext is simultaneously encrypted and
 integrity protected. The input may be of any length, and aead-
 ciphered output is generally larger than the input in order to
 accommodate the integrity check value.

 In the following example

 struct {
 uint8 field1;
 uint8 field2;
 digitally-signed opaque {
 uint8 field3<0..255>;
 uint8 field4;
 };
 } UserType;

 The contents of the inner struct (field3 and field4) are used as
 input for the signature/hash algorithm. The length of the structure,
 in bytes, would be equal to two bytes for field1 and field2, plus two
 bytes for the signature and hash algorithm, plus two bytes for the
 length of the signature, plus the length of the output of the signing
 algorithm. The length of the signature is known because the

Dierks & Rescorla Expires January 8, 2015 [Page 14]

https://tools.ietf.org/pdf/rfc3447
https://tools.ietf.org/pdf/rfc3447

Internet-Draft TLS July 2014

 algorithm and key used for the signing are known prior to encoding or
 decoding this structure.

4.8 . Constants

 Typed constants can be defined for purposes of specification by
 declaring a symbol of the desired type and assigning values to it.

 Under-specified types (opaque, variable-length vectors, and
 structures that contain opaque) cannot be assigned values. No fields
 of a multi-element structure or vector may be elided.

 For example:

 struct {
 uint8 f1;
 uint8 f2;
 } Example1;

 Example1 ex1 = {1, 4}; /* assigns f1 = 1, f2 = 4 */

5. The Pseudorandom Function

 A construction is required to do expansion of secrets into blocks of
 data for the purposes of key generation or validation. This
 pseudorandom function (PRF) takes as input a secret, a seed, and an
 identifying label and produces an output of arbitrary length.

 In this section, we define one PRF, based on HMAC [RFC2104]. This
 PRF with the SHA-256 hash function is used for all cipher suites
 defined in this document and in TLS documents published prior to this
 document when TLS 1.2 is negotiated. New cipher suites MUST
 explicitly specify a PRF and, in general, SHOULD use the TLS PRF with
 SHA-256 or a stronger standard hash function.

 First, we define a data expansion function, P_hash(secret, data),
 that uses a single hash function to expand a secret and seed into an
 arbitrary quantity of output:

 P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
 HMAC_hash(secret, A(2) + seed) +
 HMAC_hash(secret, A(3) + seed) + ...

 where + indicates concatenation.

 A() is defined as:

 A(0) = seed

Dierks & Rescorla Expires January 8, 2015 [Page 15]

https://tools.ietf.org/pdf/rfc2104

Internet-Draft TLS July 2014

 A(i) = HMAC_hash(secret, A(i-1))

 P_hash can be iterated as many times as necessary to produce the
 required quantity of data. For example, if P_SHA256 is being used to
 create 80 bytes of data, it will have to be iterated three times
 (through A(3)), creating 96 bytes of output data; the last 16 bytes
 of the final iteration will then be discarded, leaving 80 bytes of
 output data.

 TLS’s PRF is created by applying P_hash to the secret as:

 PRF(secret, label, seed) = P_<hash>(secret, label + seed)

 The label is an ASCII string. It should be included in the exact
 form it is given without a length byte or trailing null character.
 For example, the label "slithy toves" would be processed by hashing
 the following bytes:

 73 6C 69 74 68 79 20 74 6F 76 65 73

6. The TLS Record Protocol

 The TLS Record Protocol is a layered protocol. At each layer,
 messages may include fields for length, description, and content.
 The Record Protocol takes messages to be transmitted, fragments the
 data into manageable blocks, protects the records, and transmits the
 result. Received data is decrypted and verified, reassembled, and
 then delivered to higher-level clients.

 Four protocols that use the record protocol are described in this
 document: the handshake protocol, the alert protocol, the change
 cipher spec protocol, and the application data protocol. In order to
 allow extension of the TLS protocol, additional record content types
 can be supported by the record protocol. New record content type
 values are assigned by IANA in the TLS Content Type Registry as
 described in Section 12 .

 Implementations MUST NOT send record types not defined in this
 document unless negotiated by some extension. If a TLS
 implementation receives an unexpected record type, it MUST send an
 unexpected_message alert.

 Any protocol designed for use over TLS must be carefully designed to
 deal with all possible attacks against it. As a practical matter,
 this means that the protocol designer must be aware of what security
 properties TLS does and does not provide and cannot safely rely on
 the latter.

Dierks & Rescorla Expires January 8, 2015 [Page 16]

Internet-Draft TLS July 2014

 Note in particular that type and length of a record are not protected
 by encryption. If this information is itself sensitive, application
 designers may wish to take steps (padding, cover traffic) to minimize
 information leakage.

6.1 . Connection States

 A TLS connection state is the operating environment of the TLS Record
 Protocol. It specifies a record protection algorithm and its
 parameters as well as the record protection keys and IVs for the
 connection in both the read and the write directions. Logically,
 there are always four connection states outstanding: the current read
 and write states, and the pending read and write states. All records
 are processed under the current read and write states. The security
 parameters for the pending states can be set by the TLS Handshake
 Protocol, and the ChangeCipherSpec can selectively make either of the
 pending states current, in which case the appropriate current state
 is disposed of and replaced with the pending state; the pending state
 is then reinitialized to an empty state. It is illegal to make a
 state that has not been initialized with security parameters a
 current state. The initial current state always specifies that
 records are not protected.

 The security parameters for a TLS Connection read and write state are
 set by providing the following values:

 connection end
 Whether this entity is considered the "client" or the "server" in
 this connection.

 PRF algorithm
 An algorithm used to generate keys from the master secret (see
 Section 5 and Section 6.3).

 record protection algorithm
 The algorithm to be used for record protection. This algorithm
 must be of the AEAD type and thus provides integrity and
 confidentiality as a single primitive. It is possible to have
 AEAD algorithms which do not provide any confidentiality and
 Section 6.2.2 defines a special NULL_NULL AEAD algorithm for use
 in the initial handshake). This specification includes the key
 size of this algorithm and the lengths of explicit and implicit
 initialization vectors (or nonces).

 master secret
 A 48-byte secret shared between the two peers in the connection.

Dierks & Rescorla Expires January 8, 2015 [Page 17]

Internet-Draft TLS July 2014

 client random
 A 32-byte value provided by the client.

 server random
 A 32-byte value provided by the server.

 These parameters are defined in the presentation language as:

 enum { server, client } ConnectionEnd;

 enum { tls_prf_sha256 } PRFAlgorithm;

 enum { aes_gcm } RecordProtAlgorithm;

 /* The algorithms specified in PRFAlgorithm and
 RecordProtAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;
 PRFAlgorithm prf_algorithm;
 RecordProtAlgorithm record_prot_algorithm;
 uint8 enc_key_length;
 uint8 block_length;
 uint8 fixed_iv_length;
 uint8 record_iv_length;
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

 The record layer will use the security parameters to generate the
 following four items (some of which are not required by all ciphers,
 and are thus empty):

 client write key
 server write key
 client write IV
 server write IV

 The client write parameters are used by the server when receiving and
 processing records and vice versa. The algorithm used for generating
 these items from the security parameters is described in Section 6.3

 Once the security parameters have been set and the keys have been
 generated, the connection states can be instantiated by making them
 the current states. These current states MUST be updated for each
 record processed. Each connection state includes the following
 elements:

Dierks & Rescorla Expires January 8, 2015 [Page 18]

Internet-Draft TLS July 2014

 cipher state
 The current state of the encryption algorithm. This will consist
 of the scheduled key for that connection.

 sequence number
 Each connection state contains a sequence number, which is
 maintained separately for read and write states. The sequence
 number MUST be set to zero whenever a connection state is made the
 active state. Sequence numbers are of type uint64 and may not
 exceed 2^64-1. Sequence numbers do not wrap. If a TLS
 implementation would need to wrap a sequence number, it must
 renegotiate instead. A sequence number is incremented after each
 record: specifically, the first record transmitted under a
 particular connection state MUST use sequence number 0.

6.2 . Record Layer

 The TLS record layer receives uninterpreted data from higher layers
 in non-empty blocks of arbitrary size.

6.2.1 . Fragmentation

 The record layer fragments information blocks into TLSPlaintext
 records carrying data in chunks of 2^14 bytes or less. Client
 message boundaries are not preserved in the record layer (i.e.,
 multiple client messages of the same ContentType MAY be coalesced
 into a single TLSPlaintext record, or a single message MAY be
 fragmented across several records).

 struct {
 uint8 major;
 uint8 minor;
 } ProtocolVersion;

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

Dierks & Rescorla Expires January 8, 2015 [Page 19]

Internet-Draft TLS July 2014

 type
 The higher-level protocol used to process the enclosed fragment.

 version
 The version of the protocol being employed. This document
 describes TLS Version 1.3, which uses the version { 3, 4 }. The
 version value 3.4 is historical, deriving from the use of {3, 1}
 for TLS 1.0. (See Appendix A.1 .) Note that a client that
 supports multiple versions of TLS may not know what version will
 be employed before it receives the ServerHello. See Appendix E
 for discussion about what record layer version number should be
 employed for ClientHello.

 length
 The length (in bytes) of the following TLSPlaintext.fragment. The
 length MUST NOT exceed 2^14.

 fragment
 The application data. This data is transparent and treated as an
 independent block to be dealt with by the higher-level protocol
 specified by the type field.

 Implementations MUST NOT send zero-length fragments of Handshake,
 Alert, or ChangeCipherSpec content types. Zero-length fragments of
 Application data MAY be sent as they are potentially useful as a
 traffic analysis countermeasure.

 Note: Data of different TLS record layer content types MAY be
 interleaved. Application data is generally of lower precedence for
 transmission than other content types. However, records MUST be
 delivered to the network in the same order as they are protected by
 the record layer. Recipients MUST receive and process interleaved
 application layer traffic during handshakes subsequent to the first
 one on a connection.

6.2.2 . Record Payload Protection

 The record protection functions translate a TLSPlaintext structure
 into a TLSCiphertext. The deprotection functions reverse the
 process. In TLS 1.3 as opposed to previous versions of TLS, all
 ciphers are modelled as "Authenticated Encryption with Additional
 Data" (AEAD) [RFC5116]. AEAD functions provide a unified encryption
 and authentication operation which turns plaintext into authenticated
 ciphertext and back again.

 AEAD ciphers take as input a single key, a nonce, a plaintext, and
 "additional data" to be included in the authentication check, as
 described in Section 2.1 of [RFC5116] . The key is either the

Dierks & Rescorla Expires January 8, 2015 [Page 20]

https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc5116#section-2.1

Internet-Draft TLS July 2014

 client_write_key or the server_write_key.

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque nonce_explicit[SecurityParameters.record_iv_length];
 aead-ciphered struct {
 opaque content[TLSPlaintext.length];
 } fragment;
 } TLSCiphertext;

 type
 The type field is identical to TLSPlaintext.type.

 version
 The version field is identical to TLSPlaintext.version.

 length
 The length (in bytes) of the following TLSCiphertext.fragment.
 The length MUST NOT exceed 2^14 + 2048.

 fragment
 The AEAD encrypted form of TLSPlaintext.fragment.

 Each AEAD cipher suite MUST specify how the nonce supplied to the
 AEAD operation is constructed, and what is the length of the
 TLSCiphertext.nonce_explicit part. In many cases, it is appropriate
 to use the partially implicit nonce technique described in Section
 3.2.1 of [RFC5116] ; with record_iv_length being the length of the
 explicit part. In this case, the implicit part SHOULD be derived
 from key_block as client_write_iv and server_write_iv (as described
 in Section 6.3), and the explicit part is included in
 GenericAEAEDCipher.nonce_explicit.

 The plaintext is the TLSPlaintext.fragment.

 The additional authenticated data, which we denote as
 additional_data, is defined as follows:

 additional_data = seq_num + TLSPlaintext.type +
 TLSPlaintext.version + TLSPlaintext.length;

 [[OPEN ISSUE: Fix length which gives us a problem here for algorithms
 which pad. See: https://github .com/tlswg/tls13-spec/issues/47]]

 where "+" denotes concatenation.

Dierks & Rescorla Expires January 8, 2015 [Page 21]

https://tools.ietf.org/pdf/rfc5116#section-3.2.1
https://tools.ietf.org/pdf/rfc5116#section-3.2.1
https://github/

Internet-Draft TLS July 2014

 The AEAD output consists of the ciphertext output by the AEAD
 encryption operation. The length will generally be larger than
 TLSPlaintext.length, but by an amount that varies with the AEAD
 cipher. Since the ciphers might incorporate padding, the amount of
 overhead could vary with different TLSPlaintext.length values. Each
 AEAD cipher MUST NOT produce an expansion of greater than 1024 bytes.
 Symbolically,

 AEADEncrypted = AEAD-Encrypt(write_key, nonce, plaintext,
 additional_data)

 [[OPEN ISSUE: Reduce these values?
 https://github .com/tlswg/tls13-spec/issues/55]]

 In order to decrypt and verify, the cipher takes as input the key,
 nonce, the "additional_data", and the AEADEncrypted value. The
 output is either the plaintext or an error indicating that the
 decryption failed. There is no separate integrity check. That is:

 TLSPlaintext.fragment = AEAD-Decrypt(write_key, nonce,
 AEADEncrypted,
 additional_data)

 If the decryption fails, a fatal bad_record_mac alert MUST be
 generated.

 As a special case, we define the NULL_NULL AEAD cipher which is
 simply the identity operation and thus provides no security. This
 cipher MUST ONLY be used with the initial TLS_NULL_WITH_NULL_NULL
 cipher suite.

6.3 . Key Calculation

 [[OPEN ISSUE: This may be revised. See
 https://github .com/tlswg/tls13-spec/issues/5]] The Record Protocol
 requires an algorithm to generate keys required by the current
 connection state (see Appendix A.6) from the security parameters
 provided by the handshake protocol.

 The master secret is expanded into a sequence of secure bytes, which
 is then split to a client write encryption key and a server write
 encryption key. Each of these is generated from the byte sequence in
 that order. Unused values are empty. Some ciphers may additionally
 require a client write IV and a server write IV.

 When keys are generated, the master secret is used as an entropy
 source.

Dierks & Rescorla Expires January 8, 2015 [Page 22]

https://github/
https://github/

Internet-Draft TLS July 2014

 To generate the key material, compute

 key_block = PRF(SecurityParameters.master_secret,
 "key expansion",
 SecurityParameters.server_random +
 SecurityParameters.client_random);

 until enough output has been generated. Then, the key_block is
 partitioned as follows:

 client_write_key[SecurityParameters.enc_key_length]
 server_write_key[SecurityParameters.enc_key_length]
 client_write_IV[SecurityParameters.fixed_iv_length]
 server_write_IV[SecurityParameters.fixed_iv_length]

 Currently, the client_write_IV and server_write_IV are only generated
 for implicit nonce techniques as described in Section 3.2.1 of
 [RFC5116] .

7. The TLS Handshaking Protocols

 TLS has three subprotocols that are used to allow peers to agree upon
 security parameters for the record layer, to authenticate themselves,
 to instantiate negotiated security parameters, and to report error
 conditions to each other.

 The Handshake Protocol is responsible for negotiating a session,
 which consists of the following items:

 session identifier
 An arbitrary byte sequence chosen by the server to identify an
 active or resumable session state.

 peer certificate
 X509v3 [RFC3280] certificate of the peer. This element of the
 state may be null.

 cipher spec
 Specifies the authentication and key establishment algorithms, the
 pseudorandom function (PRF) used to generate keying material, and
 the record protection algorithm (See Appendix A.6 for formal
 definition.)

 master secret
 48-byte secret shared between the client and server.

Dierks & Rescorla Expires January 8, 2015 [Page 23]

https://tools.ietf.org/pdf/rfc5116#section-3.2.1
https://tools.ietf.org/pdf/rfc5116#section-3.2.1
https://tools.ietf.org/pdf/rfc3280

Internet-Draft TLS July 2014

 is resumable
 A flag indicating whether the session can be used to initiate new
 connections.

 These items are then used to create security parameters for use by
 the record layer when protecting application data. Many connections
 can be instantiated using the same session through the resumption
 feature of the TLS Handshake Protocol.

