
Network Working Group E. Rescorla
Internet-Draft RTFM, Inc.
Obsoletes: 3268 , 4346 , 4366 , 5246 , 5077 July 08, 2015
 (if approved)
Updates: 4492 (if approved)
Intended status: Standards Track
Expires: January 9, 2016

 The Transport Layer Security (TLS) Protocol Version 1.3
 draft-ietf-tls-tls13-07

Abstract

 This document specifies Version 1.3 of the Transport Layer Security
 (TLS) protocol. The TLS protocol provides communications security
 over the Internet. The protocol allows client/server applications to
 communicate in a way that is designed to prevent eavesdropping,
 tampering, or message forgery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Rescorla Expires January 9, 2016 [Page 1]

https://tools.ietf.org/pdf/rfc3268
https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5077
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS July 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 1.1 . Conventions and Terminology 5
 1.2 . Major Differences from TLS 1.2 6
 2. Goals . 7
 3. Goals of This Document 8
 4. Presentation Language . 8
 4.1 . Basic Block Size . 8
 4.2 . Miscellaneous . 9
 4.3 . Vectors . 9
 4.4 . Numbers . 10
 4.5 . Enumerateds . 10
 4.6 . Constructed Types . 11
 4.6.1 . Variants . 12
 4.7 . Constants . 13
 4.8 . Primitive Types . 13
 4.9 . Cryptographic Attributes 14
 4.9.1 . Digital Signing 14
 4.9.2. Authenticated Encryption with Additional Data (AEAD) 15
 5. The TLS Record Protocol 16
 5.1 . Connection States . 17
 5.2 . Record Layer . 19
 5.2.1 . Fragmentation . 19
 5.2.2 . Record Payload Protection 20
 6. The TLS Handshaking Protocols 22
 6.1 . Alert Protocol . 23
 6.1.1 . Closure Alerts 24
 6.1.2 . Error Alerts . 25
 6.2 . Handshake Protocol Overview 29
 6.2.1 . Incorrect DHE Share 32
 6.2.2 . Cached Server Configuration 33

Rescorla Expires January 9, 2016 [Page 2]

Internet-Draft TLS July 2015

 6.2.3 . Zero-RTT Exchange 34
 6.2.4 . Resumption and PSK 35
 6.3 . Handshake Protocol 36
 6.3.1 . Hello Messages 37
 6.3.2 . Server Key Share 54
 6.3.3 . Encrypted Extensions 55
 6.3.4 . Server Certificate 55
 6.3.5 . Certificate Request 58
 6.3.6 . Server Configuration 59
 6.3.7 . Server Certificate Verify 61
 6.3.8 . Server Finished 62
 6.3.9 . Client Certificate 63
 6.3.10 . Client Certificate Verify 64
 6.3.11 . New Session Ticket Message 65
 7. Cryptographic Computations 66
 7.1 . Key Schedule . 66
 7.2 . Traffic Key Calculation 67
 7.2.1 . The Handshake Hash 68
 7.2.2 . Diffie-Hellman 69
 7.2.3 . Elliptic Curve Diffie-Hellman 69
 8. Mandatory Cipher Suites 70
 9. Application Data Protocol 70
 10. Security Considerations 70
 11. IANA Considerations . 70
 12. References . 71
 12.1 . Normative References 72
 12.2 . Informative References 73
 12.3 . URIs . 76
 Appendix A . Protocol Data Structures and Constant Values 77
 A.1 . Record Layer . 77
 A.2 . Alert Messages . 77
 A.3 . Handshake Protocol 78
 A.3.1 . Hello Messages 79
 A.3.2 . Key Exchange Messages 82
 A.3.3 . Authentication Messages 83
 A.3.4 . Handshake Finalization Messages 84
 A.3.5 . Ticket Establishment 84
 A.4 . The Cipher Suite . 84
 A.5 . The Security Parameters 86
 A.6 . Changes to RFC 4492 86
 Appendix B . Cipher Suite Definitions 87
 Appendix C . Implementation Notes 87
 C.1 . Random Number Generation and Seeding 87
 C.2 . Certificates and Authentication 87
 C.3 . Cipher Suites . 88
 C.4 . Implementation Pitfalls 88
 Appendix D . Backward Compatibility 89
 D.1 . Negotiating with an older server 89

Rescorla Expires January 9, 2016 [Page 3]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2015

 D.2 . Negotiating with an older client 90
 D.3 . Backwards Compatibility Security Restrictions 90
 Appendix E . Security Analysis 91
 E.1 . Handshake Protocol 91
 E.1.1 . Authentication and Key Exchange 92
 E.1.2 . Version Rollback Attacks 93
 E.1.3 . Detecting Attacks Against the Handshake Protocol . . 93
 E.2 . Protecting Application Data 93
 E.3 . Denial of Service . 94
 E.4 . Final Notes . 94
 Appendix F . Working Group Information 94
 Appendix G . Contributors . 95

1. Introduction

 DISCLAIMER: This is a WIP draft of TLS 1.3 and has not yet seen
 significant security analysis.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this
 draft is maintained in GitHub. Suggested changes should be submitted
 as pull requests at https://github.com/tlswg/tls13-spec .
 Instructions are on that page as well. Editorial changes can be
 managed in GitHub, but any substantive change should be discussed on
 the TLS mailing list.

 The primary goal of the TLS protocol is to provide privacy and data
 integrity between two communicating applications. The protocol is
 composed of two layers: the TLS Record Protocol and the TLS Handshake
 Protocol. At the lowest level, layered on top of some reliable
 transport protocol (e.g., TCP [RFC0793]), is the TLS Record Protocol.
 The TLS Record Protocol provides connection security that has two
 basic properties:

 - The connection is private. Symmetric cryptography is used for
 data encryption (e.g., AES [AES], etc.). The keys for this
 symmetric encryption are generated uniquely for each connection
 and are based on a secret negotiated by another protocol (such as
 the TLS Handshake Protocol). The Record Protocol can also be used
 without encryption, i.e., in integrity-only modes.

 - The connection is reliable. Messages include an authentication
 tag which protects them against modification.

 - The Record Protocol can operate in an insecure mode but is
 generally only used in this mode while another protocol is using
 the Record Protocol as a transport for negotiating security
 parameters.

Rescorla Expires January 9, 2016 [Page 4]

https://github.com/tlswg/tls13-spec
https://tools.ietf.org/pdf/rfc0793

Internet-Draft TLS July 2015

 The TLS Record Protocol is used for encapsulation of various higher-
 level protocols. One such encapsulated protocol, the TLS Handshake
 Protocol, allows the server and client to authenticate each other and
 to negotiate an encryption algorithm and cryptographic keys before
 the application protocol transmits or receives its first byte of
 data. The TLS Handshake Protocol provides connection security that
 has three basic properties:

 - The peer’s identity can be authenticated using asymmetric, or
 public key, cryptography (e.g., RSA [RSA], DSA [DSS], etc.). This
 authentication can be made optional, but is generally required for
 at least one of the peers.

 - The negotiation of a shared secret is secure: the negotiated
 secret is unavailable to eavesdroppers, and for any authenticated
 connection the secret cannot be obtained, even by an attacker who
 can place himself in the middle of the connection.

 - The negotiation is reliable: no attacker can modify the
 negotiation communication without being detected by the parties to
 the communication.

 One advantage of TLS is that it is application protocol independent.
 Higher-level protocols can layer on top of the TLS protocol
 transparently. The TLS standard, however, does not specify how
 protocols add security with TLS; the decisions on how to initiate TLS
 handshaking and how to interpret the authentication certificates
 exchanged are left to the judgment of the designers and implementors
 of protocols that run on top of TLS.

1.1 . Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 The following terms are used:

 client: The endpoint initiating the TLS connection.

 connection: A transport-layer connection between two endpoints.

 endpoint: Either the client or server of the connection.

 handshake: An initial negotiation between client and server that
 establishes the parameters of their transactions.

Rescorla Expires January 9, 2016 [Page 5]

https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119

Internet-Draft TLS July 2015

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving records.

 sender: An endpoint that is transmitting records.

 session: An association between a client and a server resulting from
 a handshake.

 server: The endpoint which did not initiate the TLS connection.

1.2 . Major Differences from TLS 1.2

 draft-07 - Integration of semi-ephemeral DH proposal.

 - Add initial 0-RTT support

 - Remove resumption and replace with PSK + tickets

 - Move ClientKeyShare into an extension.

 - Move to HKDF

 draft-06

 - Prohibit RC4 negotiation for backwards compatibility.

 - Freeze & deprecate record layer version field.

 - Update format of signatures with context.

 - Remove explicit IV.

 draft-05

 - Prohibit SSL negotiation for backwards compatibility.

 - Fix which MS is used for exporters.

 draft-04

 - Modify key computations to include session hash.

 - Remove ChangeCipherSpec

Rescorla Expires January 9, 2016 [Page 6]

https://tools.ietf.org/pdf/draft-07
https://tools.ietf.org/pdf/draft-06
https://tools.ietf.org/pdf/draft-05
https://tools.ietf.org/pdf/draft-04

Internet-Draft TLS July 2015

 - Renumber the new handshake messages to be somewhat more consistent
 with existing convention and to remove a duplicate registration.

 - Remove renegotiation.

 - Remove point format negotiation.

 draft-03

 - Remove GMT time.

 - Merge in support for ECC from RFC 4492 but without explicit
 curves.

 - Remove the unnecessary length field from the AD input to AEAD
 ciphers.

 - Rename {Client,Server}KeyExchange to {Client,Server}KeyShare

 - Add an explicit HelloRetryRequest to reject the client’s

 draft-02

 - Increment version number.

 - Reworked handshake to provide 1-RTT mode.

 - Remove custom DHE groups.

 - Removed support for compression.

 - Removed support for static RSA and DH key exchange.

 - Removed support for non-AEAD ciphers

2. Goals

 The goals of the TLS protocol, in order of priority, are as follows:

 1. Cryptographic security: TLS should be used to establish a secure
 connection between two parties.

 2. Interoperability: Independent programmers should be able to
 develop applications utilizing TLS that can successfully exchange
 cryptographic parameters without knowledge of one another’s code.

 3. Extensibility: TLS seeks to provide a framework into which new
 public key and record protection methods can be incorporated as

Rescorla Expires January 9, 2016 [Page 7]

https://tools.ietf.org/pdf/draft-03
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/draft-02

Internet-Draft TLS July 2015

 necessary. This will also accomplish two sub-goals: preventing
 the need to create a new protocol (and risking the introduction
 of possible new weaknesses) and avoiding the need to implement an
 entire new security library.

 4. Relative efficiency: Cryptographic operations tend to be highly
 CPU intensive, particularly public key operations. For this
 reason, the TLS protocol has incorporated an optional session
 caching scheme to reduce the number of connections that need to
 be established from scratch. Additionally, care has been taken
 to reduce network activity.

3. Goals of This Document

 This document and the TLS protocol itself have evolved from the SSL
 3.0 Protocol Specification as published by Netscape. The differences
 between this protocol and previous versions are significant enough
 that the various versions of TLS and SSL 3.0 do not interoperate
 (although each protocol incorporates a mechanism by which an
 implementation can back down to prior versions). This document is
 intended primarily for readers who will be implementing the protocol
 and for those doing cryptographic analysis of it. The specification
 has been written with this in mind, and it is intended to reflect the
 needs of those two groups. For that reason, many of the algorithm-
 dependent data structures and rules are included in the body of the
 text (as opposed to in an appendix), providing easier access to them.