7.1 . Change Cipher Spec Protocol

 The change cipher spec protocol exists to signal transitions in
 ciphering strategies. The protocol consists of a single message,
 which is encrypted under the current (not the pending) connection
 state. The message consists of a single byte of value 1.

 struct {
 enum { change_cipher_spec(1), (255) } type;
 } ChangeCipherSpec;

 The ChangeCipherSpec message is sent by both the client and the
 server to notify the receiving party that subsequent records will be
 protected under the newly negotiated CipherSpec and keys. Reception
 of this message causes the receiver to instruct the record layer to
 immediately copy the read pending state into the read current state.
 Immediately after sending this message, the sender MUST instruct the
 record layer to make the write pending state the write current state.
 (See Section 6.1 .) The ChangeCipherSpec message is sent during the
 handshake after the security parameters have been agreed upon, but
 before the first message protected with a new CipherSpec is sent.

 Note: If a rehandshake occurs while data is flowing on a connection,
 the communicating parties may continue to send data using the old
 CipherSpec. However, once the ChangeCipherSpec has been sent, the
 new CipherSpec MUST be used. The first side to send the
 ChangeCipherSpec does not know that the other side has finished
 computing the new keying material (e.g., if it has to perform a time-
 consuming public key operation). Thus, a small window of time,
 during which the recipient must buffer the data, MAY exist. In
 practice, with modern machines this interval is likely to be fairly
 short. [[TODO: This text seems confusing.]]

7.2 . Alert Protocol

 One of the content types supported by the TLS record layer is the
 alert type. Alert messages convey the severity of the message
 (warning or fatal) and a description of the alert. Alert messages
 with a level of fatal result in the immediate termination of the

Dierks & Rescorla Expires January 8, 2015 [Page 24]

Internet-Draft TLS July 2014

 connection. In this case, other connections corresponding to the
 session may continue, but the session identifier MUST be invalidated,
 preventing the failed session from being used to establish new
 connections. Like other messages, alert messages are encrypted as
 specified by the current connection state.

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed_RESERVED(21),
 record_overflow(22),
 decompression_failure_RESERVED(30),
 handshake_failure(40),
 no_certificate_RESERVED(41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction_RESERVED(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 user_canceled(90),
 no_renegotiation(100),
 unsupported_extension(110),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

7.2.1 . Closure Alerts

 The client and the server must share knowledge that the connection is
 ending in order to avoid a truncation attack. Either party may
 initiate the exchange of closing messages.

Dierks & Rescorla Expires January 8, 2015 [Page 25]

Internet-Draft TLS July 2014

 close_notify
 This message notifies the recipient that the sender will not send
 any more messages on this connection. Note that as of TLS 1.1,
 failure to properly close a connection no longer requires that a
 session not be resumed. This is a change from TLS 1.0 to conform
 with widespread implementation practice.

 Either party may initiate a close by sending a close_notify alert.
 Any data received after a closure alert is ignored.

 Unless some other fatal alert has been transmitted, each party is
 required to send a close_notify alert before closing the write side
 of the connection. The other party MUST respond with a close_notify
 alert of its own and close down the connection immediately,
 discarding any pending writes. It is not required for the initiator
 of the close to wait for the responding close_notify alert before
 closing the read side of the connection.

 If the application protocol using TLS provides that any data may be
 carried over the underlying transport after the TLS connection is
 closed, the TLS implementation must receive the responding
 close_notify alert before indicating to the application layer that
 the TLS connection has ended. If the application protocol will not
 transfer any additional data, but will only close the underlying
 transport connection, then the implementation MAY choose to close the
 transport without waiting for the responding close_notify. No part
 of this standard should be taken to dictate the manner in which a
 usage profile for TLS manages its data transport, including when
 connections are opened or closed.

 Note: It is assumed that closing a connection reliably delivers
 pending data before destroying the transport.

7.2.2 . Error Alerts

 Error handling in the TLS Handshake protocol is very simple. When an
 error is detected, the detecting party sends a message to the other
 party. Upon transmission or receipt of a fatal alert message, both
 parties immediately close the connection. Servers and clients MUST
 forget any session-identifiers, keys, and secrets associated with a
 failed connection. Thus, any connection terminated with a fatal
 alert MUST NOT be resumed.

 Whenever an implementation encounters a condition which is defined as
 a fatal alert, it MUST send the appropriate alert prior to closing
 the connection. For all errors where an alert level is not
 explicitly specified, the sending party MAY determine at its
 discretion whether to treat this as a fatal error or not. If the

Dierks & Rescorla Expires January 8, 2015 [Page 26]

Internet-Draft TLS July 2014

 implementation chooses to send an alert but intends to close the
 connection immediately afterwards, it MUST send that alert at the
 fatal alert level.

 If an alert with a level of warning is sent and received, generally
 the connection can continue normally. If the receiving party decides
 not to proceed with the connection (e.g., after having received a
 no_renegotiation alert that it is not willing to accept), it SHOULD
 send a fatal alert to terminate the connection. Given this, the
 sending party cannot, in general, know how the receiving party will
 behave. Therefore, warning alerts are not very useful when the
 sending party wants to continue the connection, and thus are
 sometimes omitted. For example, if a peer decides to accept an
 expired certificate (perhaps after confirming this with the user) and
 wants to continue the connection, it would not generally send a
 certificate_expired alert.

 The following error alerts are defined:

 unexpected_message
 An inappropriate message was received. This alert is always fatal
 and should never be observed in communication between proper
 implementations.

 bad_record_mac
 This alert is returned if a record is received which cannot be
 deprotected. Because AEAD algorithms combine decryption and
 verification, this message is used for all deprotection failures.
 This message is always fatal and should never be observed in
 communication between proper implementations (except when messages
 were corrupted in the network).

 decryption_failed_RESERVED
 This alert was used in some earlier versions of TLS, and may have
 permitted certain attacks against the CBC mode [CBCATT]. It MUST
 NOT be sent by compliant implementations.

 record_overflow
 A TLSCiphertext record was received that had a length more than
 2^14+2048 bytes, or a record decrypted to a TLSPlaintext record
 with more than 2^14 bytes. This message is always fatal and
 should never be observed in communication between proper
 implementations (except when messages were corrupted in the
 network).

Dierks & Rescorla Expires January 8, 2015 [Page 27]

Internet-Draft TLS July 2014

 decompression_failure
 This alert was used in previous versions of TLS. TLS 1.3 does not
 include compression and TLS 1.3 implementations MUST NOT send this
 alert when in TLS 1.3 mode.

 handshake_failure
 Reception of a handshake_failure alert message indicates that the
 sender was unable to negotiate an acceptable set of security
 parameters given the options available. This is a fatal error.

 no_certificate_RESERVED
 This alert was used in SSLv3 but not any version of TLS. It MUST
 NOT be sent by compliant implementations.

 bad_certificate
 A certificate was corrupt, contained signatures that did not
 verify correctly, etc.

 unsupported_certificate
 A certificate was of an unsupported type.

 certificate_revoked
 A certificate was revoked by its signer.

 certificate_expired
 A certificate has expired or is not currently valid.

 certificate_unknown
 Some other (unspecified) issue arose in processing the
 certificate, rendering it unacceptable.

 illegal_parameter
 A field in the handshake was out of range or inconsistent with
 other fields. This message is always fatal.

 unknown_ca
 A valid certificate chain or partial chain was received, but the
 certificate was not accepted because the CA certificate could not
 be located or couldn’t be matched with a known, trusted CA. This
 message is always fatal.

 access_denied
 A valid certificate was received, but when access control was
 applied, the sender decided not to proceed with negotiation. This
 message is always fatal.

Dierks & Rescorla Expires January 8, 2015 [Page 28]

Internet-Draft TLS July 2014

 decode_error
 A message could not be decoded because some field was out of the
 specified range or the length of the message was incorrect. This
 message is always fatal and should never be observed in
 communication between proper implementations (except when messages
 were corrupted in the network).

 decrypt_error
 A handshake cryptographic operation failed, including being unable
 to correctly verify a signature or validate a Finished message.
 This message is always fatal.

 export_restriction_RESERVED
 This alert was used in some earlier versions of TLS. It MUST NOT
 be sent by compliant implementations.

 protocol_version
 The protocol version the client has attempted to negotiate is
 recognized but not supported. (For example, old protocol versions
 might be avoided for security reasons.) This message is always
 fatal.

 insufficient_security
 Returned instead of handshake_failure when a negotiation has
 failed specifically because the server requires ciphers more
 secure than those supported by the client. This message is always
 fatal.

 internal_error
 An internal error unrelated to the peer or the correctness of the
 protocol (such as a memory allocation failure) makes it impossible
 to continue. This message is always fatal.

 user_canceled
 This handshake is being canceled for some reason unrelated to a
 protocol failure. If the user cancels an operation after the
 handshake is complete, just closing the connection by sending a
 close_notify is more appropriate. This alert should be followed
 by a close_notify. This message is generally a warning.

 no_renegotiation
 Sent by the client in response to a hello request or by the server
 in response to a client hello after initial handshaking. Either
 of these would normally lead to renegotiation; when that is not
 appropriate, the recipient should respond with this alert. At
 that point, the original requester can decide whether to proceed
 with the connection. One case where this would be appropriate is
 where a server has spawned a process to satisfy a request; the

Dierks & Rescorla Expires January 8, 2015 [Page 29]

Internet-Draft TLS July 2014

 process might receive security parameters (key length,
 authentication, etc.) at startup, and it might be difficult to
 communicate changes to these parameters after that point. This
 message is always a warning.

 unsupported_extension
 sent by clients that receive an extended server hello containing
 an extension that they did not put in the corresponding client
 hello. This message is always fatal.

 New Alert values are assigned by IANA as described in Section 12 .

7.3 . Handshake Protocol Overview

 The cryptographic parameters of the session state are produced by the
 TLS Handshake Protocol, which operates on top of the TLS record
 layer. When a TLS client and server first start communicating, they
 agree on a protocol version, select cryptographic algorithms,
 optionally authenticate each other, and use public-key encryption
 techniques to generate shared secrets.

 The TLS Handshake Protocol involves the following steps:

 - Exchange hello messages to agree on a protocol version,
 algorithms, exchange random values, and check for session
 resumption.

 - Exchange the necessary cryptographic parameters to allow the
 client and server to agree on a premaster secret.

 - Exchange certificates and cryptographic information to allow the
 client and server to authenticate themselves.

 - Generate a master secret from the premaster secret and exchanged
 random values.

 - Provide security parameters to the record layer.

 - Allow the client and server to verify that their peer has
 calculated the same security parameters and that the handshake
 occurred without tampering by an attacker.

 Note that higher layers should not be overly reliant on whether TLS
 always negotiates the strongest possible connection between two
 peers. There are a number of ways in which a man-in-the-middle
 attacker can attempt to make two entities drop down to the least
 secure method they support. The protocol has been designed to
 minimize this risk, but there are still attacks available: for

Dierks & Rescorla Expires January 8, 2015 [Page 30]

Internet-Draft TLS July 2014

 example, an attacker could block access to the port a secure service
 runs on, or attempt to get the peers to negotiate an unauthenticated
 connection. The fundamental rule is that higher levels must be
 cognizant of what their security requirements are and never transmit
 information over a channel less secure than what they require. The
 TLS protocol is secure in that any cipher suite offers its promised
 level of security: if you negotiate AES-GCM [GCM] with a 1024-bit DHE
 key exchange with a host whose certificate you have verified, you can
 expect to be that secure.

 These goals are achieved by the handshake protocol, which can be
 summarized as follows: The client sends a ClientHello message which
 contains a random nonce (ClientHello.random), its preferences for
 Protocol Version, Cipher Suite, and a variety of extensions. In the
 same flight, it sends a ClientKeyExchange message which contains its
 share of the parameters for key agreement for some set of expected
 server parameters (DHE/ECDHE groups, etc.).

 The server responds to the ClientHello with a ServerHello message, or
 else a fatal error will occur and the connection will fail. The
 ServerHello contains the server’s nonce (ServerHello.random), the
 server’s choice of the Protocol Version, Session ID and Cipher Suite,
 and the server’s response to the extensions the client offered.

 If the client has provided a ClientKeyExchange with an appropriate
 set of keying material, the server can then generate its own keying
 material share and send a ServerKeyExchange message which contains
 its share of the parameters for the key agreement. The server can
 now compute the shared secret. At this point, a ChangeCipherSpec
 message is sent by the server, and the server copies the pending
 Cipher Spec into the current Cipher Spec. The remainder of the
 server’s handshake messages will be encrypted under that Cipher Spec.

 Following these messages, the server will send an EncryptedExtensions
 message which contains a response to any client’s extensions which
 are not necessary to establish the Cipher Suite. The server will
 then send its certificate in a Certificate message if it is to be
 authenticated. The server may optionally request a certificate from
 the client by sending a CertificateRequest message at this point.
 Finally, if the server is authenticated, it will send a
 CertificateVerify message which provides a signature over the entire
 handshake up to this point. This serves both to authenticate the
 server and to establish the integrity of the negotiation. Finally,
 the server sends a Finished message which includes an integrity check
 over the handshake keyed by the shared secret and demonstrates that
 the server and client have agreed upon the same keys. [[TODO: If the
 server is not requesting client authentication, it MAY start sending
 application data following the Finished, though the server has no way

Dierks & Rescorla Expires January 8, 2015 [Page 31]

Internet-Draft TLS July 2014

 of knowing who will be receiving the data. Add this.]]

 Once the client receives the ServerKeyExchange, it can also compute
 the shared key. At this point ChangeCipherSpec message is sent by
 the client, and the client copies the pending Cipher Spec into the
 current Cipher Spec. The remainder of the client’s messages will be
 encrypted under this Cipher Spec. If the server has sent a
 CertificateRequest message, the client MUST send the Certificate
 message, though it may contain zero certificates. If the client has
 sent a certificate, a digitally-signed CertificateVerify message is
 sent to explicitly verify possession of the private key in the
 certificate. Finally, the client sends the Finished message. At
 this point, the handshake is complete, and the client and server may
 exchange application layer data. (See flow chart below.)
 Application data MUST NOT be sent prior to the Finished message.
 [[TODO: can we make this clearer and more clearly match the text
 above about server-side False Start.]] Client Server

 ClientHello
 ClientKeyExchange -------->
 ServerHello
 ServerKeyExchange
 [ChangeCipherSpec]
 EncryptedExtensions*
 Certificate*
 CertificateRequest*
 CertificateVerify*
 <-------- Finished
 [ChangeCipherSpec]
 Certificate*
 CertificateVerify*
 Finished -------->
 Application Data <-------> Application Data

 Figure 1. Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

 Note: To help avoid pipeline stalls, ChangeCipherSpec is an
 independent TLS protocol content type, and is not actually a TLS
 handshake message.

 If the client has not provided an appropriate ClientKeyExchange (e.g.
 it includes only DHE or ECDHE groups unacceptable or unsupported by
 the server), the server corrects the mismatch with the ServerHello
 (which the client can detect by comparing the selected cipher suite
 and parameters with the ClientKeyExchange it offered) and the client

Dierks & Rescorla Expires January 8, 2015 [Page 32]

Internet-Draft TLS July 2014

 will need to restart the handshake with an appropriate
 ClientKeyExchange, as shown in Figure 2:

 Client Server

 ClientHello
 ClientKeyExchange -------->
 <-------- ServerHello

 ClientHello
 ClientKeyExchange -------->
 ServerHello
 ServerKeyExchange
 [ChangeCipherSpec]
 EncryptedExtensions*
 Certificate*
 CertificateRequest*
 CertificateVerify*
 <-------- Finished
 [ChangeCipherSpec]
 Certificate*
 CertificateVerify*
 Finished -------->
 Application Data <-------> Application Data

 Figure 2. Message flow for a full handshake with mismatched
 parameters

 [[OPEN ISSUE: Do we restart the handshake hash?]] [[OPEN ISSUE: We
 need to make sure that this flow doesn’t introduce downgrade issues.
 Potential options include continuing the handshake hashes (as long as
 clients don’t change their opinion of the server’s capabilities with
 aborted handshakes) and requiring the client to send the same
 ClientHello (as is currently done) and then checking you get the same
 negotiated parameters.]]