 This document is not intended to supply any details of service
 definition or of interface definition, although it does cover select
 areas of policy as they are required for the maintenance of solid
 security.

4. Presentation Language

 This document deals with the formatting of data in an external
 representation. The following very basic and somewhat casually
 defined presentation syntax will be used. The syntax draws from
 several sources in its structure. Although it resembles the
 programming language "C" in its syntax and XDR [RFC4506] in both its
 syntax and intent, it would be risky to draw too many parallels. The
 purpose of this presentation language is to document TLS only; it has
 no general application beyond that particular goal.

4.1 . Basic Block Size

 The representation of all data items is explicitly specified. The
 basic data block size is one byte (i.e., 8 bits). Multiple byte data
 items are concatenations of bytes, from left to right, from top to

Rescorla Expires January 9, 2016 [Page 8]

https://tools.ietf.org/pdf/rfc4506

Internet-Draft TLS July 2015

 bottom. From the byte stream, a multi-byte item (a numeric in the
 example) is formed (using C notation) by:

 value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
 ... | byte[n-1];

 This byte ordering for multi-byte values is the commonplace network
 byte order or big-endian format.

4.2 . Miscellaneous

 Comments begin with "/*" and end with "*/".

 Optional components are denoted by enclosing them in "[[]]" double
 brackets.

 Single-byte entities containing uninterpreted data are of type
 opaque.

4.3 . Vectors

 A vector (single-dimensioned array) is a stream of homogeneous data
 elements. The size of the vector may be specified at documentation
 time or left unspecified until runtime. In either case, the length
 declares the number of bytes, not the number of elements, in the
 vector. The syntax for specifying a new type, T’, that is a fixed-
 length vector of type T is

 T T’[n];

 Here, T’ occupies n bytes in the data stream, where n is a multiple
 of the size of T. The length of the vector is not included in the
 encoded stream.

 In the following example, Datum is defined to be three consecutive
 bytes that the protocol does not interpret, while Data is three
 consecutive Datum, consuming a total of nine bytes.

 opaque Datum[3]; /* three uninterpreted bytes */
 Datum Data[9]; /* 3 consecutive 3 byte vectors */

 Variable-length vectors are defined by specifying a subrange of legal
 lengths, inclusively, using the notation <floor..ceiling>. When
 these are encoded, the actual length precedes the vector’s contents
 in the byte stream. The length will be in the form of a number
 consuming as many bytes as required to hold the vector’s specified
 maximum (ceiling) length. A variable-length vector with an actual
 length field of zero is referred to as an empty vector.

Rescorla Expires January 9, 2016 [Page 9]

Internet-Draft TLS July 2015

 T T’<floor..ceiling>;

 In the following example, mandatory is a vector that must contain
 between 300 and 400 bytes of type opaque. It can never be empty.
 The actual length field consumes two bytes, a uint16, which is
 sufficient to represent the value 400 (see Section 4.4). On the
 other hand, longer can represent up to 800 bytes of data, or 400
 uint16 elements, and it may be empty. Its encoding will include a
 two-byte actual length field prepended to the vector. The length of
 an encoded vector must be an even multiple of the length of a single
 element (for example, a 17-byte vector of uint16 would be illegal).

 opaque mandatory<300..400>;
 /* length field is 2 bytes, cannot be empty */
 uint16 longer<0..800>;
 /* zero to 400 16-bit unsigned integers */

4.4 . Numbers

 The basic numeric data type is an unsigned byte (uint8). All larger
 numeric data types are formed from fixed-length series of bytes
 concatenated as described in Section 4.1 and are also unsigned. The
 following numeric types are predefined.

 uint8 uint16[2];
 uint8 uint24[3];
 uint8 uint32[4];
 uint8 uint64[8];

 All values, here and elsewhere in the specification, are stored in
 network byte (big-endian) order; the uint32 represented by the hex
 bytes 01 02 03 04 is equivalent to the decimal value 16909060.

 Note that in some cases (e.g., DH parameters) it is necessary to
 represent integers as opaque vectors. In such cases, they are
 represented as unsigned integers (i.e., leading zero octets are not
 required even if the most significant bit is set).

4.5 . Enumerateds

 An additional sparse data type is available called enum. A field of
 type enum can only assume the values declared in the definition.
 Each definition is a different type. Only enumerateds of the same
 type may be assigned or compared. Every element of an enumerated
 must be assigned a value, as demonstrated in the following example.
 Since the elements of the enumerated are not ordered, they can be
 assigned any unique value, in any order.

Rescorla Expires January 9, 2016 [Page 10]

Internet-Draft TLS July 2015

 enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;

 An enumerated occupies as much space in the byte stream as would its
 maximal defined ordinal value. The following definition would cause
 one byte to be used to carry fields of type Color.

 enum { red(3), blue(5), white(7) } Color;

 One may optionally specify a value without its associated tag to
 force the width definition without defining a superfluous element.

 In the following example, Taste will consume two bytes in the data
 stream but can only assume the values 1, 2, or 4.

 enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

 The names of the elements of an enumeration are scoped within the
 defined type. In the first example, a fully qualified reference to
 the second element of the enumeration would be Color.blue. Such
 qualification is not required if the target of the assignment is well
 specified.

 Color color = Color.blue; /* overspecified, legal */
 Color color = blue; /* correct, type implicit */

 For enumerateds that are never converted to external representation,
 the numerical information may be omitted.

 enum { low, medium, high } Amount;

4.6 . Constructed Types

 Structure types may be constructed from primitive types for
 convenience. Each specification declares a new, unique type. The
 syntax for definition is much like that of C.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } [[T]];

 The fields within a structure may be qualified using the type’s name,
 with a syntax much like that available for enumerateds. For example,
 T.f2 refers to the second field of the previous declaration.
 Structure definitions may be embedded.

Rescorla Expires January 9, 2016 [Page 11]

Internet-Draft TLS July 2015

4.6.1 . Variants

 Defined structures may have variants based on some knowledge that is
 available within the environment. The selector must be an enumerated
 type that defines the possible variants the structure defines. There
 must be a case arm for every element of the enumeration declared in
 the select. Case arms have limited fall-through: if two case arms
 follow in immediate succession with no fields in between, then they
 both contain the same fields. Thus, in the example below, "orange"
 and "banana" both contain V2. Note that this is a new piece of
 syntax in TLS 1.2.

 The body of the variant structure may be given a label for reference.
 The mechanism by which the variant is selected at runtime is not
 prescribed by the presentation language.

 struct {
 T1 f1;
 T2 f2;

 Tn fn;
 select (E) {
 case e1: Te1;
 case e2: Te2;
 case e3: case e4: Te3;

 case en: Ten;
 } [[fv]];
 } [[Tv]];

 For example:

Rescorla Expires January 9, 2016 [Page 12]

Internet-Draft TLS July 2015

 enum { apple, orange, banana } VariantTag;

 struct {
 uint16 number;
 opaque string<0..10>; /* variable length */
 } V1;

 struct {
 uint32 number;
 opaque string[10]; /* fixed length */
 } V2;

 struct {
 select (VariantTag) { /* value of selector is implicit */
 case apple:
 V1; /* VariantBody, tag = apple */
 case orange:
 case banana:
 V2; /* VariantBody, tag = orange or banana */
 } variant_body; /* optional label on variant */
 } VariantRecord;

4.7 . Constants

 Typed constants can be defined for purposes of specification by
 declaring a symbol of the desired type and assigning values to it.

 Under-specified types (opaque, variable-length vectors, and
 structures that contain opaque) cannot be assigned values. No fields
 of a multi-element structure or vector may be elided.

 For example:

 struct {
 uint8 f1;
 uint8 f2;
 } Example1;

 Example1 ex1 = {1, 4}; /* assigns f1 = 1, f2 = 4 */

4.8 . Primitive Types

 The following common primitive types are defined and used
 subsequently:

 enum { false(0), true(1) } Boolean;

Rescorla Expires January 9, 2016 [Page 13]

Internet-Draft TLS July 2015

4.9 . Cryptographic Attributes

 The two cryptographic operations -- digital signing, and
 authenticated encryption with additional data (AEAD) -- are
 designated digitally-signed, and aead-ciphered, respectively. A
 field’s cryptographic processing is specified by prepending an
 appropriate key word designation before the field’s type
 specification. Cryptographic keys are implied by the current session
 state (see Section 5.1).

4.9.1 . Digital Signing

 A digitally-signed element is encoded as a struct DigitallySigned:

 struct {
 SignatureAndHashAlgorithm algorithm;
 opaque signature<0..2^16-1>;
 } DigitallySigned;

 The algorithm field specifies the algorithm used (see
 Section 6.3.1.4.1 for the definition of this field). Note that the
 algorithm field was introduced in TLS 1.2, and is not in earlier
 versions. The signature is a digital signature using those
 algorithms over the contents of the element. The contents themselves
 do not appear on the wire but are simply calculated. The length of
 the signature is specified by the signing algorithm and key.

 In previous versions of TLS, the ServerKeyExchange format meant that
 attackers can obtain a signature of a message with a chosen, 32-byte
 prefix. Because TLS 1.3 servers are likely to also implement prior
 versions, the contents of the element always start with 64 bytes of
 octet 32 in order to clear that chosen-prefix.

 Following that padding is a NUL-terminated context string in order to
 disambiguate signatures for different purposes. The context string
 will be specified whenever a digitally-signed element is used.

 Finally, the specified contents of the digitally-signed structure
 follow the NUL at the end of the context string. (See the example at
 the end of this section.)

 In RSA signing, the opaque vector contains the signature generated
 using the RSASSA-PKCS1-v1_5 signature scheme defined in [RFC3447].
 As discussed in [RFC3447], the DigestInfo MUST be DER-encoded [X680]
 [X690]. For hash algorithms without parameters (which includes SHA-
 1), the DigestInfo.AlgorithmIdentifier.parameters field MUST be NULL,
 but implementations MUST accept both without parameters and with NULL

Rescorla Expires January 9, 2016 [Page 14]

https://tools.ietf.org/pdf/rfc3447
https://tools.ietf.org/pdf/rfc3447

Internet-Draft TLS July 2015

 parameters. Note that earlier versions of TLS used a different RSA
 signature scheme that did not include a DigestInfo encoding.

 In DSA, the 20 bytes of the SHA-1 hash are run directly through the
 Digital Signing Algorithm with no additional hashing. This produces
 two values, r and s. The DSA signature is an opaque vector, as
 above, the contents of which are the DER encoding of:

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER
 }

 Note: In current terminology, DSA refers to the Digital Signature
 Algorithm and DSS refers to the NIST standard. In the original SSL
 and TLS specs, "DSS" was used universally. This document uses "DSA"
 to refer to the algorithm, "DSS" to refer to the standard, and it
 uses "DSS" in the code point definitions for historical continuity.

 All ECDSA computations MUST be performed according to ANSI X9.62
 [X962] or its successors. Data to be signed/verified is hashed, and
 the result run directly through the ECDSA algorithm with no
 additional hashing. The default hash function is SHA-1 [SHS].
 However, an alternative hash function, such as one of the new SHA
 hash functions specified in FIPS 180-2 may be used instead if the
 certificate containing the EC public key explicitly requires use of
 another hash function. (The mechanism for specifying the required
 hash function has not been standardized, but this provision
 anticipates such standardization and obviates the need to update this
 document in response. Future PKIX RFCs may choose, for example, to
 specify the hash function to be used with a public key in the
 parameters field of subjectPublicKeyInfo.) [[OPEN ISSUE: This needs
 updating per 4492-bis https://github .com/tlswg/tls13-spec/issues/59]]

4.9.2 . Authenticated Encryption with Additional Data (AEAD)

 In AEAD encryption, the plaintext is simultaneously encrypted and
 integrity protected. The input may be of any length, and aead-
 ciphered output is generally larger than the input in order to
 accommodate the integrity check value.

 In the following example

Rescorla Expires January 9, 2016 [Page 15]

https://github/

Internet-Draft TLS July 2015

 struct {
 uint8 field1;
 uint8 field2;
 digitally-signed opaque {
 uint8 field3<0..255>;
 uint8 field4;
 };
 } UserType;

 Assume that the context string for the signature was specified as
 "Example". The input for the signature/hash algorithm would be:

 20
 20
 4578616d706c6500

 followed by the encoding of the inner struct (field3 and field4).

 The length of the structure, in bytes, would be equal to two bytes
 for field1 and field2, plus two bytes for the signature and hash
 algorithm, plus two bytes for the length of the signature, plus the
 length of the output of the signing algorithm. The length of the
 signature is known because the algorithm and key used for the signing
 are known prior to encoding or decoding this structure.

5. The TLS Record Protocol

 The TLS Record Protocol is a layered protocol. At each layer,
 messages may include fields for length, description, and content.
 The Record Protocol takes messages to be transmitted, fragments the
 data into manageable blocks, protects the records, and transmits the
 result. Received data is decrypted and verified, reassembled, and
 then delivered to higher-level clients.

 Three protocols that use the record protocol are described in this
 document: the handshake protocol, the alert protocol, and the
 application data protocol. In order to allow extension of the TLS
 protocol, additional record content types can be supported by the
 record protocol. New record content type values are assigned by IANA
 in the TLS Content Type Registry as described in Section 11 .

 Implementations MUST NOT send record types not defined in this
 document unless negotiated by some extension. If a TLS
 implementation receives an unexpected record type, it MUST send an
 "unexpected_message" alert.

 Any protocol designed for use over TLS must be carefully designed to
 deal with all possible attacks against it. As a practical matter,

Rescorla Expires January 9, 2016 [Page 16]

Internet-Draft TLS July 2015

 this means that the protocol designer must be aware of what security
 properties TLS does and does not provide and cannot safely rely on
 the latter.

 Note in particular that type and length of a record are not protected
 by encryption. If this information is itself sensitive, application
 designers may wish to take steps (padding, cover traffic) to minimize
 information leakage.

5.1 . Connection States

 [[TODO: I plan to totally rewrite or remove this. IT seems like just
 cruft.]]

 A TLS connection state is the operating environment of the TLS Record
 Protocol. It specifies a record protection algorithm and its
 parameters as well as the record protection keys and IVs for the
 connection in both the read and the write directions. The security
 parameters are set by the TLS Handshake Protocol, which also
 determines when new cryptographic keys are installed and used for
 record protection. The initial current state always specifies that
 records are not protected.

 The security parameters for a TLS Connection read and write state are
 set by providing the following values:

 connection end
 Whether this entity is considered the "client" or the "server" in
 this connection.

 Hash algorithm
 An algorithm used to generate keys from the appropriate secret
 (see Section 7.1 and Section 7.2).

 record protection algorithm
 The algorithm to be used for record protection. This algorithm
 must be of the AEAD type and thus provides integrity and
 confidentiality as a single primitive. It is possible to have
 AEAD algorithms which do not provide any confidentiality and
 Section 5.2.2 defines a special NULL_NULL AEAD algorithm for use
 in the initial handshake). This specification includes the key
 size of this algorithm and of the nonce for the AEAD algorithm.

 master secret
 A 48-byte secret shared between the two peers in the connection
 and used to generate keys for protecting data.

 client random

Rescorla Expires January 9, 2016 [Page 17]

Internet-Draft TLS July 2015

 A 32-byte value provided by the client.

 server random
 A 32-byte value provided by the server.

 These parameters are defined in the presentation language as:

 enum { server, client } ConnectionEnd;

 enum { tls_kdf_sha256, tls_kdf_sha384 } KDFAlgorithm;

 enum { aes_gcm } RecordProtAlgorithm;

 /* The algorithms specified in KDFAlgorithm and
 RecordProtAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;
 KDFAlgorithm kdf_algorithm;
 RecordProtAlgorithm record_prot_algorithm;
 uint8 enc_key_length;
 uint8 iv_length;
 opaque hs_master_secret[48];
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

 [TODO: update this to handle new key hierarchy.]

 The connection state will use the security parameters to generate the
 following four items:

 client write key
 server write key
 client write iv
 server write iv

 The client write parameters are used by the server when receiving and
 processing records and vice versa. The algorithm used for generating
 these items from the security parameters is described in Section 7.2 .

 Once the security parameters have been set and the keys have been
 generated, the connection states can be instantiated by making them
 the current states. These current states MUST be updated for each
 record processed. Each connection state includes the following
 elements:

Rescorla Expires January 9, 2016 [Page 18]

Internet-Draft TLS July 2015

 cipher state
 The current state of the encryption algorithm. This will consist
 of the scheduled key for that connection.

 sequence number
 Each connection state contains a sequence number, which is
 maintained separately for read and write states. The sequence
 number is set to zero at the beginning of a connection and
 incremented by one thereafter. Sequence numbers are of type
 uint64 and MUST NOT exceed 2^64-1. Sequence numbers do not wrap.
 If a TLS implementation would need to wrap a sequence number, it
 MUST terminate the connection. A sequence number is incremented
 after each record: specifically, the first record transmitted
 under a particular connection state MUST use sequence number 0.
 NOTE: This is a change from previous versions of TLS, where
 sequence numbers were reset whenever keys were changed.

5.2 . Record Layer

 The TLS record layer receives uninterpreted data from higher layers
 in non-empty blocks of arbitrary size.

5.2.1 . Fragmentation

 The record layer fragments information blocks into TLSPlaintext
 records carrying data in chunks of 2^14 bytes or less. Client
 message boundaries are not preserved in the record layer (i.e.,
 multiple client messages of the same ContentType MAY be coalesced
 into a single TLSPlaintext record, or a single message MAY be
 fragmented across several records).

 struct {
 uint8 major;
 uint8 minor;
 } ProtocolVersion;

 enum {
 reserved(20), alert(21), handshake(22),
 application_data(23), early_handshake(25),
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

Rescorla Expires January 9, 2016 [Page 19]

Internet-Draft TLS July 2015

 type
 The higher-level protocol used to process the enclosed fragment.

 record_version
 The protocol version the current record is compatible with. This
 value MUST be set to { 3, 1 } for all records. This field is
 deprecated and MUST be ignored for all purposes.

 length
 The length (in bytes) of the following TLSPlaintext.fragment. The
 length MUST NOT exceed 2^14.

 fragment
 The application data. This data is transparent and treated as an
 independent block to be dealt with by the higher-level protocol
 specified by the type field.

 This document describes TLS Version 1.3, which uses the version { 3,
 4 }. The version value 3.4 is historical, deriving from the use of {
 3, 1 } for TLS 1.0 and { 3, 0 } for SSL 3.0. In order to maximize
 backwards compatibility, the record layer version identifies as
 simply TLS 1.0. Endpoints supporting other versions negotiate the
 version to use by following the procedure and requirements in
 Appendix D .

 Implementations MUST NOT send zero-length fragments of Handshake or
 Alert types. Zero-length fragments of Application data MAY be sent
 as they are potentially useful as a traffic analysis countermeasure.

5.2.2 . Record Payload Protection

 The record protection functions translate a TLSPlaintext structure
 into a TLSCiphertext. The deprotection functions reverse the
 process. In TLS 1.3 as opposed to previous versions of TLS, all
 ciphers are modeled as "Authenticated Encryption with Additional
 Data" (AEAD) [RFC5116]. AEAD functions provide a unified encryption
 and authentication operation which turns plaintext into authenticated
 ciphertext and back again.

 AEAD ciphers take as input a single key, a nonce, a plaintext, and
 "additional data" to be included in the authentication check, as
 described in Section 2.1 of [RFC5116] . The key is either the
 client_write_key or the server_write_key.

Rescorla Expires January 9, 2016 [Page 20]

https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc5116#section-2.1

Internet-Draft TLS July 2015

 struct {
 ContentType type;
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 aead-ciphered struct {
 opaque content[TLSPlaintext.length];
 } fragment;
 } TLSCiphertext;

 type
 The type field is identical to TLSPlaintext.type.

 record_version
 The record_version field is identical to
 TLSPlaintext.record_version and is always { 3, 1 }. Note that the
 handshake protocol including the ClientHello and ServerHello
 messages authenticates the protocol version, so this value is
 redundant.

 length
 The length (in bytes) of the following TLSCiphertext.fragment.
 The length MUST NOT exceed 2^14 + 2048.

 fragment
 The AEAD encrypted form of TLSPlaintext.fragment.

 The length of the per-record nonce (iv_length) is set to max(8 bytes,
 N_MIN) for the AEAD algorithm (see [RFC5116] Section 4). An AEAD
 algorithm where N_MAX is less than 8 bytes MUST not be used with TLS.
 The per-record nonce for the AEAD construction is formed as follows:

 1. The 64-bit record sequence number is padded to the left with
 zeroes to iv_length.

 2. The padded sequence number is XORed with the static
 client_write_iv or server_write_iv, depending on the role.

 The resulting quantity (of length iv_length) is used as the per-
 record nonce.

 Note: This is a different construction from that in TLS 1.2, which
 specified a partially explicit nonce.

 The plaintext is the TLSPlaintext.fragment.

 The additional authenticated data, which we denote as
 additional_data, is defined as follows:

Rescorla Expires January 9, 2016 [Page 21]

https://tools.ietf.org/pdf/rfc5116#section-4

Internet-Draft TLS July 2015

 additional_data = seq_num + TLSPlaintext.type +
 TLSPlaintext.record_version

 where "+" denotes concatenation.

 Note: In versions of TLS prior to 1.3, the additional_data included a
 length field. This presents a problem for cipher constructions with
 data-dependent padding (such as CBC). TLS 1.3 removes the length
 field and relies on the AEAD cipher to provide integrity for the
 length of the data.

 The AEAD output consists of the ciphertext output by the AEAD
 encryption operation. The length will generally be larger than
 TLSPlaintext.length, but by an amount that varies with the AEAD
 cipher. Since the ciphers might incorporate padding, the amount of
 overhead could vary with different TLSPlaintext.length values. Each
 AEAD cipher MUST NOT produce an expansion of greater than 1024 bytes.
 Symbolically,

 AEADEncrypted = AEAD-Encrypt(write_key, nonce, plaintext,
 additional_data)

 [[OPEN ISSUE: Reduce these values? https://github.com/tlswg/tls13-
 spec/issues/55]]

 In order to decrypt and verify, the cipher takes as input the key,
 nonce, the "additional_data", and the AEADEncrypted value. The
 output is either the plaintext or an error indicating that the
 decryption failed. There is no separate integrity check. That is:

 TLSPlaintext.fragment = AEAD-Decrypt(write_key, nonce,
 AEADEncrypted,
 additional_data)

 If the decryption fails, a fatal "bad_record_mac" alert MUST be
 generated.

 As a special case, we define the NULL_NULL AEAD cipher which is
 simply the identity operation and thus provides no security. This
 cipher MUST ONLY be used with the initial TLS_NULL_WITH_NULL_NULL
 cipher suite.