 When the client and server decide to resume a previous session or
 duplicate an existing session (instead of negotiating new security
 parameters), the message flow is as follows:

 The client sends a ClientHello using the Session ID of the session to
 be resumed. The server then checks its session cache for a match.
 If a match is found, and the server is willing to re-establish the
 connection under the specified session state, it will send a
 ServerHello with the same Session ID value. At this point, both
 client and server MUST send ChangeCipherSpec messages and proceed
 directly to Finished messages. Once the re-establishment is
 complete, the client and server MAY begin to exchange application

Dierks & Rescorla Expires January 8, 2015 [Page 33]

Internet-Draft TLS July 2014

 layer data. (See flow chart below.) If a Session ID match is not
 found, the server generates a new session ID, and the TLS client and
 server perform a full handshake.

 Client Server

 ClientHello
 ClientKeyExhange -------->
 ServerHello
 [ChangeCipherSpec]
 <-------- Finished
 [ChangeCipherSpec]
 Finished -------->
 Application Data <-------> Application Data

 Figure 3. Message flow for an abbreviated handshake

 The contents and significance of each message will be presented in
 detail in the following sections.

7.4 . Handshake Protocol

 The TLS Handshake Protocol is one of the defined higher-level clients
 of the TLS Record Protocol. This protocol is used to negotiate the
 secure attributes of a session. Handshake messages are supplied to
 the TLS record layer, where they are encapsulated within one or more
 TLSPlaintext structures, which are processed and transmitted as
 specified by the current active session state.

Dierks & Rescorla Expires January 8, 2015 [Page 34]

Internet-Draft TLS July 2014

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 certificate(11), server_key_exchange (12),
 certificate_request(13), certificate_verify(15),
 client_key_exchange(16), finished(20), (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case client_key_exchange: ClientKeyExchange;
 case server_hello: ServerHello;
 case server_key_exchange: ServerKeyExchange;
 case certificate: Certificate;
 case certificate_request: CertificateRequest;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 } body;
 } Handshake;

 The handshake protocol messages are presented below in the order they
 MUST be sent; sending handshake messages in an unexpected order
 results in a fatal error. Unneeded handshake messages can be
 omitted, however. The one message that is not bound by these
 ordering rules is the HelloRequest message, which can be sent at any
 time, but which SHOULD be ignored by the client if it arrives in the
 middle of a handshake.

 New handshake message types are assigned by IANA as described in
 Section 12 .

7.4.1 . Hello Messages

 The hello phase messages are used to exchange security enhancement
 capabilities between the client and server. When a new session
 begins, the record layer’s connection state AEAD algorithm is
 initialized to NULL_NULL. The current connection state is used for
 renegotiation messages.

7.4.1.1 . Hello Request

 When this message will be sent:

Dierks & Rescorla Expires January 8, 2015 [Page 35]

Internet-Draft TLS July 2014

 The HelloRequest message MAY be sent by the server at any time.

 Meaning of this message:

 HelloRequest is a simple notification that the client should begin
 the negotiation process anew. In response, the client should send
 a ClientHello message when convenient. This message is not
 intended to establish which side is the client or server but
 merely to initiate a new negotiation. Servers SHOULD NOT send a
 HelloRequest immediately upon the client’s initial connection. It
 is the client’s job to send a ClientHello at that time.

 This message will be ignored by the client if the client is
 currently negotiating a session. This message MAY be ignored by
 the client if it does not wish to renegotiate a session, or the
 client may, if it wishes, respond with a no_renegotiation alert.
 Since handshake messages are intended to have transmission
 precedence over application data, it is expected that the
 negotiation will begin before no more than a few records are
 received from the client. If the server sends a HelloRequest but
 does not receive a ClientHello in response, it may close the
 connection with a fatal alert.

 After sending a HelloRequest, servers SHOULD NOT repeat the
 request until the subsequent handshake negotiation is complete.

 Structure of this message:

 struct { } HelloRequest;

 This message MUST NOT be included in the message hashes that are
 maintained throughout the handshake and used in the Finished messages
 and the certificate verify message.

7.4.1.2 . Client Hello

 When this message will be sent:

 When a client first connects to a server, it is required to send
 the ClientHello as its first message. The client can also send a
 ClientHello in response to a HelloRequest or on its own initiative
 in order to renegotiate the security parameters in an existing
 connection. Finally, the client will send a ClientHello when the
 server has responded to its ClientHello with a ServerHello that
 selects cryptographic parameters that don’t match the client’s
 ClientKeyExchange. In that case, the client MUST send the same
 ClientHello (without modification) along with the new
 ClientKeyExchange.

Dierks & Rescorla Expires January 8, 2015 [Page 36]

Internet-Draft TLS July 2014

 Structure of this message:

 The ClientHello message includes a random structure, which is used
 later in the protocol.

 struct {
 uint32 gmt_unix_time;
 opaque random_bytes[28];
 } Random;

 gmt_unix_time
 The current time and date in standard UNIX 32-bit format (seconds
 since the midnight starting Jan 1, 1970, UTC, ignoring leap
 seconds) according to the sender’s internal clock. Clocks are not
 required to be set correctly by the basic TLS protocol; higher-
 level or application protocols may define additional requirements.
 Note that, for historical reasons, the data element is named using
 GMT, the predecessor of the current worldwide time base, UTC.

 random_bytes
 28 bytes generated by a secure random number generator.

 The ClientHello message includes a variable-length session
 identifier. If not empty, the value identifies a session between the
 same client and server whose security parameters the client wishes to
 reuse. The session identifier MAY be from an earlier connection,
 this connection, or from another currently active connection. The
 second option is useful if the client only wishes to update the
 random structures and derived values of a connection, and the third
 option makes it possible to establish several independent secure
 connections without repeating the full handshake protocol. These
 independent connections may occur sequentially or simultaneously; a
 SessionID becomes valid when the handshake negotiating it completes
 with the exchange of Finished messages and persists until it is
 removed due to aging or because a fatal error was encountered on a
 connection associated with the session. The actual contents of the
 SessionID are defined by the server.

 opaque SessionID<0..32>;

 Warning: Because the SessionID is transmitted without confidentiality
 or integrity protection, servers MUST NOT place confidential
 information in session identifiers or let the contents of fake
 session identifiers cause any breach of security. (Note that the
 content of the handshake as a whole, including the SessionID, is
 protected by the Finished messages exchanged at the end of the
 handshake.)

Dierks & Rescorla Expires January 8, 2015 [Page 37]

Internet-Draft TLS July 2014

 The cipher suite list, passed from the client to the server in the
 ClientHello message, contains the combinations of cryptographic
 algorithms supported by the client in order of the client’s
 preference (favorite choice first). Each cipher suite defines a key
 exchange algorithm, a record protection algorithm (including secret
 key length) and a PRF. The server will select a cipher suite or, if
 no acceptable choices are presented, return a handshake failure alert
 and close the connection. If the list contains cipher suites the
 server does not recognize, support, or wish to use, the server MUST
 ignore those cipher suites, and process the remaining ones as usual.

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 enum { null(0), (255) } CompressionMethod;

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ClientHello;

 TLS allows extensions to follow the compression_methods field in an
 extensions block. The presence of extensions can be detected by
 determining whether there are bytes following the compression_methods
 at the end of the ClientHello. Note that this method of detecting
 optional data differs from the normal TLS method of having a
 variable-length field, but it is used for compatibility with TLS
 before extensions were defined.

 client_version
 The version of the TLS protocol by which the client wishes to
 communicate during this session. This SHOULD be the latest
 (highest valued) version supported by the client. For this
 version of the specification, the version will be 3.4 (see
 Appendix E for details about backward compatibility).

 random
 A client-generated random structure.

Dierks & Rescorla Expires January 8, 2015 [Page 38]

Internet-Draft TLS July 2014

 session_id
 The ID of a session the client wishes to use for this connection.
 This field is empty if no session_id is available, or if the
 client wishes to generate new security parameters.

 cipher_suites
 This is a list of the cryptographic options supported by the
 client, with the client’s first preference first. If the
 session_id field is not empty (implying a session resumption
 request), this vector MUST include at least the cipher_suite from
 that session. Values are defined in Appendix A.5 .

 compression_methods
 Versions of TLS before 1.3 supported compression and the list of
 compression methods was supplied in this field. For any TLS 1.3
 ClientHello, this field MUST contain only the "null" compression
 method with the code point of 0. If a TLS 1.3 ClientHello is
 received with any other value in this field, the server MUST
 generate a fatal "illegal_parameter" alert. Note that TLS 1.3
 servers may receive TLS 1.2 or prior ClientHellos which contain
 other compression methods and MUST follow the procedures for the
 appropriate prior version of TLS.

 extensions
 Clients MAY request extended functionality from servers by sending
 data in the extensions field. The actual "Extension" format is
 defined in Section 7.4.2.3 .

 In the event that a client requests additional functionality using
 extensions, and this functionality is not supplied by the server, the
 client MAY abort the handshake. A server MUST accept ClientHello
 messages both with and without the extensions field, and (as for all
 other messages) it MUST check that the amount of data in the message
 precisely matches one of these formats; if not, then it MUST send a
 fatal "decode_error" alert.

 After sending the ClientHello message, the client waits for a
 ServerHello message. Any handshake message returned by the server,
 except for a HelloRequest, is treated as a fatal error.

7.4.2 . Client Key Exchange Message

 When this message will be sent:

 This message is always sent by the client. It MUST immediately
 follow the ClientHello message. In backward compatibility mode
 (see Section XXX) it will be included in the EarlyData extension
 (Section 7.4.2.3.2) in the ClientHello.

Dierks & Rescorla Expires January 8, 2015 [Page 39]

Internet-Draft TLS July 2014

 Meaning of this message:

 This message contains the client’s cryptographic parameters for
 zero or more key establishment methods.

 Structure of this message:

 enum { dhe(1), (255) } KeyExchangeAlgorithm;

 struct {
 KeyExchangeAlgorithm algorithm;
 select (KeyExchangeAlgorithm) {
 dhe:
 ClientDiffieHellmanParams;
 } exchange_keys;
 } ClientKeyExchangeOffer;

 struct {
 ClientKeyExchangeOffer offers<0..2^16-1>;
 } ClientKeyExchange;

 offers
 A list of ClientKeyExchangeOffer values.

 [[OPEN ISSUE: Should we rename CKE here?]] Clients may offer an
 arbitrary number of ClientKeyExchangeOffer values, each representing
 a single set of key agreement parameters; for instance a client might
 offer shares for several elliptic curves or multiple integer DH
 groups. The shares for each ClientKeyExchangeOffer MUST by generated
 independently. Clients MUST NOT offer multiple
 ClientKeyExchangeOffers for the same parameters. It is explicitly
 permitted to send an empty ClientKeyExchange message, as this is used
 to elicit the server’s parameters if the client has no useful
 information.

 [TODO: Recommendation about what the client offers. Presumably which
 integer DH groups and which curves.] [TODO: Work out how this
 interacts with PSK and SRP.]

7.4.2.1 . Client Diffie-Hellman Parameters

 When one of the ClientKeyExchangeOffers is a Diffie-Hellman key, the
 client SHALL encode it using ClientDiffieHellmanParams. This
 structure conveys the client’s Diffie-Hellman public value (dh_Yc)
 and the group which it is being provided for.

 Structure of this message:

Dierks & Rescorla Expires January 8, 2015 [Page 40]

Internet-Draft TLS July 2014

 struct {
 DiscreteLogDHEGroup group; // from draft-gillmor
 opaque dh_Yc<1..2^16-1>;
 } ClientDiffieHellmanParams;

 group
 The DHE group to which these parameters correspond.

 dh_Yc
 The client’s Diffie-Hellman public value (g^X mod p).

7.4.2.2 . Server Hello

 When this message will be sent:

 The server will send this message in response to a ClientHello
 message when it was able to find an acceptable set of algorithms.
 If it cannot find such a match, it will respond with a handshake
 failure alert.

 Structure of this message:

 struct {
 ProtocolVersion server_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ServerHello;

 The presence of extensions can be detected by determining whether
 there are bytes following the cipher_suite field at the end of the
 ServerHello.

 server_version
 This field will contain the lower of that suggested by the client
 in the client hello and the highest supported by the server. For
 this version of the specification, the version is 3.4. (See
 Appendix E for details about backward compatibility.)

Dierks & Rescorla Expires January 8, 2015 [Page 41]

https://tools.ietf.org/pdf/draft-gillmor

Internet-Draft TLS July 2014

 random
 This structure is generated by the server and MUST be
 independently generated from the ClientHello.random.

 session_id
 This is the identity of the session corresponding to this
 connection. If the ClientHello.session_id was non-empty, the
 server will look in its session cache for a match. If a match is
 found and the server is willing to establish the new connection
 using the specified session state, the server will respond with
 the same value as was supplied by the client. This indicates a
 resumed session and dictates that the parties must proceed
 directly to the Finished messages. Otherwise, this field will
 contain a different value identifying the new session. The server
 may return an empty session_id to indicate that the session will
 not be cached and therefore cannot be resumed. If a session is
 resumed, it must be resumed using the same cipher suite it was
 originally negotiated with. Note that there is no requirement
 that the server resume any session even if it had formerly
 provided a session_id. Clients MUST be prepared to do a full
 negotiation -- including negotiating new cipher suites -- during
 any handshake.

 cipher_suite
 The single cipher suite selected by the server from the list in
 ClientHello.cipher_suites. For resumed sessions, this field is
 the value from the state of the session being resumed.

 extensions
 A list of extensions. Note that only extensions offered by the
 client can appear in the server’s list. In TLS 1.3 as opposed to
 previous versions of TLS, the server’s extensions are split
 between the ServerHello and the EncryptedExtensions Section 7.4.4
 message. The ServerHello MUST only include extensions which are
 required to establish the cryptographic context.

7.4.2.3 . Hello Extensions

 The extension format is:

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 signature_algorithms(13), early_data(TBD), (65535)
 } ExtensionType;

Dierks & Rescorla Expires January 8, 2015 [Page 42]

Internet-Draft TLS July 2014

 Here:

 - "extension_type" identifies the particular extension type.

 - "extension_data" contains information specific to the particular
 extension type.

 The initial set of extensions is defined in a companion document
 [TLSEXT]. The list of extension types is maintained by IANA as
 described in Section 12 .

 An extension type MUST NOT appear in the ServerHello unless the same
 extension type appeared in the corresponding ClientHello. If a
 client receives an extension type in ServerHello that it did not
 request in the associated ClientHello, it MUST abort the handshake
 with an unsupported_extension fatal alert.

 Nonetheless, "server-oriented" extensions may be provided in the
 future within this framework. Such an extension (say, of type x)
 would require the client to first send an extension of type x in a
 ClientHello with empty extension_data to indicate that it supports
 the extension type. In this case, the client is offering the
 capability to understand the extension type, and the server is taking
 the client up on its offer.

 When multiple extensions of different types are present in the
 ClientHello or ServerHello messages, the extensions MAY appear in any
 order. There MUST NOT be more than one extension of the same type.

 Finally, note that extensions can be sent both when starting a new
 session and when requesting session resumption. Indeed, a client
 that requests session resumption does not in general know whether the
 server will accept this request, and therefore it SHOULD send the
 same extensions as it would send if it were not attempting
 resumption.

 In general, the specification of each extension type needs to
 describe the effect of the extension both during full handshake and
 session resumption. Most current TLS extensions are relevant only
 when a session is initiated: when an older session is resumed, the
 server does not process these extensions in Client Hello, and does
 not include them in Server Hello. However, some extensions may
 specify different behavior during session resumption.

 There are subtle (and not so subtle) interactions that may occur in
 this protocol between new features and existing features which may
 result in a significant reduction in overall security. The following
 considerations should be taken into account when designing new

Dierks & Rescorla Expires January 8, 2015 [Page 43]

Internet-Draft TLS July 2014

 extensions:

 - Some cases where a server does not agree to an extension are error
 conditions, and some are simply refusals to support particular
 features. In general, error alerts should be used for the former,
 and a field in the server extension response for the latter.

 - Extensions should, as far as possible, be designed to prevent any
 attack that forces use (or non-use) of a particular feature by
 manipulation of handshake messages. This principle should be
 followed regardless of whether the feature is believed to cause a
 security problem.

 Often the fact that the extension fields are included in the
 inputs to the Finished message hashes will be sufficient, but
 extreme care is needed when the extension changes the meaning of
 messages sent in the handshake phase. Designers and implementors
 should be aware of the fact that until the handshake has been
 authenticated, active attackers can modify messages and insert,
 remove, or replace extensions.

 - It would be technically possible to use extensions to change major
 aspects of the design of TLS; for example the design of cipher
 suite negotiation. This is not recommended; it would be more
 appropriate to define a new version of TLS -- particularly since
 the TLS handshake algorithms have specific protection against
 version rollback attacks based on the version number, and the
 possibility of version rollback should be a significant
 consideration in any major design change.

7.4.2.3.1 . Signature Algorithms

 The client uses the "signature_algorithms" extension to indicate to
 the server which signature/hash algorithm pairs may be used in
 digital signatures. The "extension_data" field of this extension
 contains a "supported_signature_algorithms" value.

Dierks & Rescorla Expires January 8, 2015 [Page 44]

Internet-Draft TLS July 2014

 enum {
 none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
 sha512(6), (255)
 } HashAlgorithm;

 enum { anonymous(0), rsa(1), dsa(2), ecdsa(3), (255) }
 SignatureAlgorithm;

 struct {
 HashAlgorithm hash;
 SignatureAlgorithm signature;
 } SignatureAndHashAlgorithm;

 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;

 Each SignatureAndHashAlgorithm value lists a single hash/signature
 pair that the client is willing to verify. The values are indicated
 in descending order of preference.

 Note: Because not all signature algorithms and hash algorithms may be
 accepted by an implementation (e.g., DSA with SHA-1, but not SHA-
 256), algorithms here are listed in pairs.

 hash
 This field indicates the hash algorithm which may be used. The
 values indicate support for unhashed data, MD5 [RFC1321], SHA-1,
 SHA-224, SHA-256, SHA-384, and SHA-512 [SHS], respectively. The
 "none" value is provided for future extensibility, in case of a
 signature algorithm which does not require hashing before signing.

 signature
 This field indicates the signature algorithm that may be used.
 The values indicate anonymous signatures, RSASSA-PKCS1-v1_5
 [RFC3447] and DSA [DSS], and ECDSA [ECDSA], respectively. The
 "anonymous" value is meaningless in this context but used in
 Section 7.4.3 . It MUST NOT appear in this extension.

 The semantics of this extension are somewhat complicated because the
 cipher suite indicates permissible signature algorithms but not hash
 algorithms. Section 7.4.5 and Section 7.4.3 describe the appropriate
 rules.

 If the client supports only the default hash and signature algorithms
 (listed in this section), it MAY omit the signature_algorithms
 extension. If the client does not support the default algorithms, or
 supports other hash and signature algorithms (and it is willing to
 use them for verifying messages sent by the server, i.e., server

Dierks & Rescorla Expires January 8, 2015 [Page 45]

https://tools.ietf.org/pdf/rfc1321
https://tools.ietf.org/pdf/rfc3447

Internet-Draft TLS July 2014

 certificates and server key exchange), it MUST send the
 signature_algorithms extension, listing the algorithms it is willing
 to accept.

 If the client does not send the signature_algorithms extension, the
 server MUST do the following:

 - If the negotiated key exchange algorithm is one of (DHE_RSA,
 ECDHE_RSA), behave as if client had sent the value {sha1,rsa}.

 - If the negotiated key exchange algorithm is DHE_DSS, behave as if
 the client had sent the value {sha1,dsa}.

 - If the negotiated key exchange algorithm is ECDHE_ECDSA, behave as
 if the client had sent value {sha1,ecdsa}.

 Note: this is a change from TLS 1.1 where there are no explicit
 rules, but as a practical matter one can assume that the peer
 supports MD5 and SHA-1.

 Note: this extension is not meaningful for TLS versions prior to 1.2.
 Clients MUST NOT offer it if they are offering prior versions.
 However, even if clients do offer it, the rules specified in [TLSEXT]
 require servers to ignore extensions they do not understand.

 Servers MUST NOT send this extension. TLS servers MUST support
 receiving this extension.

 When performing session resumption, this extension is not included in
 Server Hello, and the server ignores the extension in Client Hello
 (if present).

7.4.2.3.2 . Early Data Extension

 TLS versions before 1.3 have a strict message ordering and do not
 permit additional messages to follow the ClientHello. The EarlyData
 extension allows TLS messages which would otherwise be sent as
 separate records to be instead inserted in the ClientHello. The
 extension simply contains the TLS records which would otherwise have
 been included in the client’s first flight.

 struct {
 TLSCipherText messages<5 .. 2^24-1>;
 } EarlyDataExtension;

 Extra messages for the client’s first flight MAY either be
 transmitted standalone or sent as EarlyData. However, when a client
 does not know whether TLS 1.3 can be negotiated - e.g., because the

Dierks & Rescorla Expires January 8, 2015 [Page 46]

Internet-Draft TLS July 2014

 server may support a prior version of TLS or because of network
 intermediaries - it SHOULD use the EarlyData extension. If the
 EarlyData extension is used, then clients MUST NOT send any messages
 other than the ClientHello in their initial flight.

 Any data included in EarlyData is not integrated into the handshake
 hashes directly. E.g., if the ClientKeyExchange is included in
 EarlyData, then the handshake hashes consist of ClientHello +
 ServerHello, etc. However, because the ClientKeyExchange is in a
 ClientHello extension, it is still hashed transitively. This
 procedure guarantees that the Finished message covers these messages
 even if they are ultimately ignored by the server (e.g., because it
 is sent to a TLS 1.2 server). TLS 1.3 servers MUST understand
 messages sent in EarlyData, and aside from hashing them differently,
 MUST treat them as if they had been sent immediately after the
 ClientHello.

 Servers MUST NOT send the EarlyData extension. Negotiating TLS 1.3
 serves as acknowledgement that it was processed as described above.

 [[OPEN ISSUE: This is a fairly general mechanism which is possibly
 overkill in the 1-RTT case, where it would potentially be more
 attractive to just have a "ClientKeyExchange" extension. However,
 for the 0-RTT case we will want to send the Certificate,
 CertificateVerify, and application data, so a more general extension
 seems appropriate at least until we have determined we don’t need it
 for 0-RTT.]]

7.4.2.4 . Negotiated DL DHE Groups

 Previous versions of TLS before 1.3 allowed the server to specify a
 custom DHE group. This version of TLS requires the use of specific
 named groups. [I-D.gillmor-tls-negotiated-dl-dhe] describes a
 mechanism for negotiating such groups.

 If the ClientHello contains a DHE cipher suite, it MUST also include
 a "negotiated_dl_dhe_groups" extension. If the server selects a DHE
 cipher suite, it MUST respond with that extension to indicate the
 selected group. If no acceptable group can be selected across all
 cipher suites, then the server MUST generate a fatal
 "handshake_failure" alert. [[TODO: Presumably we want to bring
 [I-D.gillmor-tls-negotiated-dl-dhe] into this specification.]]

7.4.3 . Server Key Exchange Message

 When this message will be sent:

Dierks & Rescorla Expires January 8, 2015 [Page 47]

Internet-Draft TLS July 2014

 This message will be sent immediately after the ServerHello
 message if the client has provided a ClientKeyExchange message
 which is compatible with the selected cipher suite and group
 parameters.

 Meaning of this message:

 This message conveys cryptographic information to allow the client
 to compute the premaster secret: a Diffie-Hellman public key with
 which the client can complete a key exchange (with the result
 being the premaster secret) or a public key for some other
 algorithm.

 Structure of this message:

 struct {
 opaque dh_Ys<1..2^16-1>;
 } ServerDiffieHellmanParams; /* Ephemeral DH parameters */

 dh_Ys
 The server’s Diffie-Hellman public value (g^X mod p).

 struct {
 select (KeyExchangeAlgorithm) {
 case dhe:
 ServerDiffieHellmanParams;
 /* may be extended, e.g., for ECDH -- see [RFC4492] */
 } params;
 } ServerKeyExchange;

 params
 The server’s key exchange parameters. These correspond to the
 group indicated by the ServerHello message using the cipher suite
 and the "negotiated_dl_dhe_groups"
 [I-D.gillmor-tls-negotiated-dl-dhe] extension. [[TODO:
 incorporate ECDHE if the WG decides to.]] [[OPEN ISSUE: Note that
 we explicitly do not indicate the group here since that’s
 specified in the ServerHello. We could duplicate it here, but
 that seems more confusing since there is room for mismatch.]]

7.4.4 . Encrypted Extensions

 When this message will be sent:

 If this message is sent, it MUST be sent immediately after the
 server’s ChangeCipherSpec (and hence as the first handshake
 message after the ServerKeyExchange).

Dierks & Rescorla Expires January 8, 2015 [Page 48]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2014

 Meaning of this message:

 The EncryptedExtensions message simply contains any extensions
 which should be protected, i.e., any which are not needed to
 establish the cryptographic context. The same extension types
 MUST NOT appear in both the ServerHello and EncryptedExtensions.
 If the same extension appears in both locations, the client MUST
 rely only on the value in the EncryptedExtensions block. [[OPEN
 ISSUE: Should we just produce a canonical list of what goes where
 and have it be an error to have it in the wrong place? That seems
 simpler. Perhaps have a whitelist of which extensions can be
 unencrypted and everything else MUST be encrypted.]]

 Structure of this message:

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 extensions
 A list of extensions.

7.4.5 . Server Certificate

 When this message will be sent:

 The server MUST send a Certificate message whenever the agreed-
 upon key exchange method uses certificates for authentication
 (this includes all key exchange methods defined in this document
 except DH_anon). This message will always immediately follow the
 ChangeCipherSpec which follows the server’s ServerKeyExchange
 message.

 Meaning of this message:

 This message conveys the server’s certificate chain to the client.

 The certificate MUST be appropriate for the negotiated cipher
 suite’s key exchange algorithm and any negotiated extensions.

 Structure of this message:

 opaque ASN1Cert<1..2^24-1>;

 struct {
 ASN1Cert certificate_list<0..2^24-1>;
 } Certificate;

Dierks & Rescorla Expires January 8, 2015 [Page 49]

Internet-Draft TLS July 2014

 certificate_list
 This is a sequence (chain) of certificates. The sender’s
 certificate MUST come first in the list. Each following
 certificate MUST directly certify the one preceding it. Because
 certificate validation requires that root keys be distributed
 independently, the self-signed certificate that specifies the root
 certificate authority MAY be omitted from the chain, under the
 assumption that the remote end must already possess it in order to
 validate it in any case.

 The same message type and structure will be used for the client’s
 response to a certificate request message. Note that a client MAY
 send no certificates if it does not have an appropriate certificate
 to send in response to the server’s authentication request.

 Note: PKCS #7 [PKCS7] is not used as the format for the certificate
 vector because PKCS #6 [PKCS6] extended certificates are not used.
 Also, PKCS #7 defines a SET rather than a SEQUENCE, making the task
 of parsing the list more difficult.

 The following rules apply to the certificates sent by the server:

 - The certificate type MUST be X.509v3, unless explicitly negotiated
 otherwise (e.g., [RFC5081]).

 - The end entity certificate’s public key (and associated
 restrictions) MUST be compatible with the selected key exchange
 algorithm.

Dierks & Rescorla Expires January 8, 2015 [Page 50]

https://tools.ietf.org/pdf/rfc5081

Internet-Draft TLS July 2014

 Key Exchange Alg. Certificate Key Type

 DHE_RSA RSA public key; the certificate MUST allow the
 ECDHE_RSA key to be used for signing (the
 digitalSignature bit MUST be set if the key
 usage extension is present) with the signature
 scheme and hash algorithm that will be employed
 in the server key exchange message.
 Note: ECDHE_RSA is defined in [RFC4492].

 DHE_DSS DSA public key; the certificate MUST allow the
 key to be used for signing with the hash
 algorithm that will be employed in the server
 key exchange message.

 ECDHE_ECDSA ECDSA-capable public key; the certificate MUST
 allow the key to be used for signing with the
 hash algorithm that will be employed in the
 server key exchange message. The public key
 MUST use a curve and point format supported by
 the client, as described in [RFC4492].

 - The "server_name" and "trusted_ca_keys" extensions [TLSEXT] are
 used to guide certificate selection.

 If the client provided a "signature_algorithms" extension, then all
 certificates provided by the server MUST be signed by a hash/
 signature algorithm pair that appears in that extension. Note that
 this implies that a certificate containing a key for one signature
 algorithm MAY be signed using a different signature algorithm (for
 instance, an RSA key signed with a DSA key). This is a departure
 from TLS 1.1, which required that the algorithms be the same.

 If the server has multiple certificates, it chooses one of them based
 on the above-mentioned criteria (in addition to other criteria, such
 as transport layer endpoint, local configuration and preferences,
 etc.). If the server has a single certificate, it SHOULD attempt to
 validate that it meets these criteria.

 Note that there are certificates that use algorithms and/or algorithm
 combinations that cannot be currently used with TLS. For example, a
 certificate with RSASSA-PSS signature key (id-RSASSA-PSS OID in
 SubjectPublicKeyInfo) cannot be used because TLS defines no
 corresponding signature algorithm.

 As cipher suites that specify new key exchange methods are specified
 for the TLS protocol, they will imply the certificate format and the
 required encoded keying information.

Dierks & Rescorla Expires January 8, 2015 [Page 51]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2014

7.4.6 . Certificate Request

 When this message will be sent:

 A non-anonymous server can optionally request a certificate from
 the client, if appropriate for the selected cipher suite. This
 message, if sent, will immediately follow the server’s Certificate
 message).

 Structure of this message:

 enum {
 rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
 rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
 fortezza_dms_RESERVED(20), (255)
 } ClientCertificateType;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 } CertificateRequest;

 certificate_types
 A list of the types of certificate types that the client may
 offer.

 rsa_sign a certificate containing an RSA key
 dss_sign a certificate containing a DSA key
 rsa_fixed_dh a certificate containing a static DH key.
 dss_fixed_dh a certificate containing a static DH key

 supported_signature_algorithms
 A list of the hash/signature algorithm pairs that the server is
 able to verify, listed in descending order of preference.

 certificate_authorities
 A list of the distinguished names [X501] of acceptable
 certificate_authorities, represented in DER-encoded format. These
 distinguished names may specify a desired distinguished name for a
 root CA or for a subordinate CA; thus, this message can be used to
 describe known roots as well as a desired authorization space. If
 the certificate_authorities list is empty, then the client MAY
 send any certificate of the appropriate ClientCertificateType,
 unless there is some external arrangement to the contrary.

Dierks & Rescorla Expires January 8, 2015 [Page 52]

Internet-Draft TLS July 2014

 The interaction of the certificate_types and
 supported_signature_algorithms fields is somewhat complicated.
 certificate_types has been present in TLS since SSLv3, but was
 somewhat underspecified. Much of its functionality is superseded by
 supported_signature_algorithms. The following rules apply:

 - Any certificates provided by the client MUST be signed using a
 hash/signature algorithm pair found in
 supported_signature_algorithms.

 - The end-entity certificate provided by the client MUST contain a
 key that is compatible with certificate_types. If the key is a
 signature key, it MUST be usable with some hash/signature
 algorithm pair in supported_signature_algorithms.

 - For historical reasons, the names of some client certificate types
 include the algorithm used to sign the certificate. For example,
 in earlier versions of TLS, rsa_fixed_dh meant a certificate
 signed with RSA and containing a static DH key. In TLS 1.2, this
 functionality has been obsoleted by the
 supported_signature_algorithms, and the certificate type no longer
 restricts the algorithm used to sign the certificate. For
 example, if the server sends dss_fixed_dh certificate type and
 {{sha1, dsa}, {sha1, rsa}} signature types, the client MAY reply
 with a certificate containing a static DH key, signed with RSA-
 SHA1.