6. The TLS Handshaking Protocols

 TLS has three subprotocols that are used to allow peers to agree upon
 security parameters for the record layer, to authenticate themselves,
 to instantiate negotiated security parameters, and to report error
 conditions to each other.

Rescorla Expires January 9, 2016 [Page 22]

https://github.com/tlswg/tls13-

Internet-Draft TLS July 2015

 The Handshake Protocol is responsible for negotiating a session,
 which consists of the following items:

 peer certificate
 X509v3 [RFC5280] certificate of the peer. This element of the
 state may be null.

 cipher spec
 Specifies the authentication and key establishment algorithms, the
 hash for use with HKDF to generate keying material, and the record
 protection algorithm (See Appendix A.5 for formal definition.)

 resumption master secret
 a secret shared between the client and server that can be used as
 a PSK in future connections.

 These items are then used to create security parameters for use by
 the record layer when protecting application data. Many connections
 can be instantiated using the same session using a PSK established in
 an initial handshake.

6.1 . Alert Protocol

 One of the content types supported by the TLS record layer is the
 alert type. Alert messages convey the severity of the message
 (warning or fatal) and a description of the alert. Alert messages
 with a level of fatal result in the immediate termination of the
 connection. In this case, other connections corresponding to the
 session may continue, but the session identifier MUST be invalidated,
 preventing the failed session from being used to establish new
 connections. Like other messages, alert messages are encrypted as
 specified by the current connection state.

Rescorla Expires January 9, 2016 [Page 23]

https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS July 2015

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10), /* fatal */
 bad_record_mac(20), /* fatal */
 decryption_failed_RESERVED(21), /* fatal */
 record_overflow(22), /* fatal */
 decompression_failure_RESERVED(30), /* fatal */
 handshake_failure(40), /* fatal */
 no_certificate_RESERVED(41), /* fatal */
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47), /* fatal */
 unknown_ca(48), /* fatal */
 access_denied(49), /* fatal */
 decode_error(50), /* fatal */
 decrypt_error(51), /* fatal */
 export_restriction_RESERVED(60), /* fatal */
 protocol_version(70), /* fatal */
 insufficient_security(71), /* fatal */
 internal_error(80), /* fatal */
 user_canceled(90),
 no_renegotiation(100), /* fatal */
 unsupported_extension(110), /* fatal */
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

6.1.1 . Closure Alerts

 The client and the server must share knowledge that the connection is
 ending in order to avoid a truncation attack. Either party may
 initiate the exchange of closing messages.

 close_notify
 This message notifies the recipient that the sender will not send
 any more messages on this connection. Note that as of TLS 1.1,
 failure to properly close a connection no longer requires that a
 session not be resumed. This is a change from TLS 1.0 to conform
 with widespread implementation practice.

Rescorla Expires January 9, 2016 [Page 24]

Internet-Draft TLS July 2015

 Either party MAY initiate a close by sending a "close_notify" alert.
 Any data received after a closure alert is ignored. If a transport-
 level close is received prior to a close_notify, the receiver cannot
 know that all the data that was sent has been received.

 Unless some other fatal alert has been transmitted, each party is
 required to send a "close_notify" alert before closing the write side
 of the connection. The other party MUST respond with a
 "close_notify" alert of its own and close down the connection
 immediately, discarding any pending writes. It is not required for
 the initiator of the close to wait for the responding "close_notify"
 alert before closing the read side of the connection.

 If the application protocol using TLS provides that any data may be
 carried over the underlying transport after the TLS connection is
 closed, the TLS implementation must receive the responding
 "close_notify" alert before indicating to the application layer that
 the TLS connection has ended. If the application protocol will not
 transfer any additional data, but will only close the underlying
 transport connection, then the implementation MAY choose to close the
 transport without waiting for the responding "close_notify". No part
 of this standard should be taken to dictate the manner in which a
 usage profile for TLS manages its data transport, including when
 connections are opened or closed.

 Note: It is assumed that closing a connection reliably delivers
 pending data before destroying the transport.

6.1.2 . Error Alerts

 Error handling in the TLS Handshake protocol is very simple. When an
 error is detected, the detecting party sends a message to the other
 party. Upon transmission or receipt of a fatal alert message, both
 parties immediately close the connection. Servers and clients MUST
 forget any session-identifiers, keys, and secrets associated with a
 failed connection. Thus, any connection terminated with a fatal
 alert MUST NOT be resumed.

 Whenever an implementation encounters a condition which is defined as
 a fatal alert, it MUST send the appropriate alert prior to closing
 the connection. For all errors where an alert level is not
 explicitly specified, the sending party MAY determine at its
 discretion whether to treat this as a fatal error or not. If the
 implementation chooses to send an alert but intends to close the
 connection immediately afterwards, it MUST send that alert at the
 fatal alert level.

Rescorla Expires January 9, 2016 [Page 25]

Internet-Draft TLS July 2015

 If an alert with a level of warning is sent and received, generally
 the connection can continue normally. If the receiving party decides
 not to proceed with the connection (e.g., after having received a
 "no_renegotiation" alert that it is not willing to accept), it SHOULD
 send a fatal alert to terminate the connection. Given this, the
 sending party cannot, in general, know how the receiving party will
 behave. Therefore, warning alerts are not very useful when the
 sending party wants to continue the connection, and thus are
 sometimes omitted. For example, if a peer decides to accept an
 expired certificate (perhaps after confirming this with the user) and
 wants to continue the connection, it would not generally send a
 "certificate_expired" alert.

 The following error alerts are defined:

 unexpected_message
 An inappropriate message was received. This alert is always fatal
 and should never be observed in communication between proper
 implementations.

 bad_record_mac
 This alert is returned if a record is received which cannot be
 deprotected. Because AEAD algorithms combine decryption and
 verification, this message is used for all deprotection failures.
 This message is always fatal and should never be observed in
 communication between proper implementations (except when messages
 were corrupted in the network).

 decryption_failed_RESERVED
 This alert was used in some earlier versions of TLS, and may have
 permitted certain attacks against the CBC mode [CBCATT]. It MUST
 NOT be sent by compliant implementations. This message is always
 fatal.

 record_overflow
 A TLSCiphertext record was received that had a length more than
 2^14+2048 bytes, or a record decrypted to a TLSPlaintext record
 with more than 2^14 bytes. This message is always fatal and
 should never be observed in communication between proper
 implementations (except when messages were corrupted in the
 network).

 decompression_failure_RESERVED
 This alert was used in previous versions of TLS. TLS 1.3 does not
 include compression and TLS 1.3 implementations MUST NOT send this
 alert when in TLS 1.3 mode. This message is always fatal.

 handshake_failure

Rescorla Expires January 9, 2016 [Page 26]

Internet-Draft TLS July 2015

 Reception of a "handshake_failure" alert message indicates that
 the sender was unable to negotiate an acceptable set of security
 parameters given the options available. This message is always
 fatal.

 no_certificate_RESERVED
 This alert was used in SSL 3.0 but not any version of TLS. It
 MUST NOT be sent by compliant implementations. This message is
 always fatal.

 bad_certificate
 A certificate was corrupt, contained signatures that did not
 verify correctly, etc.

 unsupported_certificate
 A certificate was of an unsupported type.

 certificate_revoked
 A certificate was revoked by its signer.

 certificate_expired
 A certificate has expired or is not currently valid.

 certificate_unknown
 Some other (unspecified) issue arose in processing the
 certificate, rendering it unacceptable.

 illegal_parameter
 A field in the handshake was out of range or inconsistent with
 other fields. This message is always fatal.

 unknown_ca
 A valid certificate chain or partial chain was received, but the
 certificate was not accepted because the CA certificate could not
 be located or couldn’t be matched with a known, trusted CA. This
 message is always fatal.

 access_denied
 A valid certificate was received, but when access control was
 applied, the sender decided not to proceed with negotiation. This
 message is always fatal.

 decode_error
 A message could not be decoded because some field was out of the
 specified range or the length of the message was incorrect. This
 message is always fatal and should never be observed in
 communication between proper implementations (except when messages
 were corrupted in the network).

Rescorla Expires January 9, 2016 [Page 27]

Internet-Draft TLS July 2015

 decrypt_error
 A handshake cryptographic operation failed, including being unable
 to correctly verify a signature or validate a Finished message.
 This message is always fatal.

 export_restriction_RESERVED
 This alert was used in some earlier versions of TLS. It MUST NOT
 be sent by compliant implementations. This message is always
 fatal.

 protocol_version
 The protocol version the peer has attempted to negotiate is
 recognized but not supported. (For example, old protocol versions
 might be avoided for security reasons.) This message is always
 fatal.

 insufficient_security
 Returned instead of "handshake_failure" when a negotiation has
 failed specifically because the server requires ciphers more
 secure than those supported by the client. This message is always
 fatal.

 internal_error
 An internal error unrelated to the peer or the correctness of the
 protocol (such as a memory allocation failure) makes it impossible
 to continue. This message is always fatal.

 user_canceled
 This handshake is being canceled for some reason unrelated to a
 protocol failure. If the user cancels an operation after the
 handshake is complete, just closing the connection by sending a
 "close_notify" is more appropriate. This alert should be followed
 by a "close_notify". This message is generally a warning.

 no_renegotiation
 Sent by the client in response to a HelloRequest or by the server
 in response to a ClientHello after initial handshaking. Versions
 of TLS prior to TLS 1.3 supported renegotiation of a previously
 established connection; TLS 1.3 removes this feature. This
 message is always fatal.

 unsupported_extension
 sent by clients that receive an extended ServerHello containing an
 extension that they did not put in the corresponding ClientHello.
 This message is always fatal.

 New Alert values are assigned by IANA as described in Section 11 .

Rescorla Expires January 9, 2016 [Page 28]

Internet-Draft TLS July 2015

6.2 . Handshake Protocol Overview

 The cryptographic parameters of the session state are produced by the
 TLS Handshake Protocol, which operates on top of the TLS record
 layer. When a TLS client and server first start communicating, they
 agree on a protocol version, select cryptographic algorithms,
 optionally authenticate each other, and establish shared secret
 keying material.

 TLS supports three basic key exchange modes:

 - Diffie-Hellman (of both the finite field and elliptic curve
 varieties).

 - A pre-shared symmetric key (PSK)

 - A combination of a symmetric key and Diffie-Hellman

 Which mode is used depends on the negotiated cipher suite.
 Conceptually, the handshake establishes two secrets which are used to
 derive all the keys.

 Ephemeral Secret (ES): A secret which is derived from fresh (EC)DHE
 shares for this connection. Keying material derived from ES is
 intended to be forward secure (with the exception of pre-shared key
 only modes).

 Static Secret (SS): A secret which may be derived from static or
 semi-static keying material, such as a pre-shared key or the server’s
 semi-static (EC)DH share.

 In some cases, as with the DH handshake shown in Figure 1, these
 secrets are the same, but having both allows for a uniform key
 derivation scheme for all cipher modes.

 The basic TLS Handshake for DH is shown in Figure 1:

Rescorla Expires January 9, 2016 [Page 29]

Internet-Draft TLS July 2015

 Client Server

 ClientHello
 + ClientKeyShare -------->
 ServerHello
 ServerKeyShare*
 {EncryptedExtensions}
 {ServerConfiguration*}
 {Certificate*}
 {CertificateRequest*}
 {CertificateVerify*}
 <-------- {Finished}
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

* Indicates optional or situation-dependent messages that are not always sent.

{} Indicates messages protected using keys derived from the ephemeral secret.

[] Indicates messages protected using keys derived from the master secret.

 Figure 1: Message flow for full TLS Handshake

 The first message sent by the client is the ClientHello
 Section 6.3.1.1 which contains a random nonce (ClientHello.random),
 its offered protocol version, cipher suite, and extensions, and one
 or more Diffie-Hellman key shares in the ClientKeyShare extension
 Section 6.3.1.5 .

 The server processes the ClientHello and determines the appropriate
 cryptographic parameters for the connection. It then responds with
 the following messages:

 ServerHello
 indicates the negotiated connection parameters. [Section 6.3.1.2]

 ServerKeyShare
 the server’s ephemeral Diffie-Hellman Share which must be in the
 same group as one of the shares offered by the client. This
 message will be omitted if DH is not in use (i.e., a pure PSK
 cipher suite is selected). The ClientKeyShare and ServerKeyShare
 are used together to derive the Static Secret and Ephemeral Secret
 (in this mode they are the same). [Section 6.3.2]

 ServerConfiguration

Rescorla Expires January 9, 2016 [Page 30]

Internet-Draft TLS July 2015

 supplies a configuration for a future handshake (see
 Section 6.2.2). [Section 6.3.6]

 EncryptedExtensions
 responses to any extensions which are not required in order to
 determine the cryptographic parameters. [Section 6.3.3]

 Certificate
 the server certificate. This message will be omitted if the
 server is not authenticating via a certificates. [Section 6.3.4]

 CertificateRequest
 if certificate-based client authentication is desired, the desired
 parameters for that certificate. This message will be omitted if
 client authentication is not desired. [[OPEN ISSUE: See
 https://github .com/tlswg/tls13-spec/issues/184]]. [Section 6.3.5]

 CertificateVerify
 a signature over the entire handshake using the public key in the
 Certificate message. This message will be omitted if the server
 is not authenticating via a certificate. [Section 6.3.7]

 Finished
 a MAC over the entire handshake computed using the Static Secret.
 This message provides key confirmation and In some modes (see
 Section 6.2.2) it also authenticates the handshake using the the
 Static Secret. [Section 6.3.8]

 Upon receiving the server’s messages, the client responds with his
 final flight of messages:

 Certificate
 the client’s certificate. This message will be omitted if the
 client is not authenticating via a certificates. [Section 6.3.9]

 CertificateVerify
 a signature over the entire handshake using the public key in the
 Certificate message. This message will be omitted if the client
 is not authenticating via a certificate. [Section 6.3.10]

 Finished
 a MAC over the entire handshake computed using the Static Secret
 and providing key confirmation. [Section 6.3.8]

 At this point, the handshake is complete, and the client and server
 may exchange application layer data. Application data MUST NOT be
 sent prior to sending the Finished message. If client authentication

Rescorla Expires January 9, 2016 [Page 31]

https://github/

Internet-Draft TLS July 2015

 is requested, the server MUST NOT send application data before it
 receives the client’s Finished.

 [[TODO: Move this elsewhere? Note that higher layers should not be
 overly reliant on whether TLS always negotiates the strongest
 possible connection between two peers. There are a number of ways in
 which a man-in-the-middle attacker can attempt to make two entities
 drop down to the least secure method they support. The protocol has
 been designed to minimize this risk, but there are still attacks
 available. For example, an attacker could block access to the port a
 secure service runs on or attempt to get the peers to negotiate an
 unauthenticated connection. The fundamental rule is that higher
 levels must be cognizant of what their security requirements are and
 never transmit information over a channel less secure than what they
 require. The TLS protocol is secure in that any cipher suite offers
 its promised level of security: if you negotiate AES-GCM [GCM] with a
 255-bit ECDHE key exchange with a host whose certificate chain you
 have verified, you can expect that to be reasonably "secure" against
 algorithmic attacks, at least in the year 2015.]]

6.2.1 . Incorrect DHE Share

 If the client has not provided an appropriate ClientKeyShare (e.g. it
 includes only DHE or ECDHE groups unacceptable or unsupported by the
 server), the server corrects the mismatch with a HelloRetryRequest
 and the client will need to restart the handshake with an appropriate
 ClientKeyShare, as shown in Figure 2:

Rescorla Expires January 9, 2016 [Page 32]

Internet-Draft TLS July 2015

 Client Server

 ClientHello
 + ClientKeyShare -------->
 <-------- HelloRetryRequest

 ClientHello
 + ClientKeyShare -------->
 ServerHello
 ServerKeyShare
 {EncryptedExtensions*}
 {ServerConfiguration*}
 {Certificate*}
 {CertificateRequest*}
 {CertificateVerify*}
 <-------- {Finished}
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 2: Message flow for a full handshake with mismatched
 parameters

 [[OPEN ISSUE: Should we restart the handshake hash?
 https://github.com/tlswg/tls13-spec/issues/104 .]] [[OPEN ISSUE: We
 need to make sure that this flow doesn’t introduce downgrade issues.
 Potential options include continuing the handshake hashes (as long as
 clients don’t change their opinion of the server’s capabilities with
 aborted handshakes) and requiring the client to send the same
 ClientHello (as is currently done) and then checking you get the same
 negotiated parameters.]]

 If no common cryptographic parameters can be negotiated, the server
 will send a fatal alert.

 TLS also allows several optimized variants of the basic handshake, as
 described below.

6.2.2 . Cached Server Configuration

 During an initial handshake, the server can provide a
 ServerConfiguration message containing a long-term (EC)DH share. On
 future connections, the client can indicate to the server that it
 knows the server’s configuration and if that configuration is valid
 the server can omit both the Certificate or CertificateVerify message
 (provided that a new configuration is not supplied in this
 handshake).

Rescorla Expires January 9, 2016 [Page 33]

https://github.com/tlswg/tls13-spec/issues/104

Internet-Draft TLS July 2015

 When a known configuration is used, the server’s long-term DHE key is
 combined with the client’s ClientKeyShare to produce SS. ES is
 computed as above. This optimization allows the server to amortize
 the transmission of these messages and the server’s signature over
 multiple handshakes, thus reducing the server’s computational cost
 for cipher suites where signatures are slower than key agreement,
 principally RSA signatures paired with ECDHE.

6.2.3 . Zero-RTT Exchange

 When a cached ServerConfiguration is used, the client can also send
 application data as well as its Certificate and CertificateVerify (if
 client authentication is requested) on its first flight, thus
 reducing handshake latency, as shown below.

 Client Server

 ClientHello
 + ClientKeyShare
 (Certificate*)
 (CertificateVerify*)
 (Application Data) -------->
 ServerHello
 ServerKeyShare
 <-------- {Finished}
 {Finished} -------->

 [Application Data] <-------> [Application Data]

() Indicates messages protected using keys derived from the static secret.

 Figure 3: Message flow for a zero round trip handshake

 Note: because sequence numbers continue to increment between the
 initial (early) application data and the application data sent after
 the handshake has complete, an attacker cannot remove early
 application data messages.

 IMPORTANT NOTE: The security properties for 0-RTT data (regardless of
 the cipher suite) are weaker than those for other kinds of TLS data.
 Specifically.

 1. This data is not forward secure, because it is encrypted solely
 with the server’s semi-static (EC)DH share.

 2. There are no guarantees of non-replay between connections.
 Unless the server takes special measures outside those provided
 by TLS (See Section 6.3.1.5.5.1), the server has no guarantee

Rescorla Expires January 9, 2016 [Page 34]

Internet-Draft TLS July 2015

 that the same 0-RTT data was not transmitted on multiple 0-RTT
 connections. This is especially relevant if the data is
 authenticated either with TLS client authentication or inside the
 application layer protocol. However, 0-RTT data cannot be
 duplicated within a connection (i.e., the server will not process
 the same data twice for the same connection) and also cannot be
 sent as if it were ordinary TLS data.

 3. If the server key is compromised, and client authentication is
 used, then the attacker can impersonate the client to the server
 (as it knows the traffic key).

6.2.4 . Resumption and PSK

 Finally, TLS provides a pre-shared key (PSK) mode which allows a
 client and server who share an existing secret (e.g., a key
 established out of band) to establish a connection authenticated by
 that key. PSKs can also be established in a previous session and
 then reused ("session resumption"). Once a handshake has completed,
 the server can send the client a PSK identity which corresponds to a
 key derived from the initial handshake (See Section 6.3.11). The
 client can then use that PSK identity in future handshakes to
 negotiate use of the PSK; if the server accepts it, then the security
 context of the original connection is tied to the new connection. In
 TLS 1.2 and below, this functionality was provided by "session
 resumption" and "session tickets" [RFC5077]. Both mechanisms are
 obsoleted in TLS 1.3.

 PSK ciphersuites can either use PSK in combination with an (EC)DHE
 exchange in order to provide forward secrecy in combination with
 shared keys, or can use PSKs alone, at the cost of losing forward
 secrecy.

 Figure 4 shows a pair of handshakes in which the first establishes a
 PSK and the second uses it:

Rescorla Expires January 9, 2016 [Page 35]

https://tools.ietf.org/pdf/rfc5077

Internet-Draft TLS July 2015

 Client Server

 Initial Handshake:

 ClientHello
 + ClientKeyShare -------->
 ServerHello
 ServerKeyShare
 {EncryptedExtensions}
 {ServerConfiguration*}
 {Certificate*}
 {CertificateRequest*}
 {CertificateVerify*}
 <-------- {Finished}
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 <-------- [NewSessionTicket]
 [Application Data] <-------> [Application Data]

 Subsequent Handshake:
 ClientHello
 + ClientKeyShare,
 PreSharedKeyExtension -------->
 ServerHello
 +PreSharedKeyExtension
 <-------- {Finished}
 {Certificate*}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 4: Message flow for resumption and PSK

 Note that the client supplies a ClientKeyShare to the server as well,
 which allows the server to decline resumption and fall back to a full
 handshake. However, because the server is authenticating via a PSK,
 it does not send a Certificate or a CertificateVerify. PSK-based
 resumption cannot be used to provide a new ServerConfiguration.

 The contents and significance of each message will be presented in
 detail in the following sections.

6.3 . Handshake Protocol

 The TLS Handshake Protocol is one of the defined higher-level clients
 of the TLS Record Protocol. This protocol is used to negotiate the
 secure attributes of a session. Handshake messages are supplied to

Rescorla Expires January 9, 2016 [Page 36]

Internet-Draft TLS July 2015

 the TLS record layer, where they are encapsulated within one or more
 TLSPlaintext or TLSCiphertext structures, which are processed and
 transmitted as specified by the current active session state.

 enum {
 reserved(0), client_hello(1), server_hello(2),
 session_ticket(4), hello_retry_request(6),
 server_key_share(7), certificate(11), reserved(12),
 certificate_request(13), server_configuration(14),
 certificate_verify(15), reserved(16), finished(20), (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_retry_request: HelloRetryRequest;
 case server_key_share: ServerKeyShare;
 case server_configuration:ServerConfiguration;
 case certificate: Certificate;
 case certificate_request: CertificateRequest;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case session_ticket: NewSessionTicket;
 } body;
 } Handshake;

 The handshake protocol messages are presented below in the order they
 MUST be sent; sending handshake messages in an unexpected order
 results in a fatal error. Unneeded handshake messages can be
 omitted, however.

 New handshake message types are assigned by IANA as described in
 Section 11 .

6.3.1 . Hello Messages

 The hello phase messages are used to exchange security enhancement
 capabilities between the client and server. When a new session
 begins, the record layer’s connection state AEAD algorithm is
 initialized to NULL_NULL.