 New ClientCertificateType values are assigned by IANA as described in
 Section 12 .

 Note: Values listed as RESERVED may not be used. They were used in
 SSLv3.

 Note: It is a fatal handshake_failure alert for an anonymous server
 to request client authentication.

7.4.7 . Server Certificate Verify

 When this message will be sent:

 This message is used to provide explicit proof that the server
 possesses the private key corresponding to its certificate.
 certificate and also provides integrity for the handshake up to
 this point. This message is only sent when the server is
 authenticated via a certificate. When sent, it MUST be the last
 server handshake message prior to the Finished.

 Structure of this message:

Dierks & Rescorla Expires January 8, 2015 [Page 53]

Internet-Draft TLS July 2014

 struct {
 digitally-signed struct {
 opaque handshake_messages[handshake_messages_length];
 }
 } CertificateVerify;

 Here handshake_messages refers to all handshake messages sent or
 received, starting at client hello and up to, but not including,
 this message, including the type and length fields of the
 handshake messages. This is the concatenation of all the
 Handshake structures (as defined in Section 7.4) exchanged thus
 far. Note that this requires both sides to either buffer the
 messages or compute running hashes for all potential hash
 algorithms up to the time of the CertificateVerify computation.
 Servers can minimize this computation cost by offering a
 restricted set of digest algorithms in the CertificateRequest
 message.

 If the client has offered the "signature_algorithms" extension,
 the signature algorithm and hash algorithm MUST be a pair listed
 in that extension. Note that there is a possibility for
 inconsistencies here. For instance, the client might offer
 DHE_DSS key exchange but omit any DSA pairs from its
 "signature_algorithms" extension. In order to negotiate
 correctly, the server MUST check any candidate cipher suites
 against the "signature_algorithms" extension before selecting
 them. This is somewhat inelegant but is a compromise designed to
 minimize changes to the original cipher suite design.

 In addition, the hash and signature algorithms MUST be compatible
 with the key in the server’s end-entity certificate. RSA keys MAY
 be used with any permitted hash algorithm, subject to restrictions
 in the certificate, if any.

 Because DSA signatures do not contain any secure indication of
 hash algorithm, there is a risk of hash substitution if multiple
 hashes may be used with any key. Currently, DSA [DSS] may only be
 used with SHA-1. Future revisions of DSS [DSS-3] are expected to
 allow the use of other digest algorithms with DSA, as well as
 guidance as to which digest algorithms should be used with each
 key size. In addition, future revisions of [RFC3280] may specify
 mechanisms for certificates to indicate which digest algorithms
 are to be used with DSA. [[TODO: Update this to deal with DSS-3
 and DSS-4. https://github .com/tlswg/tls13-spec/issues/59]]

Dierks & Rescorla Expires January 8, 2015 [Page 54]

https://tools.ietf.org/pdf/rfc3280
https://github/

Internet-Draft TLS July 2014

7.4.8 . Server Finished

 When this message will be sent:

 The Server’s Finished message is the final message sent by the
 server and indicates that the key exchange and authentication
 processes were successful.

 Meaning of this message:

 Recipients of Finished messages MUST verify that the contents are
 correct. Once a side has sent its Finished message and received
 and validated the Finished message from its peer, it may begin to
 send and receive application data over the connection.

 Structure of this message:

 struct {
 opaque verify_data[verify_data_length];
 } Finished;

 verify_data
 PRF(master_secret, finished_label, Hash(handshake_messages))
 [0..verify_data_length-1];

 finished_label
 For Finished messages sent by the client, the string
 "client finished". For Finished messages sent by the server,
 the string "server finished".

 Hash denotes a Hash of the handshake messages. For the PRF
 defined in Section 5 , the Hash MUST be the Hash used as the basis
 for the PRF. Any cipher suite which defines a different PRF MUST
 also define the Hash to use in the Finished computation.

 In previous versions of TLS, the verify_data was always 12 octets
 long. In the current version of TLS, it depends on the cipher
 suite. Any cipher suite which does not explicitly specify
 verify_data_length has a verify_data_length equal to 12. This
 includes all existing cipher suites. Note that this
 representation has the same encoding as with previous versions.
 Future cipher suites MAY specify other lengths but such length
 MUST be at least 12 bytes.

Dierks & Rescorla Expires January 8, 2015 [Page 55]

Internet-Draft TLS July 2014

 handshake_messages
 All of the data from all messages in this handshake (not including
 any HelloRequest messages) up to, but not including, this message.
 This is only data visible at the handshake layer and does not
 include record layer headers. This is the concatenation of all
 the Handshake structures as defined in Section 7.4 , exchanged thus
 far.

 It is a fatal error if a Finished message is not preceded by a
 ChangeCipherSpec message at the appropriate point in the handshake.

 The value handshake_messages includes all handshake messages starting
 at ClientHello up to, but not including, this Finished message. This
 may be different from handshake_messages in Section 7.4.7 or
 Section 7.4.10 . Also, the handshake_messages for the Finished
 message sent by the client will be different from that for the
 Finished message sent by the server, because the one that is sent
 second will include the prior one.

 Note: ChangeCipherSpec messages, alerts, and any other record types
 are not handshake messages and are not included in the hash
 computations. Also, HelloRequest messages are omitted from handshake
 hashes.

7.4.9 . Client Certificate

 When this message will be sent:

 This message is the first handshake message the client can send
 after receiving the server’s Finished and having sent its own
 ChangeCipherSpecs. This message is only sent if the server
 requests a certificate. If no suitable certificate is available,
 the client MUST send a certificate message containing no
 certificates. That is, the certificate_list structure has a
 length of zero. If the client does not send any certificates, the
 server MAY at its discretion either continue the handshake without
 client authentication, or respond with a fatal handshake_failure
 alert. Also, if some aspect of the certificate chain was
 unacceptable (e.g., it was not signed by a known, trusted CA), the
 server MAY at its discretion either continue the handshake
 (considering the client unauthenticated) or send a fatal alert.

 Client certificates are sent using the Certificate structure
 defined in Section 7.4.5 .

 Meaning of this message:

Dierks & Rescorla Expires January 8, 2015 [Page 56]

Internet-Draft TLS July 2014

 This message conveys the client’s certificate chain to the server;
 the server will use it when verifying the CertificateVerify
 message (when the client authentication is based on signing) or
 calculating the premaster secret (for non-ephemeral Diffie-
 Hellman). The certificate MUST be appropriate for the negotiated
 cipher suite’s key exchange algorithm, and any negotiated
 extensions.

 In particular:

 - The certificate type MUST be X.509v3, unless explicitly negotiated
 otherwise (e.g., [RFC5081]).

 - The end-entity certificate’s public key (and associated
 restrictions) has to be compatible with the certificate types
 listed in CertificateRequest:

 Client Cert. Type Certificate Key Type

 rsa_sign RSA public key; the certificate MUST allow the
 key to be used for signing with the signature
 scheme and hash algorithm that will be
 employed in the certificate verify message.

 dss_sign DSA public key; the certificate MUST allow the
 key to be used for signing with the hash
 algorithm that will be employed in the
 certificate verify message.

 ecdsa_sign ECDSA-capable public key; the certificate MUST
 allow the key to be used for signing with the
 hash algorithm that will be employed in the
 certificate verify message; the public key
 MUST use a curve and point format supported by
 the server.

 rsa_fixed_dh Diffie-Hellman public key; MUST use the same
 dss_fixed_dh parameters as server’s key.

 rsa_fixed_ecdh ECDH-capable public key; MUST use the
 ecdsa_fixed_ecdh same curve as the server’s key, and MUST use a
 point format supported by the server.

 - If the certificate_authorities list in the certificate request
 message was non-empty, one of the certificates in the certificate
 chain SHOULD be issued by one of the listed CAs.

Dierks & Rescorla Expires January 8, 2015 [Page 57]

https://tools.ietf.org/pdf/rfc5081

Internet-Draft TLS July 2014

 - The certificates MUST be signed using an acceptable hash/
 signature algorithm pair, as described in Section 7.4.6 . Note
 that this relaxes the constraints on certificate-signing
 algorithms found in prior versions of TLS.

 Note that, as with the server certificate, there are certificates
 that use algorithms/algorithm combinations that cannot be currently
 used with TLS.

7.4.10 . Client Certificate Verify

 When this message will be sent:

 This message is used to provide explicit verification of a client
 certificate. This message is only sent following a client
 certificate that has signing capability (i.e., all certificates
 except those containing fixed Diffie-Hellman parameters). When
 sent, it MUST immediately follow the client’s Certificate message.
 The contents of the message are computed as described in
 Section 7.4.7 .

 The hash and signature algorithms used in the signature MUST be
 one of those present in the supported_signature_algorithms field
 of the CertificateRequest message. In addition, the hash and
 signature algorithms MUST be compatible with the key in the
 client’s end-entity certificate. RSA keys MAY be used with any
 permitted hash algorithm, subject to restrictions in the
 certificate, if any.

 Because DSA signatures do not contain any secure indication of
 hash algorithm, there is a risk of hash substitution if multiple
 hashes may be used with any key. Currently, DSA [DSS] may only be
 used with SHA-1. Future revisions of DSS [DSS-3] are expected to
 allow the use of other digest algorithms with DSA, as well as
 guidance as to which digest algorithms should be used with each
 key size. In addition, future revisions of [RFC3280] may specify
 mechanisms for certificates to indicate which digest algorithms
 are to be used with DSA.

8. Cryptographic Computations

 In order to begin connection protection, the TLS Record Protocol
 requires specification of a suite of algorithms, a master secret, and
 the client and server random values. The authentication, key
 agreement, and record protection algorithms are determined by the
 cipher_suite selected by the server and revealed in the ServerHello
 message. The random values are exchanged in the hello messages. All
 that remains is to calculate the master secret.

Dierks & Rescorla Expires January 8, 2015 [Page 58]

https://tools.ietf.org/pdf/rfc3280

Internet-Draft TLS July 2014

8.1 . Computing the Master Secret

 For all key exchange methods, the same algorithm is used to convert
 the pre_master_secret into the master_secret. The pre_master_secret
 should be deleted from memory once the master_secret has been
 computed.

 master_secret = PRF(pre_master_secret, "master secret",
 ClientHello.random + ServerHello.random)
 [0..47];

 The master secret is always exactly 48 bytes in length. The length
 of the premaster secret will vary depending on key exchange method.

8.1.1 . Diffie-Hellman

 A conventional Diffie-Hellman computation is performed. The
 negotiated key (Z) is used as the pre_master_secret, and is converted
 into the master_secret, as specified above. Leading bytes of Z that
 contain all zero bits are stripped before it is used as the
 pre_master_secret.

 Note: Diffie-Hellman parameters are specified by the server and may
 be either ephemeral or contained within the server’s certificate.

9. Mandatory Cipher Suites

 In the absence of an application profile standard specifying
 otherwise, a TLS-compliant application MUST implement the cipher
 suite TODO:Needs to be selected [1]. (See Appendix A.5 for the
 definition).

10. Application Data Protocol

 Application data messages are carried by the record layer and are
 fragmented and encrypted based on the current connection state. The
 messages are treated as transparent data to the record layer.

11. Security Considerations

 Security issues are discussed throughout this memo, especially in
 Appendices D, E, and F.

12. IANA Considerations

 [[TODO: Update https://github .com/tlswg/tls13-spec/issues/62]]

 This document uses several registries that were originally created in

Dierks & Rescorla Expires January 8, 2015 [Page 59]

https://github/

Internet-Draft TLS July 2014

 [RFC4346]. IANA has updated these to reference this document. The
 registries and their allocation policies (unchanged from [RFC4346])
 are listed below.

 - TLS ClientCertificateType Identifiers Registry: Future values in
 the range 0-63 (decimal) inclusive are assigned via Standards
 Action [RFC2434]. Values in the range 64-223 (decimal) inclusive
 are assigned via Specification Required [RFC2434]. Values from
 224-255 (decimal) inclusive are reserved for Private Use
 [RFC2434].

 - TLS Cipher Suite Registry: Future values with the first byte in
 the range 0-191 (decimal) inclusive are assigned via Standards
 Action [RFC2434]. Values with the first byte in the range 192-254
 (decimal) are assigned via Specification Required [RFC2434].
 Values with the first byte 255 (decimal) are reserved for Private
 Use [RFC2434].

 - TLS ContentType Registry: Future values are allocated via
 Standards Action [RFC2434].

 - TLS Alert Registry: Future values are allocated via Standards
 Action [RFC2434].

 - TLS HandshakeType Registry: Future values are allocated via
 Standards Action [RFC2434].

 This document also uses a registry originally created in [RFC4366].
 IANA has updated it to reference this document. The registry and its
 allocation policy (unchanged from [RFC4366]) is listed below:

 - TLS ExtensionType Registry: Future values are allocated via IETF
 Consensus [RFC2434]. IANA has updated this registry to include
 the signature_algorithms extension and its corresponding value
 (see Section 7.4.2.3).

 In addition, this document defines two new registries to be
 maintained by IANA:

 - TLS SignatureAlgorithm Registry: The registry has been initially
 populated with the values described in Section 7.4.2.3.1 . Future
 values in the range 0-63 (decimal) inclusive are assigned via
 Standards Action [RFC2434]. Values in the range 64-223 (decimal)
 inclusive are assigned via Specification Required [RFC2434].
 Values from 224-255 (decimal) inclusive are reserved for Private
 Use [RFC2434].

Dierks & Rescorla Expires January 8, 2015 [Page 60]

https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434

Internet-Draft TLS July 2014

 - TLS HashAlgorithm Registry: The registry has been initially
 populated with the values described in Section 7.4.2.3.1 . Future
 values in the range 0-63 (decimal) inclusive are assigned via
 Standards Action [RFC2434]. Values in the range 64-223 (decimal)
 inclusive are assigned via Specification Required [RFC2434].
 Values from 224-255 (decimal) inclusive are reserved for Private
 Use [RFC2434].

13. References

13.1 . Normative References

 [AES] National Institute of Standards
 and Technology, "Specification
 for the Advanced Encryption
 Standard (AES)", NIST FIPS 197,
 November 2001.

 [DSS] National Institute of Standards
 and Technology, U.S. Department
 of Commerce, "Digital Signature
 Standard", NIST FIPS PUB 186-2,
 2000.

 [RFC1321] Rivest, R., "The MD5 Message-
 Digest Algorithm", RFC 1321 ,
 April 1992.

 [RFC2104] Krawczyk, H., Bellare, M., and
 R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication",
 RFC 2104 , February 1997.

 [RFC2119] Bradner, S., "Key words for use
 in RFCs to Indicate Requirement
 Levels", BCP 14 , RFC 2119 ,
 March 1997.

 [RFC2434] Narten, T. and H. Alvestrand,
 "Guidelines for Writing an IANA
 Considerations Section in RFCs",
 BCP 26 , RFC 2434 , October 1998.

 [RFC3280] Housley, R., Polk, W., Ford, W.,
 and D. Solo, "Internet X.509
 Public Key Infrastructure
 Certificate and Certificate
 Revocation List (CRL) Profile",

Dierks & Rescorla Expires January 8, 2015 [Page 61]

https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc1321
https://tools.ietf.org/pdf/rfc2104
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp26
https://tools.ietf.org/pdf/rfc2434

Internet-Draft TLS July 2014

 RFC 3280 , April 2002.

 [RFC3447] Jonsson, J. and B. Kaliski,
 "Public-Key Cryptography
 Standards (PKCS) #1: RSA
 Cryptography Specifications
 Version 2.1", RFC 3447 ,
 February 2003.

 [RFC5288] Salowey, J., Choudhury, A., and
 D. McGrew, "AES Galois Counter
 Mode (GCM) Cipher Suites for
 TLS", RFC 5288 , August 2008.

 [SCH] Schneier, B., "Applied
 Cryptography: Protocols,
 Algorithms, and Source Code in
 C, 2nd ed.", 1996.

 [SHS] National Institute of Standards
 and Technology, U.S. Department
 of Commerce, "Secure Hash
 Standard", NIST FIPS PUB 180-2,
 August 2002.

 [TRIPLEDES] National Institute of Standards
 and Technology, "Recommendation
 for the Triple Data Encryption
 Algorithm (TDEA) Block Cipher",
 NIST Special Publication 800-67,
 May 2004.

 [X680] ITU-T, "Information technology -
 Abstract Syntax Notation One
 (ASN.1): Specification of basic
 notation", ISO/IEC 8824-1:2002,
 2002.

 [X690] ITU-T, "Information technology -
 ASN.1 encoding Rules:
 Specification of Basic Encoding
 Rules (BER), Canonical Encoding
 Rules (CER) and Distinguished
 Encoding Rules (DER)", ISO/
 IEC 8825-1:2002, 2002.

Dierks & Rescorla Expires January 8, 2015 [Page 62]

https://tools.ietf.org/pdf/rfc3280
https://tools.ietf.org/pdf/rfc3447
https://tools.ietf.org/pdf/rfc5288

Internet-Draft TLS July 2014

13.2 . Informative References

 [BLEI] Bleichenbacher, D., "Chosen
 Ciphertext Attacks against
 Protocols Based on RSA
 Encryption Standard PKCS",
 CRYPTO98 LNCS vol. 1462, pages:
 1-12, 1998, Advances in
 Cryptology, 1998.

 [CBCATT] Moeller, B., "Security of CBC
 Ciphersuites in SSL/TLS:
 Problems and Countermeasures",
 May 2004, < http://
 www.openssl.org/~bodo/
 tls-cbc.txt >.

 [CCM] "NIST Special Publication 800-
 38C: The CCM Mode for
 Authentication and
 Confidentiality", May 2004, <htt
 p://csrc.nist.gov/publications/
 nistpubs/800-38C/SP800-38C.pdf>.

 [DES] "Data Encryption Standard
 (DES)", NIST FIPS PUB 46-3,
 October 1999.

 [DSS-3] National Institute of Standards
 and Technology, U.S., "Digital
 Signature Standard", NIST FIPS
 PUB 186-3 Draft, 2006.

 [ECDSA] American National Standards
 Institute, "Public Key
 Cryptography for the Financial
 Services Industry: The Elliptic
 Curve Digital Signature
 Algorithm (ECDSA)", ANSI ANS
 X9.62-2005, November 2005.

 [ENCAUTH] Krawczyk, H., "The Order of
 Encryption and Authentication
 for Protecting Communications
 (Or: How Secure is SSL?)", 2001.

 [FI06] "Bleichenbacher’s RSA signature
 forgery based on implementation

Dierks & Rescorla Expires January 8, 2015 [Page 63]

http://www.openssl.org/~bodo/tls-cbc.txt
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.openssl.org/~bodo/tls-cbc.txt

Internet-Draft TLS July 2014

 error", August 2006, < http://
 www.imc.org/ietf-openpgp/
 mail-archive/msg14307.html >.

 [GCM] Dworkin, M., "Recommendation for
 Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and
 GMAC", NIST Special Publication
 800-38D, November 2007.

 [I-D.gillmor-tls-negotiated-dl-dhe] Gillmor, D., "Negotiated
 Discrete Log Diffie-Hellman
 Ephemeral Parameters for TLS", d
 raft-gillmor-tls-negotiated-dl-
 dhe-02 (work in progress),
 April 2014.

 [PKCS6] RSA Laboratories, "PKCS #6: RSA
 Extended Certificate Syntax
 Standard, version 1.5",
 November 1993.

 [PKCS7] RSA Laboratories, "PKCS #7: RSA
 Cryptographic Message Syntax
 Standard, version 1.5",
 November 1993.

 [RFC0793] Postel, J., "Transmission
 Control Protocol", STD 7,
 RFC 793 , September 1981.

 [RFC1948] Bellovin, S., "Defending Against
 Sequence Number Attacks",
 RFC 1948 , May 1996.

 [RFC2246] Dierks, T. and C. Allen, "The
 TLS Protocol Version 1.0",
 RFC 2246 , January 1999.

 [RFC2785] Zuccherato, R., "Methods for
 Avoiding the "Small-Subgroup"
 Attacks on the Diffie-Hellman
 Key Agreement Method for
 S/MIME", RFC 2785 , March 2000.

 [RFC3268] Chown, P., "Advanced Encryption
 Standard (AES) Ciphersuites for
 Transport Layer Security (TLS)",

Dierks & Rescorla Expires January 8, 2015 [Page 64]

http://www.imc.org/ietf-openpgp/mail-archive/msg14307.html
http://www.imc.org/ietf-openpgp/mail-archive/msg14307.html
http://www.imc.org/ietf-openpgp/mail-archive/msg14307.html
https://tools.ietf.org/pdf/rfc793
https://tools.ietf.org/pdf/rfc1948
https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc2785

Internet-Draft TLS July 2014

 RFC 3268 , June 2002.

 [RFC3526] Kivinen, T. and M. Kojo, "More
 Modular Exponential (MODP)
 Diffie-Hellman groups for
 Internet Key Exchange (IKE)",
 RFC 3526 , May 2003.

 [RFC3766] Orman, H. and P. Hoffman,
 "Determining Strengths For
 Public Keys Used For Exchanging
 Symmetric Keys", BCP 86 ,
 RFC 3766 , April 2004.

 [RFC4086] Eastlake, D., Schiller, J., and
 S. Crocker, "Randomness
 Requirements for Security",
 BCP 106 , RFC 4086 , June 2005.

 [RFC4302] Kent, S., "IP Authentication
 Header", RFC 4302 ,
 December 2005.

 [RFC4303] Kent, S., "IP Encapsulating
 Security Payload (ESP)",
 RFC 4303 , December 2005.

 [RFC4307] Schiller, J., "Cryptographic
 Algorithms for Use in the
 Internet Key Exchange Version 2
 (IKEv2)", RFC 4307 ,
 December 2005.

 [RFC4346] Dierks, T. and E. Rescorla, "The
 Transport Layer Security (TLS)
 Protocol Version 1.1", RFC 4346 ,
 April 2006.

 [RFC4366] Blake-Wilson, S., Nystrom, M.,
 Hopwood, D., Mikkelsen, J., and
 T. Wright, "Transport Layer
 Security (TLS) Extensions",
 RFC 4366 , April 2006.

 [RFC4492] Blake-Wilson, S., Bolyard, N.,
 Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve
 Cryptography (ECC) Cipher Suites

Dierks & Rescorla Expires January 8, 2015 [Page 65]

https://tools.ietf.org/pdf/rfc3268
https://tools.ietf.org/pdf/rfc3526
https://tools.ietf.org/pdf/bcp86
https://tools.ietf.org/pdf/rfc3766
https://tools.ietf.org/pdf/bcp106
https://tools.ietf.org/pdf/rfc4086
https://tools.ietf.org/pdf/rfc4302
https://tools.ietf.org/pdf/rfc4303
https://tools.ietf.org/pdf/rfc4307
https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc4366

Internet-Draft TLS July 2014

 for Transport Layer Security
 (TLS)", RFC 4492 , May 2006.

 [RFC4506] Eisler, M., "XDR: External Data
 Representation Standard",
 STD 67, RFC 4506 , May 2006.

 [RFC5081] Mavrogiannopoulos, N., "Using
 OpenPGP Keys for Transport Layer
 Security (TLS) Authentication",
 RFC 5081 , November 2007.

 [RFC5116] McGrew, D., "An Interface and
 Algorithms for Authenticated
 Encryption", RFC 5116 ,
 January 2008.

 [RSA] Rivest, R., Shamir, A., and L.
 Adleman, "A Method for Obtaining
 Digital Signatures and Public-
 Key Cryptosystems",
 Communications of the ACM v. 21,
 n. 2, pp. 120-126.,
 February 1978.

 [SSL2] Netscape Communications Corp.,
 "The SSL Protocol",
 February 1995.

 [SSL3] Freier, A., Karlton, P., and P.
 Kocher, "The SSL 3.0 Protocol",
 November 1996.

 [TIMING] Boneh, D. and D. Brumley,
 "Remote timing attacks are
 practical", USENIX Security
 Symposium, 2003.

 [TLSEXT] Eastlake 3rd, D., "Transport
 Layer Security (TLS) Extensions:
 Extension Definitions",
 February 2008.

 [X501] "Information Technology - Open
 Systems Interconnection - The
 Directory: Models", ITU-T X.501,
 1993.

Dierks & Rescorla Expires January 8, 2015 [Page 66]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4506
https://tools.ietf.org/pdf/rfc5081
https://tools.ietf.org/pdf/rfc5116

Internet-Draft TLS July 2014

URIs

 [1] < https://github.com/tlswg/tls13-spec/issues/32 >

 [2] <mailto:tls@ietf.org>

Appendix A . Protocol Data Structures and Constant Values

 This section describes protocol types and constants.

 [[TODO: Clean this up to match the in-text description.]]

A.1 . Record Layer

 struct {
 uint8 major;
 uint8 minor;
 } ProtocolVersion;

 ProtocolVersion version = { 3, 4 }; /* TLS v1.3*/

 enum {
 change_cipher_spec(20), alert(21), handshake(22),
 application_data(23), (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque nonce_explicit[SecurityParameters.record_iv_length];
 aead-ciphered struct {
 opaque content[TLSPlaintext.length];
 } fragment;
 } TLSCiphertext;

Dierks & Rescorla Expires January 8, 2015 [Page 67]

https://github.com/tlswg/tls13-spec/issues/32

Internet-Draft TLS July 2014

A.2 . Change Cipher Specs Message

 struct {
 enum { change_cipher_spec(1), (255) } type;
 } ChangeCipherSpec;

A.3 . Alert Messages

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed_RESERVED(21),
 record_overflow(22),
 decompression_failure_RESERVED(30),
 handshake_failure(40),
 no_certificate_RESERVED(41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction_RESERVED(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 user_canceled(90),
 no_renegotiation(100),
 unsupported_extension(110), /* new */
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

Dierks & Rescorla Expires January 8, 2015 [Page 68]

Internet-Draft TLS July 2014

A.4 . Handshake Protocol

 enum {
 hello_request(0), client_hello(1), server_hello(2),
 certificate(11), server_key_exchange (12),
 certificate_request(13), server_hello_done(14),
 certificate_verify(15), client_key_exchange(16),
 finished(20),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type;
 uint24 length;
 select (HandshakeType) {
 case hello_request: HelloRequest;
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case certificate: Certificate;
 case server_key_exchange: ServerKeyExchange;
 case certificate_request: CertificateRequest;
 case server_hello_done: ServerHelloDone;
 case certificate_verify: CertificateVerify;
 case client_key_exchange: ClientKeyExchange;
 case finished: Finished;
 } body;
 } Handshake;

A.4.1 . Hello Messages

 struct { } HelloRequest;

 struct {
 uint32 gmt_unix_time;
 opaque random_bytes[28];
 } Random;

 opaque SessionID<0..32>;

 uint8 CipherSuite[2];

 enum { null(0), (255) } CompressionMethod;

 struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;

Dierks & Rescorla Expires January 8, 2015 [Page 69]

Internet-Draft TLS July 2014

 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ClientHello;

 struct {
 ProtocolVersion server_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suite;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ServerHello;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 signature_algorithms(13), (65535)
 } ExtensionType;

 enum{
 none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
 sha512(6), (255)
 } HashAlgorithm;
 enum {
 anonymous(0), rsa(1), dsa(2), ecdsa(3), (255)
 } SignatureAlgorithm;

 struct {
 HashAlgorithm hash;
 SignatureAlgorithm signature;
 } SignatureAndHashAlgorithm;

 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;

A.4.2 . Server Authentication and Key Exchange Messages

Dierks & Rescorla Expires January 8, 2015 [Page 70]

Internet-Draft TLS July 2014

 opaque ASN1Cert<2^24-1>;

 struct {
 ASN1Cert certificate_list<0..2^24-1>;
 } Certificate;

 enum { dhe_dss, dhe_rsa, dh_anon
 /* may be extended, e.g., for ECDH -- see [TLSECC] */
 } KeyExchangeAlgorithm;

 struct {
 opaque dh_p<1..2^16-1>;
 opaque dh_g<1..2^16-1>;
 opaque dh_Ys<1..2^16-1>;
 } ServerDHParams; /* Ephemeral DH parameters */

 struct {
 select (KeyExchangeAlgorithm) {
 case dh_anon:
 ServerDHParams params;
 case dhe_dss:
 case dhe_rsa:
 ServerDHParams params;
 digitally-signed struct {
 opaque client_random[32];
 opaque server_random[32];
 ServerDHParams params;
 } signed_params;
 /* may be extended, e.g., for ECDH --- see [RFC4492] */
 } ServerKeyExchange;

 enum {
 rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
 rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
 fortezza_dms_RESERVED(20),
 (255)
 } ClientCertificateType;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 } CertificateRequest;

 struct { } ServerHelloDone;

Dierks & Rescorla Expires January 8, 2015 [Page 71]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2014

A.4.3 . Client Authentication and Key Exchange Messages

 struct {
 select (KeyExchangeAlgorithm) {
 case dhe_dss:
 case dhe_rsa:
 case dh_anon:
 ClientDiffieHellmanPublic;
 } exchange_keys;
 } ClientKeyExchange;

 struct {
 ProtocolVersion client_version;
 opaque random[46];
 } PreMasterSecret;

 enum { implicit, explicit } PublicValueEncoding;

 struct {
 select (PublicValueEncoding) {
 case implicit: struct {};
 case explicit: opaque DH_Yc<1..2^16-1>;
 } dh_public;
 } ClientDiffieHellmanPublic;

 struct {
 digitally-signed struct {
 opaque handshake_messages[handshake_messages_length];
 }
 } CertificateVerify;

A.4.4 . Handshake Finalization Message

 struct {
 opaque verify_data[verify_data_length];
 } Finished;

A.5 . The Cipher Suite

 The following values define the cipher suite codes used in the
 ClientHello and ServerHello messages.

 A cipher suite defines a cipher specification supported in TLS
 Version 1.2.

 TLS_NULL_WITH_NULL_NULL is specified and is the initial state of a
 TLS connection during the first handshake on that channel, but MUST
 NOT be negotiated, as it provides no more protection than an

Dierks & Rescorla Expires January 8, 2015 [Page 72]

Internet-Draft TLS July 2014

 unsecured connection.

 CipherSuite TLS_NULL_WITH_NULL_NULL = { 0x00,0x00 };

 The following cipher suite definitions, defined in {{ RFC5288}, are
 used for server-authenticated (and optionally client-authenticated)
 Diffie-Hellman. DH denotes cipher suites in which the server’s
 certificate contains the Diffie-Hellman parameters signed by the
 certificate authority (CA). DHE denotes ephemeral Diffie-Hellman,
 where the Diffie-Hellman parameters are signed by a signature-capable
 certificate, which has been signed by the CA. The signing algorithm
 used by the server is specified after the DHE component of the
 CipherSuite name. The server can request any signature-capable
 certificate from the client for client authentication, or it may
 request a Diffie-Hellman certificate. Any Diffie-Hellman certificate
 provided by the client must use the parameters (group and generator)
 described by the server.

 CipherSuite TLS_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9C}
 CipherSuite TLS_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9D}
 CipherSuite TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9E}
 CipherSuite TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9F}
 CipherSuite TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA2}
 CipherSuite TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA3}

 The following cipher suites, defined in {{ RFC5288}, are used for
 completely anonymous Diffie-Hellman communications in which neither
 party is authenticated. Note that this mode is vulnerable to man-in-
 the-middle attacks. Using this mode therefore is of limited use:
 These cipher suites MUST NOT be used by TLS 1.2 implementations
 unless the application layer has specifically requested to allow
 anonymous key exchange. (Anonymous key exchange may sometimes be
 acceptable, for example, to support opportunistic encryption when no
 set-up for authentication is in place, or when TLS is used as part of
 more complex security protocols that have other means to ensure
 authentication.)