Rescorla Expires January 9, 2016 [Page 37]

Internet-Draft TLS July 2015

6.3.1.1 . Client Hello

 When this message will be sent:

 When a client first connects to a server, it is required to send
 the ClientHello as its first message. The client will also send a
 ClientHello when the server has responded to its ClientHello with
 a ServerHello that selects cryptographic parameters that don’t
 match the client’s ClientKeyShare. In that case, the client MUST
 send the same ClientHello (without modification) except including
 a new ClientKeyShare. [[OPEN ISSUE: New random values? See:
 https://github .com/tlswg/tls13-spec/issues/185]] If a server
 receives a ClientHello at any other time, it MUST send a fatal
 "no_renegotiation" alert.

 Structure of this message:

 The ClientHello message includes a random structure, which is used
 later in the protocol.

 struct {
 opaque random_bytes[32];
 } Random;

 random_bytes
 32 bytes generated by a secure random number generator.

 Note: Versions of TLS prior to TLS 1.3 used the top 32 bits of the
 Random value to encode the time since the UNIX epoch.

 The cipher suite list, passed from the client to the server in the
 ClientHello message, contains the combinations of cryptographic
 algorithms supported by the client in order of the client’s
 preference (favorite choice first). Each cipher suite defines a key
 exchange algorithm, a record protection algorithm (including secret
 key length) and a hash to be used with HKDF. The server will select
 a cipher suite or, if no acceptable choices are presented, return a
 "handshake_failure" alert and close the connection. If the list
 contains cipher suites the server does not recognize, support, or
 wish to use, the server MUST ignore those cipher suites, and process
 the remaining ones as usual.

Rescorla Expires January 9, 2016 [Page 38]

https://github/

Internet-Draft TLS July 2015

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 enum { null(0), (255) } CompressionMethod;

 struct {
 ProtocolVersion client_version = { 3, 4 }; /* TLS v1.3 */
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ClientHello;

 TLS allows extensions to follow the compression_methods field in an
 extensions block. The presence of extensions can be detected by
 determining whether there are bytes following the compression_methods
 at the end of the ClientHello. Note that this method of detecting
 optional data differs from the normal TLS method of having a
 variable-length field, but it is used for compatibility with TLS
 before extensions were defined.

 client_version
 The version of the TLS protocol by which the client wishes to
 communicate during this session. This SHOULD be the latest
 (highest valued) version supported by the client. For this
 version of the specification, the version will be 3.4. (See
 Appendix D for details about backward compatibility.)

 random
 A client-generated random structure.

 session_id
 Versions of TLS prior to TLS 1.3 supported a session resumption
 feature which has been merged with Pre-Shared Keys in this version
 (see Section 6.2.4). This field MUST be ignored by a server
 negotiating TLS 1.3 and should be set as a zero length vector
 (i.e., a single zero byte length field) by clients which do not
 have a cached session_id set by a pre-TLS 1.3 server.

 cipher_suites
 This is a list of the cryptographic options supported by the
 client, with the client’s first preference first. Values are
 defined in Appendix A.4 .

Rescorla Expires January 9, 2016 [Page 39]

Internet-Draft TLS July 2015

 compression_methods
 Versions of TLS before 1.3 supported compression and the list of
 compression methods was supplied in this field. For any TLS 1.3
 ClientHello, this field MUST contain only the "null" compression
 method with the code point of 0. If a TLS 1.3 ClientHello is
 received with any other value in this field, the server MUST
 generate a fatal "illegal_parameter" alert. Note that TLS 1.3
 servers may receive TLS 1.2 or prior ClientHellos which contain
 other compression methods and MUST follow the procedures for the
 appropriate prior version of TLS.

 extensions
 Clients MAY request extended functionality from servers by sending
 data in the extensions field. The actual "Extension" format is
 defined in Section 6.3.1.4 .

 In the event that a client requests additional functionality using
 extensions, and this functionality is not supplied by the server, the
 client MAY abort the handshake. A server MUST accept ClientHello
 messages both with and without the extensions field, and (as for all
 other messages) it MUST check that the amount of data in the message
 precisely matches one of these formats; if not, then it MUST send a
 fatal "decode_error" alert.

 After sending the ClientHello message, the client waits for a
 ServerHello or HelloRetryRequest message.

6.3.1.2 . Server Hello

 When this message will be sent:

 The server will send this message in response to a ClientHello
 message when it was able to find an acceptable set of algorithms
 and the client’s ClientKeyShare extension was acceptable. If the
 client proposed groups are not acceptable by the server, it will
 respond with an "insufficient_security" fatal alert.

 Structure of this message:

Rescorla Expires January 9, 2016 [Page 40]

Internet-Draft TLS July 2015

 struct {
 ProtocolVersion server_version;
 Random random;
 uint8 session_id_len; // Must be 0.
 CipherSuite cipher_suite;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ServerHello;

 The presence of extensions can be detected by determining whether
 there are bytes following the cipher_suite field at the end of the
 ServerHello.

 server_version
 This field will contain the lower of that suggested by the client
 in the ClientHello and the highest supported by the server. For
 this version of the specification, the version is 3.4. (See
 Appendix D for details about backward compatibility.)

 random
 This structure is generated by the server and MUST be generated
 independently of the ClientHello.random.

 session_id_len
 A single 0 value for backward compatible formatting. [[OPEN
 ISSUE: Should we remove?]]

 cipher_suite
 The single cipher suite selected by the server from the list in
 ClientHello.cipher_suites. For resumed sessions, this field is
 the value from the state of the session being resumed. [[TODO:
 interaction with PSK.]]

 extensions
 A list of extensions. Note that only extensions offered by the
 client can appear in the server’s list. In TLS 1.3 as opposed to
 previous versions of TLS, the server’s extensions are split
 between the ServerHello and the EncryptedExtensions Section 6.3.3
 message. The ServerHello MUST only include extensions which are
 required to establish the cryptographic context.

Rescorla Expires January 9, 2016 [Page 41]

Internet-Draft TLS July 2015

6.3.1.3 . Hello Retry Request

 When this message will be sent:

 The server will send this message in response to a ClientHello
 message when it was able to find an acceptable set of algorithms
 and groups that are mutually supported, but the client’s
 ClientKeyShare did not contain an acceptable offer. If it cannot
 find such a match, it will respond with a "handshake_failure"
 alert.

 Structure of this message:

 struct {
 ProtocolVersion server_version;
 CipherSuite cipher_suite;
 NamedGroup selected_group;
 Extension extensions<0..2^16-1>;
 } HelloRetryRequest;

 [[OPEN ISSUE: Merge in DTLS Cookies?]]

 selected_group
 The group which the client MUST use for its new ClientHello.

 The "server_version", "cipher_suite" and "extensions" fields have the
 same meanings as their corresponding values in the ServerHello. The
 server SHOULD send only the extensions necessary for the client to
 generate a correct ClientHello pair.

 Upon receipt of a HelloRetryRequest, the client MUST first verify
 that the "selected_group" field does not identify a group which was
 not in the original ClientHello. If it was present, then the client
 MUST abort the handshake with a fatal "handshake_failure" alert.
 Clients SHOULD also abort with "handshake_failure" in response to any
 second HelloRetryRequest which was sent in the same connection (i.e.,
 where the ClientHello was itself in response to a HelloRetryRequest).

 Otherwise, the client MUST send a ClientHello with a new
 ClientKeyShare extension to the server. The ClientKeyShare MUST
 append a new ClientKeyShareOffer which is consistent with the
 "selected_group" field to the groups in the original ClientKeyShare.

 Upon re-sending the ClientHello and receiving the server’s
 ServerHello/ServerKeyShare, the client MUST verify that the selected
 CipherSuite and NamedGroup match that supplied in the
 HelloRetryRequest.

Rescorla Expires January 9, 2016 [Page 42]

Internet-Draft TLS July 2015

6.3.1.4 . Hello Extensions

 The extension format is:

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 signature_algorithms(13),
 early_data(TBD),
 supported_groups(TBD),
 known_configuration(TBD),
 pre_shared_key(TBD)
 client_key_shares(TBD)
 (65535)
 } ExtensionType;

 Here:

 - "extension_type" identifies the particular extension type.

 - "extension_data" contains information specific to the particular
 extension type.

 The initial set of extensions is defined in [RFC6066]. The list of
 extension types is maintained by IANA as described in Section 11 .

 An extension type MUST NOT appear in the ServerHello or
 HelloRetryRequest unless the same extension type appeared in the
 corresponding ClientHello. If a client receives an extension type in
 ServerHello or HelloRetryRequest that it did not request in the
 associated ClientHello, it MUST abort the handshake with an
 "unsupported_extension" fatal alert.

 Nonetheless, "server-oriented" extensions may be provided in the
 future within this framework. Such an extension (say, of type x)
 would require the client to first send an extension of type x in a
 ClientHello with empty extension_data to indicate that it supports
 the extension type. In this case, the client is offering the
 capability to understand the extension type, and the server is taking
 the client up on its offer.

 When multiple extensions of different types are present in the
 ClientHello or ServerHello messages, the extensions MAY appear in any
 order. There MUST NOT be more than one extension of the same type.

Rescorla Expires January 9, 2016 [Page 43]

https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS July 2015

 Finally, note that extensions can be sent both when starting a new
 session and when requesting session resumption or 0-RTT mode.
 Indeed, a client that requests session resumption does not in general
 know whether the server will accept this request, and therefore it
 SHOULD send the same extensions as it would send if it were not
 attempting resumption.

 In general, the specification of each extension type needs to
 describe the effect of the extension both during full handshake and
 session resumption. Most current TLS extensions are relevant only
 when a session is initiated: when an older session is resumed, the
 server does not process these extensions in ClientHello, and does not
 include them in ServerHello. However, some extensions may specify
 different behavior during session resumption. [[TODO: update this
 and the previous paragraph to cover PSK-based resumption.]]

 There are subtle (and not so subtle) interactions that may occur in
 this protocol between new features and existing features which may
 result in a significant reduction in overall security. The following
 considerations should be taken into account when designing new
 extensions:

 - Some cases where a server does not agree to an extension are error
 conditions, and some are simply refusals to support particular
 features. In general, error alerts should be used for the former,
 and a field in the server extension response for the latter.

 - Extensions should, as far as possible, be designed to prevent any
 attack that forces use (or non-use) of a particular feature by
 manipulation of handshake messages. This principle should be
 followed regardless of whether the feature is believed to cause a
 security problem. Often the fact that the extension fields are
 included in the inputs to the Finished message hashes will be
 sufficient, but extreme care is needed when the extension changes
 the meaning of messages sent in the handshake phase. Designers
 and implementors should be aware of the fact that until the
 handshake has been authenticated, active attackers can modify
 messages and insert, remove, or replace extensions.

 - It would be technically possible to use extensions to change major
 aspects of the design of TLS; for example the design of cipher
 suite negotiation. This is not recommended; it would be more
 appropriate to define a new version of TLS -- particularly since
 the TLS handshake algorithms have specific protection against
 version rollback attacks based on the version number, and the
 possibility of version rollback should be a significant
 consideration in any major design change.

Rescorla Expires January 9, 2016 [Page 44]

Internet-Draft TLS July 2015

6.3.1.4.1 . Signature Algorithms

 The client uses the "signature_algorithms" extension to indicate to
 the server which signature/hash algorithm pairs may be used in
 digital signatures. The "extension_data" field of this extension
 contains a "supported_signature_algorithms" value.

 enum {
 none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
 sha512(6), (255)
 } HashAlgorithm;

 enum { anonymous(0), rsa(1), dsa(2), ecdsa(3), (255) }
 SignatureAlgorithm;

 struct {
 HashAlgorithm hash;
 SignatureAlgorithm signature;
 } SignatureAndHashAlgorithm;

 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;

 Each SignatureAndHashAlgorithm value lists a single hash/signature
 pair that the client is willing to verify. The values are indicated
 in descending order of preference.

 Note: Because not all signature algorithms and hash algorithms may be
 accepted by an implementation (e.g., DSA with SHA-1, but not SHA-
 256), algorithms here are listed in pairs.

 hash
 This field indicates the hash algorithm which may be used. The
 values indicate support for unhashed data, MD5 [RFC1321], SHA-1,
 SHA-224, SHA-256, SHA-384, and SHA-512 [SHS], respectively. The
 "none" value is provided for future extensibility, in case of a
 signature algorithm which does not require hashing before signing.

 signature
 This field indicates the signature algorithm that may be used.
 The values indicate anonymous signatures, RSASSA-PKCS1-v1_5
 [RFC3447] and DSA [DSS], and ECDSA [ECDSA], respectively. The
 "anonymous" value is meaningless in this context but used in
 Section 6.3.2 . It MUST NOT appear in this extension.

 The semantics of this extension are somewhat complicated because the
 cipher suite indicates permissible signature algorithms but not hash

Rescorla Expires January 9, 2016 [Page 45]

https://tools.ietf.org/pdf/rfc1321
https://tools.ietf.org/pdf/rfc3447

Internet-Draft TLS July 2015

 algorithms. Section 6.3.4 and Section 6.3.2 describe the appropriate
 rules.

 If the client supports only the default hash and signature algorithms
 (listed in this section), it MAY omit the signature_algorithms
 extension. If the client does not support the default algorithms, or
 supports other hash and signature algorithms (and it is willing to
 use them for verifying messages sent by the server, i.e., server
 certificates and server key share), it MUST send the
 signature_algorithms extension, listing the algorithms it is willing
 to accept.

 If the client does not send the signature_algorithms extension, the
 server MUST do the following:

 - If the negotiated key exchange algorithm is one of (DHE_RSA,
 ECDHE_RSA), behave as if client had sent the value {sha1,rsa}.

 - If the negotiated key exchange algorithm is DHE_DSS, behave as if
 the client had sent the value {sha1,dsa}.

 - If the negotiated key exchange algorithm is ECDHE_ECDSA, behave as
 if the client had sent value {sha1,ecdsa}.

 Note: This extension is not meaningful for TLS versions prior to 1.2.
 Clients MUST NOT offer it if they are offering prior versions.
 However, even if clients do offer it, the rules specified in
 [RFC6066] require servers to ignore extensions they do not
 understand.

 Servers MUST NOT send this extension. TLS servers MUST support
 receiving this extension.

6.3.1.4.2 . Negotiated Groups

 When sent by the client, the "supported_groups" extension indicates
 the named groups which the client supports, ordered from most
 preferred to least preferred.

 Note: In versions of TLS prior to TLS 1.3, this extension was named
 "elliptic curves" and only contained elliptic curve groups. See
 [RFC4492] and [I-D.ietf-tls-negotiated-ff-dhe].

 The "extension_data" field of this extension SHALL contain a
 "NamedGroupList" value:

Rescorla Expires January 9, 2016 [Page 46]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2015

 enum {
 // Elliptic Curve Groups.
 sect163k1 (1), sect163r1 (2), sect163r2 (3),
 sect193r1 (4), sect193r2 (5), sect233k1 (6),
 sect233r1 (7), sect239k1 (8), sect283k1 (9),
 sect283r1 (10), sect409k1 (11), sect409r1 (12),
 sect571k1 (13), sect571r1 (14), secp160k1 (15),
 secp160r1 (16), secp160r2 (17), secp192k1 (18),
 secp192r1 (19), secp224k1 (20), secp224r1 (21),
 secp256k1 (22), secp256r1 (23), secp384r1 (24),
 secp521r1 (25),

 // Finite Field Groups.
 ffdhe2048 (256), ffdhe3072 (257), ffdhe4096 (258),
 ffdhe6144 (259), ffdhe8192 (260),
 ffdhe_private_use (0x01FC..0x01FF),

 // Reserved Code Points.
 reserved (0xFE00..0xFEFF),
 reserved(0xFF01),
 reserved(0xFF02),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<1..2^16-1>;
 } NamedGroupList;

 sect163k1, etc
 Indicates support of the corresponding named curve The named
 curves defined here are those specified in SEC 2 [13]. Note that
 many of these curves are also recommended in ANSI X9.62 [X962] and
 FIPS 186-2 [DSS]. Values 0xFE00 through 0xFEFF are reserved for
 private use. Values 0xFF01 and 0xFF02 were used in previous
 versions of TLS but MUST NOT be offered by TLS 1.3
 implementations. [[OPEN ISSUE: Triage curve list.]]

 ffdhe2432, etc
 Indicates support of the corresponding finite field group, defined
 in [I-D.ietf-tls-negotiated-ff-dhe]

 Items in named_curve_list are ordered according to the client’s
 preferences (favorite choice first).

 As an example, a client that only supports secp192r1 (aka NIST P-192;
 value 19 = 0x0013) and secp224r1 (aka NIST P-224; value 21 = 0x0015)
 and prefers to use secp192r1 would include a TLS extension consisting

Rescorla Expires January 9, 2016 [Page 47]

Internet-Draft TLS July 2015

 of the following octets. Note that the first two octets indicate the
 extension type (Supported Group Extension):

 00 0A 00 06 00 04 00 13 00 15

 The client MUST supply a "named_groups" extension containing at least
 one group for each key exchange algorithm (currently DHE and ECDHE)
 for which it offers a cipher suite. If the client does not supply a
 "named_groups" extension with a compatible group, the server MUST NOT
 negotiate a cipher suite of the relevant type. For instance, if a
 client supplies only ECDHE groups, the server MUST NOT negotiate
 finite field Diffie-Hellman. If no acceptable group can be selected
 across all cipher suites, then the server MUST generate a fatal
 "handshake_failure" alert.

 NOTE: A server participating in an ECDHE-ECDSA key exchange may use
 different curves for (i) the ECDSA key in its certificate, and (ii)
 the ephemeral ECDH key in the ServerKeyExchange message. The server
 must consider the supported groups in both cases.

 [[TODO: IANA Considerations.]]

6.3.1.5 . Client Key Share

 The client_key_share extension MUST be provided by the client if it
 offers any cipher suites that involve non-PSK (currently DHE or
 ECDHE) key exchange. It contains the client’s cryptographic
 parameters for zero or more key establishment methods. [[OPEN ISSUE:
 Would it be better to omit it if it’s empty?.
 https://github .com/tlswg/tls13-spec/issues/190]]

 Meaning of this message:

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } ClientKeyShareOffer;

 group
 The named group for the key share offer. This identifies the
 specific key exchange method that the ClientKeyShareOffer
 describes. Finite Field Diffie-Hellman [DH] parameters are
 described in Section 6.3.1.5.1 ; Elliptic Curve Diffie-Hellman
 parameters are described in Section 6.3.1.5.2 .

 key_exchange

Rescorla Expires January 9, 2016 [Page 48]

https://github/

Internet-Draft TLS July 2015

 Key exchange information. The contents of this field are
 determined by the value of NamedGroup entry and its corresponding
 definition.

 struct {
 ClientKeyShareOffer offers<0..2^16-1>;
 } ClientKeyShare;

 offers
 A list of ClientKeyShareOffer values in descending order of client
 preference.

 Clients may offer an arbitrary number of ClientKeyShareOffer values,
 each representing a single set of key agreement parameters; for
 instance a client might offer shares for several elliptic curves or
 multiple integer DH groups. The shares for each ClientKeyShareOffer
 MUST by generated independently. Clients MUST NOT offer multiple
 ClientKeyShareOffers for the same parameters. It is explicitly
 permitted to send an empty client_key_share extension as this is used
 to elicit the server’s parameters if the client has no useful
 information. [TODO: Recommendation about what the client offers.
 Presumably which integer DH groups and which curves.]

6.3.1.5.1 . Diffie-Hellman Parameters

 Diffie-Hellman [DH] parameters for both clients and servers are
 encoded in the opaque key_exchange field of the ClientKeyShareOffer
 or ServerKeyShare structures. The opaque value contains the Diffie-
 Hellman public value (dh_Y = g^X mod p), encoded as a big-endian
 integer.

 opaque dh_Y<1..2^16-1>;

6.3.1.5.2 . ECDHE Parameters

 ECDHE parameters for both clients and servers are encoded in the
 opaque key_exchange field of the ClientKeyShareOffer or
 ServerKeyShare structures. The opaque value conveys the Elliptic
 Curve Diffie-Hellman public value (ecdh_Y) represented as a byte
 string ECPoint.point.

 opaque point <1..2^8-1>;

 point
 This is the byte string representation of an elliptic curve point
 following the conversion routine in Section 4.3.6 of ANSI X9.62
 [X962].

Rescorla Expires January 9, 2016 [Page 49]

Internet-Draft TLS July 2015

 Although X9.62 supports multiple point formats, any given curve MUST
 specify only a single point format. All curves currently specified
 in this document MUST only be used with the uncompressed point
 format.

 Note: Versions of TLS prior to 1.3 permitted point negotiation; TLS
 1.3 removes this feature in favor of a single point format for each
 curve.

 [[OPEN ISSUE: We will need to adjust the compressed/uncompressed
 point issue if we have new curves that don’t need point compression.
 This depends on the CFRG’s recommendations. The expectation is that
 future curves will come with defined point formats and that existing
 curves conform to X9.62.]]

6.3.1.5.3 . Known Configuration Extension

 The known_configuration extension allows the client to indicate that
 it wishes to reuse the server’s known configuration and semi-static
 (EC)DHE key (see Section 6.3.6 for how to establish these
 configurations. This extension allows the omission of the server
 certificate and signature, with three potential benefits:

 - Shortening the handshake because the certificate may be large.

 - Reducing cryptographic burden on the server if the server has an
 RSA certificate, as well as on the client if the server has an
 ECDSA certificate.

 - Allowing the client and server to do a 0-RTT exchange (See
 Section 6.2.3)

 The extension is defined as:

 struct {
 select (Role) {
 case client:
 opaque identifier<0..2^16-1>;

 case server:
 struct {};
 }
 } KnownConfigurationExtension

 identifier
 An opaque label for the configuration in question.

Rescorla Expires January 9, 2016 [Page 50]

Internet-Draft TLS July 2015

 A client which wishes to reuse a known configuration MAY supply a
 single KnownConfigurationExtension value which indicates the known
 configuration it desires to use. It is a fatal error to supply more
 than one extension. A server which wishes to use the key replies
 with an empty extension (i.e., with a length field of 0) in its
 ServerHello.

 When the client and server mutually agree upon a known configuration
 via this mechanism, then the Static Secret (SS) is computed based on
 the server’s (EC)DHE key from the identified configuration and the
 client’s key found in the ClientKeyShare. If no key from an
 acceptable group is in the ClientKeyShare, the server MUST ignore the
 known_configuration extension. When this mechanism is used, the
 server MUST NOT send a Certificate/CertificateVerify message unless
 the ServerConfiguration message is also sent.

 When the known_configuration data extension is in use, the handshake
 hash is extended to include the server’s configuration data and
 certificate (see Section 7.2.1) so as to tightly bind them together.