 CipherSuite TLS_DH_anon_WITH_AES_128_GCM_SHA256 = {0x00,0xA6}
 CipherSuite TLS_DH_anon_WITH_AES_256_GCM_SHA384 = {0x00,0xA7}

 [[TODO: Add all the defined AEAD ciphers. This currently only lists
 GCM. https://github .com/tlswg/tls13-spec/issues/53]] Note that using
 non-anonymous key exchange without actually verifying the key
 exchange is essentially equivalent to anonymous key exchange, and the
 same precautions apply. While non-anonymous key exchange will
 generally involve a higher computational and communicational cost
 than anonymous key exchange, it may be in the interest of
 interoperability not to disable non-anonymous key exchange when the

Dierks & Rescorla Expires January 8, 2015 [Page 73]

https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5288
https://github/

Internet-Draft TLS July 2014

 application layer is allowing anonymous key exchange.

 New cipher suite values have been assigned by IANA as described in
 Section 12 .

 Note: The cipher suite values { 0x00, 0x1C } and { 0x00, 0x1D } are
 reserved to avoid collision with Fortezza-based cipher suites in SSL
 3.

A.6 . The Security Parameters

 These security parameters are determined by the TLS Handshake
 Protocol and provided as parameters to the TLS record layer in order
 to initialize a connection state. SecurityParameters includes:

 enum { null(0), (255) } CompressionMethod;

 enum { server, client } ConnectionEnd;

 enum { tls_prf_sha256 } PRFAlgorithm;

 enum { aes_gcm } RecordProtAlgorithm;

 /* Other values may be added to the algorithms specified in
 PRFAlgorithm and RecordProtAlgorithm */

 struct {
 ConnectionEnd entity;
 PRFAlgorithm prf_algorithm;
 RecordProtAlgorithm record_prot_algorithm;
 uint8 enc_key_length;
 uint8 block_length;
 uint8 fixed_iv_length;
 uint8 record_iv_length;
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

A.7 . Changes to RFC 4492

 RFC 4492 [RFC4492] adds Elliptic Curve cipher suites to TLS. This
 document changes some of the structures used in that document. This
 section details the required changes for implementors of both RFC
 4492 and TLS 1.2. Implementors of TLS 1.2 who are not implementing
 RFC 4492 do not need to read this section.

 This document adds a "signature_algorithm" field to the digitally-

Dierks & Rescorla Expires January 8, 2015 [Page 74]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2014

 signed element in order to identify the signature and digest
 algorithms used to create a signature. This change applies to
 digital signatures formed using ECDSA as well, thus allowing ECDSA
 signatures to be used with digest algorithms other than SHA-1,
 provided such use is compatible with the certificate and any
 restrictions imposed by future revisions of [RFC3280].

 As described in Section 7.4.5 and Section 7.4.9 , the restrictions on
 the signature algorithms used to sign certificates are no longer tied
 to the cipher suite (when used by the server) or the
 ClientCertificateType (when used by the client). Thus, the
 restrictions on the algorithm used to sign certificates specified in
 Sections 2 and 3 of RFC 4492 are also relaxed. As in this document,
 the restrictions on the keys in the end-entity certificate remain.

Appendix B . Glossary

 Advanced Encryption Standard (AES)
 AES [AES] is a widely used symmetric encryption algorithm. AES is
 a block cipher with a 128-, 192-, or 256-bit keys and a 16-byte
 block size. TLS currently only supports the 128- and 256-bit key
 sizes.

 application protocol
 An application protocol is a protocol that normally layers
 directly on top of the transport layer (e.g., TCP/IP). Examples
 include HTTP, TELNET, FTP, and SMTP.

 asymmetric cipher
 See public key cryptography.

 authenticated encryption with additional data (AEAD)
 A symmetric encryption algorithm that simultaneously provides
 confidentiality and message integrity.

 authentication
 Authentication is the ability of one entity to determine the
 identity of another entity.

 certificate
 As part of the X.509 protocol (a.k.a. ISO Authentication
 framework), certificates are assigned by a trusted Certificate
 Authority and provide a strong binding between a party’s identity
 or some other attributes and its public key.

Dierks & Rescorla Expires January 8, 2015 [Page 75]

https://tools.ietf.org/pdf/rfc3280
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2014

 client
 The application entity that initiates a TLS connection to a
 server. This may or may not imply that the client initiated the
 underlying transport connection. The primary operational
 difference between the server and client is that the server is
 generally authenticated, while the client is only optionally
 authenticated.

 client write key
 The key used to protect data written by the client.

 connection
 A connection is a transport (in the OSI layering model definition)
 that provides a suitable type of service. For TLS, such
 connections are peer-to-peer relationships. The connections are
 transient. Every connection is associated with one session.

 Digital Signature Standard (DSS)
 A standard for digital signing, including the Digital Signing
 Algorithm, approved by the National Institute of Standards and
 Technology, defined in NIST FIPS PUB 186-2, "Digital Signature
 Standard", published January 2000 by the U.S. Department of
 Commerce [DSS]. A significant update [DSS-3] has been drafted and
 was published in March 2006.

 digital signatures
 Digital signatures utilize public key cryptography and one-way
 hash functions to produce a signature of the data that can be
 authenticated, and is difficult to forge or repudiate.

 handshake
 An initial negotiation between client and server that establishes
 the parameters of their transactions.

 Initialization Vector (IV)
 Some AEAD ciphers require an initialization vector to allow the
 cipher to safely protect multiple chunks of data with the same
 keying material. The size of the IV depends on the cipher suite.

 Message Authentication Code (MAC)
 A Message Authentication Code is a one-way hash computed from a
 message and some secret data. It is difficult to forge without
 knowing the secret data. Its purpose is to detect if the message
 has been altered.

Dierks & Rescorla Expires January 8, 2015 [Page 76]

Internet-Draft TLS July 2014

 master secret
 Secure secret data used for generating keys and IVs.

 MD5
 MD5 [RFC1321] is a hashing function that converts an arbitrarily
 long data stream into a hash of fixed size (16 bytes). Due to
 significant progress in cryptanalysis, at the time of publication
 of this document, MD5 no longer can be considered a ’secure’
 hashing function.

 public key cryptography
 A class of cryptographic techniques employing two-key ciphers.
 Messages encrypted with the public key can only be decrypted with
 the associated private key. Conversely, messages signed with the
 private key can be verified with the public key.

 one-way hash function
 A one-way transformation that converts an arbitrary amount of data
 into a fixed-length hash. It is computationally hard to reverse
 the transformation or to find collisions. MD5 and SHA are
 examples of one-way hash functions.

 RSA
 A very widely used public key algorithm that can be used for
 either encryption or digital signing. [RSA]

 server
 The server is the application entity that responds to requests for
 connections from clients. See also "client".

 session
 A TLS session is an association between a client and a server.
 Sessions are created by the handshake protocol. Sessions define a
 set of cryptographic security parameters that can be shared among
 multiple connections. Sessions are used to avoid the expensive
 negotiation of new security parameters for each connection.

 session identifier
 A session identifier is a value generated by a server that
 identifies a particular session.

 server write key
 The key used to protect data written by the server.

 SHA
 The Secure Hash Algorithm [SHS] is defined in FIPS PUB 180-2. It
 produces a 20-byte output. Note that all references to SHA
 (without a numerical suffix) actually use the modified SHA-1

Dierks & Rescorla Expires January 8, 2015 [Page 77]

https://tools.ietf.org/pdf/rfc1321

Internet-Draft TLS July 2014

 algorithm.

 SHA-256
 The 256-bit Secure Hash Algorithm is defined in FIPS PUB 180-2.
 It produces a 32-byte output.

 SSL
 Netscape’s Secure Socket Layer protocol [SSL3]. TLS is based on
 SSL Version 3.0.

 Transport Layer Security (TLS)
 This protocol; also, the Transport Layer Security working group of
 the Internet Engineering Task Force (IETF). See "Working Group
 Information" at the end of this document (see page 99).

Appendix C . Cipher Suite Definitions

 Cipher Suite Key Record
 Exchange Protection PRF

 TLS_NULL_WITH_NULL_NULL NULL NULL_NULL N/A
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 DHE_RSA AES_128_GCM SHA256
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 DHE_RSA AES_256_GCM SHA384
 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 DHE_DSS AES_128_GCM SHA256
 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 DHE_DSS AES_256_GCM SHA384
 TLS_DH_anon_WITH_AES_128_GCM_SHA256 DH_anon AES_128_GCM SHA256
 TLS_DH_anon_WITH_AES_256_GCM_SHA384 DH_anon AES_128_GCM SHA384

 Key Implicit IV Explicit IV
 Cipher Material Size Size
 ------------ -------- ---------- -----------
 NULL 0 0 0
 AES_128_GCM 16 4 8
 AES_256_GCM 32 4 8

 Key Material
 The number of bytes from the key_block that are used for
 generating the write keys.

 Implicit IV Size
 The amount of data to be generated for the per-connection part of
 the initialization vector. This is equal to
 SecurityParameters.fixed_iv_length).

 Explicit IV Size
 The amount of data needed to be generated for the per-record part
 of the initialization vector. This is equal to
 SecurityParameters.record_iv_length).

Dierks & Rescorla Expires January 8, 2015 [Page 78]

Internet-Draft TLS July 2014

Appendix D . Implementation Notes

 The TLS protocol cannot prevent many common security mistakes. This
 section provides several recommendations to assist implementors.

D.1 . Random Number Generation and Seeding

 TLS requires a cryptographically secure pseudorandom number generator
 (PRNG). Care must be taken in designing and seeding PRNGs. PRNGs
 based on secure hash operations, most notably SHA-1, are acceptable,
 but cannot provide more security than the size of the random number
 generator state.

 To estimate the amount of seed material being produced, add the
 number of bits of unpredictable information in each seed byte. For
 example, keystroke timing values taken from a PC compatible’s 18.2 Hz
 timer provide 1 or 2 secure bits each, even though the total size of
 the counter value is 16 bits or more. Seeding a 128-bit PRNG would
 thus require approximately 100 such timer values.

 [RFC4086] provides guidance on the generation of random values.

D.2 . Certificates and Authentication

 Implementations are responsible for verifying the integrity of
 certificates and should generally support certificate revocation
 messages. Certificates should always be verified to ensure proper
 signing by a trusted Certificate Authority (CA). The selection and
 addition of trusted CAs should be done very carefully. Users should
 be able to view information about the certificate and root CA.

D.3 . Cipher Suites

 TLS supports a range of key sizes and security levels, including some
 that provide no or minimal security. A proper implementation will
 probably not support many cipher suites. For instance, anonymous
 Diffie-Hellman is strongly discouraged because it cannot prevent man-
 in-the-middle attacks. Applications should also enforce minimum and
 maximum key sizes. For example, certificate chains containing 512-
 bit RSA keys or signatures are not appropriate for high-security
 applications.

D.4 . Implementation Pitfalls

 Implementation experience has shown that certain parts of earlier TLS
 specifications are not easy to understand, and have been a source of
 interoperability and security problems. Many of these areas have
 been clarified in this document, but this appendix contains a short

Dierks & Rescorla Expires January 8, 2015 [Page 79]

Internet-Draft TLS July 2014

 list of the most important things that require special attention from
 implementors.

 TLS protocol issues:

 - Do you correctly handle handshake messages that are fragmented to
 multiple TLS records (see Section 6.2.1)? Including corner cases
 like a ClientHello that is split to several small fragments? Do
 you fragment handshake messages that exceed the maximum fragment
 size? In particular, the certificate and certificate request
 handshake messages can be large enough to require fragmentation.

 - Do you ignore the TLS record layer version number in all TLS
 records before ServerHello (see Appendix E.1)?

 - Do you handle TLS extensions in ClientHello correctly, including
 omitting the extensions field completely?

 - Do you support renegotiation, both client and server initiated?
 While renegotiation is an optional feature, supporting it is
 highly recommended.

 - When the server has requested a client certificate, but no
 suitable certificate is available, do you correctly send an empty
 Certificate message, instead of omitting the whole message (see
 Section 7.4.9)?

 Cryptographic details:

 - What countermeasures do you use to prevent timing attacks against
 RSA signing operations [TIMING].

 - When verifying RSA signatures, do you accept both NULL and missing
 parameters (see Section 4.7)? Do you verify that the RSA padding
 doesn’t have additional data after the hash value? [FI06]

 - When using Diffie-Hellman key exchange, do you correctly strip
 leading zero bytes from the negotiated key (see Section 8.1.1)?

 - Does your TLS client check that the Diffie-Hellman parameters sent
 by the server are acceptable (see Appendix F.1.1.2)?

 - Do you use a strong and, most importantly, properly seeded random
 number generator (see Appendix D.1) Diffie-Hellman private values,
 the DSA "k" parameter, and other security-critical values?

Dierks & Rescorla Expires January 8, 2015 [Page 80]

Internet-Draft TLS July 2014

Appendix E . Backward Compatibility

E.1 . Compatibility with TLS 1.0/1.1 and SSL 3.0

 [[TODO: Revise backward compatibility section for TLS 1.3.
 https://github .com/tlswg/tls13-spec/issues/54]] Since there are
 various versions of TLS (1.0, 1.1, 1.2, and any future versions) and
 SSL (2.0 and 3.0), means are needed to negotiate the specific
 protocol version to use. The TLS protocol provides a built-in
 mechanism for version negotiation so as not to bother other protocol
 components with the complexities of version selection.

 TLS versions 1.0, 1.1, and 1.2, and SSL 3.0 are very similar, and use
 compatible ClientHello messages; thus, supporting all of them is
 relatively easy. Similarly, servers can easily handle clients trying
 to use future versions of TLS as long as the ClientHello format
 remains compatible, and the client supports the highest protocol
 version available in the server.

 A TLS 1.3 client who wishes to negotiate with such older servers will
 send a normal TLS 1.3 ClientHello, containing { 3, 4 } (TLS 1.3) in
 ClientHello.client_version. If the server does not support this
 version, it will respond with a ServerHello containing an older
 version number. If the client agrees to use this version, the
 negotiation will proceed as appropriate for the negotiated protocol.

 If the version chosen by the server is not supported by the client
 (or not acceptable), the client MUST send a "protocol_version" alert
 message and close the connection.

 If a TLS server receives a ClientHello containing a version number
 greater than the highest version supported by the server, it MUST
 reply according to the highest version supported by the server.

 A TLS server can also receive a ClientHello containing a version
 number smaller than the highest supported version. If the server
 wishes to negotiate with old clients, it will proceed as appropriate
 for the highest version supported by the server that is not greater
 than ClientHello.client_version. For example, if the server supports
 TLS 1.0, 1.1, and 1.2, and client_version is TLS 1.0, the server will
 proceed with a TLS 1.0 ServerHello. If server supports (or is
 willing to use) only versions greater than client_version, it MUST
 send a "protocol_version" alert message and close the connection.

 Whenever a client already knows the highest protocol version known to
 a server (for example, when resuming a session), it SHOULD initiate
 the connection in that native protocol.

Dierks & Rescorla Expires January 8, 2015 [Page 81]

https://github/

Internet-Draft TLS July 2014

 Note: some server implementations are known to implement version
 negotiation incorrectly. For example, there are buggy TLS 1.0
 servers that simply close the connection when the client offers a
 version newer than TLS 1.0. Also, it is known that some servers will
 refuse the connection if any TLS extensions are included in
 ClientHello. Interoperability with such buggy servers is a complex
 topic beyond the scope of this document, and may require multiple
 connection attempts by the client.

 Earlier versions of the TLS specification were not fully clear on
 what the record layer version number (TLSPlaintext.version) should
 contain when sending ClientHello (i.e., before it is known which
 version of the protocol will be employed). Thus, TLS servers
 compliant with this specification MUST accept any value {03,XX} as
 the record layer version number for ClientHello.

 TLS clients that wish to negotiate with older servers MAY send any
 value {03,XX} as the record layer version number. Typical values
 would be {03,00}, the lowest version number supported by the client,
 and the value of ClientHello.client_version. No single value will
 guarantee interoperability with all old servers, but this is a
 complex topic beyond the scope of this document.

E.2 . Compatibility with SSL 2.0

 TLS 1.2 clients that wish to support SSL 2.0 servers MUST send
 version 2.0 CLIENT-HELLO messages defined in [SSL2]. The message
 MUST contain the same version number as would be used for ordinary
 ClientHello, and MUST encode the supported TLS cipher suites in the
 CIPHER-SPECS-DATA field as described below.

 Warning: The ability to send version 2.0 CLIENT-HELLO messages will
 be phased out with all due haste, since the newer ClientHello format
 provides better mechanisms for moving to newer versions and
 negotiating extensions. TLS 1.2 clients SHOULD NOT support SSL 2.0.

 However, even TLS servers that do not support SSL 2.0 MAY accept
 version 2.0 CLIENT-HELLO messages. The message is presented below in
 sufficient detail for TLS server implementors; the true definition is
 still assumed to be [SSL2].

 For negotiation purposes, 2.0 CLIENT-HELLO is interpreted the same
 way as a ClientHello with a "null" compression method and no
 extensions. Note that this message MUST be sent directly on the
 wire, not wrapped as a TLS record. For the purposes of calculating
 Finished and CertificateVerify, the msg_length field is not
 considered to be a part of the handshake message.

Dierks & Rescorla Expires January 8, 2015 [Page 82]

Internet-Draft TLS July 2014

 uint8 V2CipherSpec[3];
 struct {
 uint16 msg_length;
 uint8 msg_type;
 Version version;
 uint16 cipher_spec_length;
 uint16 session_id_length;
 uint16 challenge_length;
 V2CipherSpec cipher_specs[V2ClientHello.cipher_spec_length];
 opaque session_id[V2ClientHello.session_id_length];
 opaque challenge[V2ClientHello.challenge_length;
 } V2ClientHello;

 msg_length
 The highest bit MUST be 1; the remaining bits contain the length
 of the following data in bytes.

 msg_type
 This field, in conjunction with the version field, identifies a
 version 2 ClientHello message. The value MUST be 1.

 version
 Equal to ClientHello.client_version.

 cipher_spec_length
 This field is the total length of the field cipher_specs. It
 cannot be zero and MUST be a multiple of the V2CipherSpec length
 (3).

 session_id_length
 This field MUST have a value of zero for a client that claims to
 support TLS 1.2.

 challenge_length
 The length in bytes of the client’s challenge to the server to
 authenticate itself. Historically, permissible values are between
 16 and 32 bytes inclusive. When using the SSLv2 backward-
 compatible handshake the client SHOULD use a 32-byte challenge.

 cipher_specs
 This is a list of all CipherSpecs the client is willing and able
 to use. In addition to the 2.0 cipher specs defined in [SSL2],
 this includes the TLS cipher suites normally sent in
 ClientHello.cipher_suites, with each cipher suite prefixed by a
 zero byte. For example, the TLS cipher suite {0x00,0x0A} would be
 sent as {0x00,0x00,0x0A}.

Dierks & Rescorla Expires January 8, 2015 [Page 83]

Internet-Draft TLS July 2014

 session_id
 This field MUST be empty.

 challenge
 Corresponds to ClientHello.random. If the challenge length is
 less than 32, the TLS server will pad the data with leading (note:
 not trailing) zero bytes to make it 32 bytes long.

 Note: Requests to resume a TLS session MUST use a TLS client hello.

E.3 . Avoiding Man-in-the-Middle Version Rollback

 When TLS clients fall back to Version 2.0 compatibility mode, they
 MUST use special PKCS#1 block formatting. This is done so that TLS
 servers will reject Version 2.0 sessions with TLS-capable clients.

 When a client negotiates SSL 2.0 but also supports TLS, it MUST set
 the right-hand (least-significant) 8 random bytes of the PKCS padding
 (not including the terminal null of the padding) for the RSA
 encryption of the ENCRYPTED-KEY-DATA field of the CLIENT-MASTER-KEY
 to 0x03 (the other padding bytes are random).

 When a TLS-capable server negotiates SSL 2.0 it SHOULD, after
 decrypting the ENCRYPTED-KEY-DATA field, check that these 8 padding
 bytes are 0x03. If they are not, the server SHOULD generate a random
 value for SECRET-KEY-DATA, and continue the handshake (which will
 eventually fail since the keys will not match). Note that reporting
 the error situation to the client could make the server vulnerable to
 attacks described in [BLEI].

Appendix F . Security Analysis

 The TLS protocol is designed to establish a secure connection between
 a client and a server communicating over an insecure channel. This
 document makes several traditional assumptions, including that
 attackers have substantial computational resources and cannot obtain
 secret information from sources outside the protocol. Attackers are
 assumed to have the ability to capture, modify, delete, replay, and
 otherwise tamper with messages sent over the communication channel.
 This appendix outlines how TLS has been designed to resist a variety
 of attacks.

F.1 . Handshake Protocol

 The handshake protocol is responsible for selecting a cipher spec and
 generating a master secret, which together comprise the primary
 cryptographic parameters associated with a secure session. The
 handshake protocol can also optionally authenticate parties who have

Dierks & Rescorla Expires January 8, 2015 [Page 84]

Internet-Draft TLS July 2014

 certificates signed by a trusted certificate authority.

F.1.1 . Authentication and Key Exchange

 TLS supports three authentication modes: authentication of both
 parties, server authentication with an unauthenticated client, and
 total anonymity. Whenever the server is authenticated, the channel
 is secure against man-in-the-middle attacks, but completely anonymous
 sessions are inherently vulnerable to such attacks. Anonymous
 servers cannot authenticate clients. If the server is authenticated,
 its certificate message must provide a valid certificate chain
 leading to an acceptable certificate authority. Similarly,
 authenticated clients must supply an acceptable certificate to the
 server. Each party is responsible for verifying that the other’s
 certificate is valid and has not expired or been revoked.

 The general goal of the key exchange process is to create a
 pre_master_secret known to the communicating parties and not to
 attackers. The pre_master_secret will be used to generate the
 master_secret (see Section 8.1). The master_secret is required to
 generate the Finished messages and record protection keys (see
 Section 7.4.8 and Section 6.3). By sending a correct Finished
 message, parties thus prove that they know the correct
 pre_master_secret.

F.1.1.1 . Anonymous Key Exchange

 Completely anonymous sessions can be established using Diffie-Hellman
 for key exchange. The server’s public parameters are contained in
 the server key exchange message, and the client’s are sent in the
 client key exchange message. Eavesdroppers who do not know the
 private values should not be able to find the Diffie-Hellman result
 (i.e., the pre_master_secret).

 Warning: Completely anonymous connections only provide protection
 against passive eavesdropping. Unless an independent tamper-proof
 channel is used to verify that the Finished messages were not
 replaced by an attacker, server authentication is required in
 environments where active man-in-the-middle attacks are a concern.

F.1.1.2 . Diffie-Hellman Key Exchange with Authentication

 When Diffie-Hellman key exchange is used, the server can either
 supply a certificate containing fixed Diffie-Hellman parameters or
 use the server key exchange message to send a set of temporary
 Diffie-Hellman parameters signed with a DSA or RSA certificate.
 Temporary parameters are hashed with the hello.random values before
 signing to ensure that attackers do not replay old parameters. In

Dierks & Rescorla Expires January 8, 2015 [Page 85]

Internet-Draft TLS July 2014

 either case, the client can verify the certificate or signature to
 ensure that the parameters belong to the server.

 If the client has a certificate containing fixed Diffie-Hellman
 parameters, its certificate contains the information required to
 complete the key exchange. Note that in this case the client and
 server will generate the same Diffie-Hellman result (i.e.,
 pre_master_secret) every time they communicate. To prevent the
 pre_master_secret from staying in memory any longer than necessary,
 it should be converted into the master_secret as soon as possible.
 Client Diffie-Hellman parameters must be compatible with those
 supplied by the server for the key exchange to work.

 If the client has a standard DSA or RSA certificate or is
 unauthenticated, it sends a set of temporary parameters to the server
 in the client key exchange message, then optionally uses a
 certificate verify message to authenticate itself.

 If the same DH keypair is to be used for multiple handshakes, either
 because the client or server has a certificate containing a fixed DH
 keypair or because the server is reusing DH keys, care must be taken
 to prevent small subgroup attacks. Implementations SHOULD follow the
 guidelines found in [RFC2785].

 Small subgroup attacks are most easily avoided by using one of the
 DHE cipher suites and generating a fresh DH private key (X) for each
 handshake. If a suitable base (such as 2) is chosen, g^X mod p can
 be computed very quickly; therefore, the performance cost is
 minimized. Additionally, using a fresh key for each handshake
 provides Perfect Forward Secrecy. Implementations SHOULD generate a
 new X for each handshake when using DHE cipher suites.

 Because TLS allows the server to provide arbitrary DH groups, the
 client should verify that the DH group is of suitable size as defined
 by local policy. The client SHOULD also verify that the DH public
 exponent appears to be of adequate size. [RFC3766] provides a useful
 guide to the strength of various group sizes. The server MAY choose
 to assist the client by providing a known group, such as those
 defined in [RFC4307] or [RFC3526]. These can be verified by simple
 comparison.

F.1.2 . Version Rollback Attacks

 Because TLS includes substantial improvements over SSL Version 2.0,
 attackers may try to make TLS-capable clients and servers fall back
 to Version 2.0. This attack can occur if (and only if) two TLS-
 capable parties use an SSL 2.0 handshake.

Dierks & Rescorla Expires January 8, 2015 [Page 86]

https://tools.ietf.org/pdf/rfc2785
https://tools.ietf.org/pdf/rfc3766
https://tools.ietf.org/pdf/rfc4307
https://tools.ietf.org/pdf/rfc3526

Internet-Draft TLS July 2014

 Although the solution using non-random PKCS #1 block type 2 message
 padding is inelegant, it provides a reasonably secure way for Version
 3.0 servers to detect the attack. This solution is not secure
 against attackers who can brute-force the key and substitute a new
 ENCRYPTED-KEY-DATA message containing the same key (but with normal
 padding) before the application-specified wait threshold has expired.
 Altering the padding of the least-significant 8 bytes of the PKCS
 padding does not impact security for the size of the signed hashes
 and RSA key lengths used in the protocol, since this is essentially
 equivalent to increasing the input block size by 8 bytes.

F.1.3 . Detecting Attacks Against the Handshake Protocol

 An attacker might try to influence the handshake exchange to make the
 parties select different encryption algorithms than they would
 normally choose.

 For this attack, an attacker must actively change one or more
 handshake messages. If this occurs, the client and server will
 compute different values for the handshake message hashes. As a
 result, the parties will not accept each others’ Finished messages.
 Without the master_secret, the attacker cannot repair the Finished
 messages, so the attack will be discovered.

F.1.4 . Resuming Sessions

 When a connection is established by resuming a session, new
 ClientHello.random and ServerHello.random values are hashed with the
 session’s master_secret. Provided that the master_secret has not
 been compromised and that the secure hash operations used to produce
 the record protection kayes are secure, the connection should be
 secure and effectively independent from previous connections.
 Attackers cannot use known keys to compromise the master_secret
 without breaking the secure hash operations.

 Sessions cannot be resumed unless both the client and server agree.
 If either party suspects that the session may have been compromised,
 or that certificates may have expired or been revoked, it should
 force a full handshake. An upper limit of 24 hours is suggested for
 session ID lifetimes, since an attacker who obtains a master_secret
 may be able to impersonate the compromised party until the
 corresponding session ID is retired. Applications that may be run in
 relatively insecure environments should not write session IDs to
 stable storage.

Dierks & Rescorla Expires January 8, 2015 [Page 87]

Internet-Draft TLS July 2014

F.2 . Protecting Application Data

 The master_secret is hashed with the ClientHello.random and
 ServerHello.random to produce unique record protection secrets for
 each connection.

 Outgoing data is protected using an AEAD algorithm before
 transmission. The authentication data includes the sequence number,
 message type, message length, and the message contents. The message
 type field is necessary to ensure that messages intended for one TLS
 record layer client are not redirected to another. The sequence
 number ensures that attempts to delete or reorder messages will be
 detected. Since sequence numbers are 64 bits long, they should never
 overflow. Messages from one party cannot be inserted into the
 other’s output, since they use independent keys.

F.3 . Denial of Service

 TLS is susceptible to a number of denial-of-service (DoS) attacks.
 In particular, an attacker who initiates a large number of TCP
 connections can cause a server to consume large amounts of CPU doing
 asymmetric crypto operations. However, because TLS is generally used
 over TCP, it is difficult for the attacker to hide his point of
 origin if proper TCP SYN randomization is used [RFC1948] by the TCP
 stack.

 Because TLS runs over TCP, it is also susceptible to a number of DoS
 attacks on individual connections. In particular, attackers can
 forge RSTs, thereby terminating connections, or forge partial TLS
 records, thereby causing the connection to stall. These attacks
 cannot in general be defended against by a TCP-using protocol.
 Implementors or users who are concerned with this class of attack
 should use IPsec AH [RFC4302] or ESP [RFC4303].

F.4 . Final Notes

 For TLS to be able to provide a secure connection, both the client
 and server systems, keys, and applications must be secure. In
 addition, the implementation must be free of security errors.

 The system is only as strong as the weakest key exchange and
 authentication algorithm supported, and only trustworthy
 cryptographic functions should be used. Short public keys and
 anonymous servers should be used with great caution. Implementations
 and users must be careful when deciding which certificates and
 certificate authorities are acceptable; a dishonest certificate
 authority can do tremendous damage.

Dierks & Rescorla Expires January 8, 2015 [Page 88]

https://tools.ietf.org/pdf/rfc1948
https://tools.ietf.org/pdf/rfc4302
https://tools.ietf.org/pdf/rfc4303

Internet-Draft TLS July 2014

Appendix G . Working Group Information

 The discussion list for the IETF TLS working group is located at the
 e-mail address tls@ietf.org [2]. Information on the group and
 information on how to subscribe to the list is at
 https://www1.ietf.org/mailman/listinfo/tls

 Archives of the list can be found at:
 http://www.ietf.org/mail-archive/web/tls/current/index.html

Appendix H . Contributors

 Christopher Allen (co-editor of TLS 1.0)
 Alacrity Ventures
 ChristopherA@AlacrityManagement.com

 Martin Abadi
 University of California, Santa Cruz
 abadi@cs.ucsc.edu

 Steven M. Bellovin
 Columbia University
 smb@cs.columbia.edu

 Simon Blake-Wilson
 BCI
 sblakewilson@bcisse.com

 Ran Canetti
 IBM
 canetti@watson.ibm.com

 Pete Chown
 Skygate Technology Ltd
 pc@skygate.co.uk

 Taher Elgamal
 taher@securify.com
 Securify

 Pasi Eronen
 pasi.eronen@nokia.com
 Nokia

 Anil Gangolli
 anil@busybuddha.org

 Kipp Hickman

Dierks & Rescorla Expires January 8, 2015 [Page 89]

https://www1.ietf.org/mailman/listinfo/tls
http://www.ietf.org/mail-archive/web/tls/current/index.html

Internet-Draft TLS July 2014

 Alfred Hoenes

 David Hopwood
 Independent Consultant
 david.hopwood@blueyonder.co.uk

 Phil Karlton (co-author of SSLv3)

 Paul Kocher (co-author of SSLv3)
 Cryptography Research
 paul@cryptography.com

 Hugo Krawczyk
 IBM
 hugo@ee.technion.ac.il

 Jan Mikkelsen
 Transactionware
 janm@transactionware.com

 Magnus Nystrom
 RSA Security
 magnus@rsasecurity.com

 Robert Relyea
 Netscape Communications
 relyea@netscape.com

 Jim Roskind
 Netscape Communications
 jar@netscape.com

 Michael Sabin

 Dan Simon
 Microsoft, Inc.
 dansimon@microsoft.com

 Tom Weinstein

 Tim Wright
 Vodafone
 timothy.wright@vodafone.com

Dierks & Rescorla Expires January 8, 2015 [Page 90]

Internet-Draft TLS July 2014

Authors’ Addresses

 Tim Dierks
 Independent

 EMail: tim@dierks.org

 Eric Rescorla
 RTFM, Inc.

 EMail: ekr@rtfm.com

Dierks & Rescorla Expires January 8, 2015 [Page 91]