6.3.1.5.4 . Pre-Shared Key Extension

 The pre_shared_key extension is used to indicate the identity of the
 pre-shared key to be used with a given handshake in association with
 a PSK or (EC)DHE-PSK cipher suite (see [RFC4279] for background).

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<0..2^16-1>;

 case server:
 psk_identity identity;

 } PreSharedKeyExtension;

 identifier
 An opaque label for the pre-shared key.

 When the client offers a PSK cipher suite, it MUST also supply a
 PreSharedKeyExtension to indicate the PSK(s) to be used. If no such
 extension is present, the server MUST NOT negotiate a PSK cipher
 suite. If no suitable identity is present, the server MUST NOT
 negotiate a PSK cipher suite.

Rescorla Expires January 9, 2016 [Page 51]

https://tools.ietf.org/pdf/rfc4279

Internet-Draft TLS July 2015

 If the server selects a PSK cipher suite, it MUST send a
 PreSharedKeyExtension with the identity that it selected. The client
 MUST verify that the server has selected one of the identities that
 the client supplied. If any other identity is returned, the client
 MUST generate a fatal "handshake_failure" alert.

6.3.1.5.5 . Early Data Indication

 In cases where TLS clients have previously interacted with the server
 and the server has supplied a known configuration, the client can
 send application data and its Certificate/CertificateVerify messages
 (if client authentication is required). If the client opts to do so,
 it MUST supply an Early Data Indication extension. This technique
 MUST only be used along with the "known_configuration" extension.

 enum { early_handshake(1), early_data(2),
 early_handshake_and_data(3), (255) } EarlyDataType;

 struct {
 select (Role) {
 case client:
 opaque context<0..255>;
 EarlyDataType type;
 case server:
 struct {};
 }
 } EarlyDataIndication;

 context
 An optional context value that can be used for anti-replay (see
 below).

 type
 The type of early data that is being sent. "early_handshake" means
 that only handshake data is being sent. "early_data" means that
 only data is being sent. "early_handshake_and_data" means that
 both are being sent.

 If TLS client authentication is being used, then either
 "early_handshake" or "early_handshake_and_data" MUST be indicated in
 order to send the client authentication data on the first flight. In
 either case, the client Certificate and CertificateVerify (assuming
 that the Certificate is non-empty) MUST be sent on the first flight A
 server which receives an initial flight with only "early_data" and
 which expects certificate-based client authentication MUST not accept
 early data.

Rescorla Expires January 9, 2016 [Page 52]

Internet-Draft TLS July 2015

 In order to allow servers to readily distinguish between messages
 sent in the first flight and in the second flight (in cases where the
 server does not accept the EarlyDataIndication extension), the client
 MUST send the handshake messages as content type "early_handshake".
 A server which does not accept the extension proceeds by skipping all
 records after the ClientHello and until the next client message of
 type "handshake". [[OPEN ISSUE: This relies on content types not
 being encrypted. If we had content types that were encrypted, this
 would basically require trial decryption.]]

 A server which receives an EarlyDataIndication extension can behave
 in one of two ways:

 - Ignore the extension and return no response. This indicates that
 the server has ignored any early data and an ordinary 1-RTT
 handshake is required.

 - Return an empty extension, indicating that it intends to process
 the early data. It is not possible for the server to accept only
 a subset of the early data messages.

 The server MUST first validate that the client’s
 "known_configuration" extension is valid and that the client has
 suppled a valid key share in the "client_key_shares" extension. If
 not, it MUST ignore the extension and discard the early handshake
 data and early data.

 [[TODO: How does the client behave if the indication is rejected.]]

 [[OPEN ISSUE: This just specifies the signaling for 0-RTT but not the
 the 0-RTT cryptographic transforms, including:

 - What is in the handshake hash (including potentially some
 speculative data from the server.)

 - What is signed in the client’s CertificateVerify

 - Whether we really want the Finished to not include the server’s
 data at all.

 What’s here now needs a lot of cleanup before it is clear and
 correct.]]

 [[TODO: We should really allow early_data to be used with PSKs. In
 order to make this work, we need to either:

Rescorla Expires January 9, 2016 [Page 53]

Internet-Draft TLS July 2015

 (a) explicitly signal the entire cryptographic parameter set (b) tie
 it to the PSK identifier (as is presently done in the
 known_configuration extension).

 These two should match.]]

6.3.1.5.5.1 . Replay Properties

 As noted in Section 6.2.3 , TLS does not provide any inter-connection
 mechanism for replay protection for data sent by the client in the
 first flight. As a special case, implementations where the server
 configuration, is delivered out of band (as has been proposed for
 DTLS-SRTP [RFC5763]), MAY use a unique server configuration
 identifier for each connection, thus preventing replay.
 Implementations are responsible for ensuring uniqueness of the
 identifier in this case.

6.3.2 . Server Key Share

 When this message will be sent:

 This message will be sent immediately after the ServerHello
 message if the client has provided a ClientKeyShare extension
 which is compatible with the selected cipher suite and group
 parameters.

 Meaning of this message:

 This message conveys cryptographic information to allow the client
 to compute a shared secret secret: a Diffie-Hellman public key
 with which the client can complete a key exchange (with the result
 being the shared secret) or a public key for some other algorithm.

 Structure of this message:

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } ServerKeyShare;

 group
 The named group for the key share offer. This identifies the
 selected key exchange method from the ClientKeyShare
 (Section 6.3.1.5), identifying which value from the
 ClientKeyShareOffer the server has accepted as is responding to.

 key_exchange

Rescorla Expires January 9, 2016 [Page 54]

https://tools.ietf.org/pdf/rfc5763

Internet-Draft TLS July 2015

 Key exchange information. The contents of this field are
 determined by the value of NamedGroup entry and its corresponding
 definition.

6.3.3 . Encrypted Extensions

 When this message will be sent:

 If this message is sent, it MUST be sent immediately after the
 server’s ServerKeyShare. This is the first message that is
 encrypted under keys derived from ES.

 Meaning of this message:

 The EncryptedExtensions message simply contains any extensions
 which should be protected, i.e., any which are not needed to
 establish the cryptographic context. The same extension types
 MUST NOT appear in both the ServerHello and EncryptedExtensions.
 If the same extension appears in both locations, the client MUST
 rely only on the value in the EncryptedExtensions block. [[OPEN
 ISSUE: Should we just produce a canonical list of what goes where
 and have it be an error to have it in the wrong place? That seems
 simpler. Perhaps have a whitelist of which extensions can be
 unencrypted and everything else MUST be encrypted.]]

 Structure of this message:

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 extensions
 A list of extensions.

6.3.4 . Server Certificate

 When this message will be sent:

 The server MUST send a Certificate message whenever the agreed-
 upon key exchange method uses certificates for authentication
 (this includes all key exchange methods defined in this document
 except DH_anon and PSK), unless the KnownKeyExtension is used.
 This message will always immediately follow either the
 EncryptedExtensions message if one is sent or the ServerKeyShare
 message.

 Meaning of this message:

Rescorla Expires January 9, 2016 [Page 55]

Internet-Draft TLS July 2015

 This message conveys the server’s certificate chain to the client.

 The certificate MUST be appropriate for the negotiated cipher
 suite’s key exchange algorithm and any negotiated extensions.

 Structure of this message:

 opaque ASN1Cert<1..2^24-1>;

 struct {
 ASN1Cert certificate_list<0..2^24-1>;
 } Certificate;

 certificate_list
 This is a sequence (chain) of certificates. The sender’s
 certificate MUST come first in the list. Each following
 certificate MUST directly certify the one preceding it. Because
 certificate validation requires that root keys be distributed
 independently, the self-signed certificate that specifies the root
 certificate authority MAY be omitted from the chain, under the
 assumption that the remote end must already possess it in order to
 validate it in any case.

 The same message type and structure will be used for the client’s
 response to a certificate request message. Note that a client MAY
 send no certificates if it does not have an appropriate certificate
 to send in response to the server’s authentication request.

 Note: PKCS #7 [PKCS7] is not used as the format for the certificate
 vector because PKCS #6 [PKCS6] extended certificates are not used.
 Also, PKCS #7 defines a SET rather than a SEQUENCE, making the task
 of parsing the list more difficult.

 The following rules apply to the certificates sent by the server:

 - The certificate type MUST be X.509v3 [RFC5280], unless explicitly
 negotiated otherwise (e.g., [RFC5081]).

 - The end entity certificate’s public key (and associated
 restrictions) MUST be compatible with the selected key exchange
 algorithm.

Rescorla Expires January 9, 2016 [Page 56]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc5081

Internet-Draft TLS July 2015

 Key Exchange Alg. Certificate Key Type

 DHE_RSA RSA public key; the certificate MUST allow the
 ECDHE_RSA key to be used for signing (the
 digitalSignature bit MUST be set if the key
 usage extension is present) with the signature
 scheme and hash algorithm that will be employed
 in the server key exchange message.
 Note: ECDHE_RSA is defined in [RFC4492].

 DHE_DSS DSA public key; the certificate MUST allow the
 key to be used for signing with the hash
 algorithm that will be employed in the server
 key exchange message.

 ECDHE_ECDSA ECDSA-capable public key; the certificate MUST
 allow the key to be used for signing with the
 hash algorithm that will be employed in the
 server key exchange message. The public key
 MUST use a curve and point format supported by
 the client, as described in [RFC4492].

 - The "server_name" and "trusted_ca_keys" extensions [RFC6066] are
 used to guide certificate selection. As servers MAY require the
 presence of the server_name extension, clients SHOULD send this
 extension.

 If the client provided a "signature_algorithms" extension, then all
 certificates provided by the server MUST be signed by a hash/
 signature algorithm pair that appears in that extension. Note that
 this implies that a certificate containing a key for one signature
 algorithm MAY be signed using a different signature algorithm (for
 instance, an RSA key signed with a DSA key).

 If the server has multiple certificates, it chooses one of them based
 on the above-mentioned criteria (in addition to other criteria, such
 as transport layer endpoint, local configuration and preferences,
 etc.). If the server has a single certificate, it SHOULD attempt to
 validate that it meets these criteria.

 Note that there are certificates that use algorithms and/or algorithm
 combinations that cannot be currently used with TLS. For example, a
 certificate with RSASSA-PSS signature key (id-RSASSA-PSS OID in
 SubjectPublicKeyInfo) cannot be used because TLS defines no
 corresponding signature algorithm.

Rescorla Expires January 9, 2016 [Page 57]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS July 2015

 As cipher suites that specify new key exchange methods are specified
 for the TLS protocol, they will imply the certificate format and the
 required encoded keying information.

6.3.5 . Certificate Request

 When this message will be sent:

 A non-anonymous server can optionally request a certificate from
 the client, if appropriate for the selected cipher suite. This
 message, if sent, will immediately follow the server’s Certificate
 message).

 Structure of this message:

 enum {
 rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
 rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
 fortezza_dms_RESERVED(20), (255)
 } ClientCertificateType;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 } CertificateRequest;

 certificate_types
 A list of the types of certificate types that the client may
 offer.

 rsa_sign a certificate containing an RSA key
 dss_sign a certificate containing a DSA key
 rsa_fixed_dh a certificate containing a static DH key.
 dss_fixed_dh a certificate containing a static DH key

 supported_signature_algorithms
 A list of the hash/signature algorithm pairs that the server is
 able to verify, listed in descending order of preference.

 certificate_authorities
 A list of the distinguished names [X501] of acceptable
 certificate_authorities, represented in DER-encoded format. These
 distinguished names may specify a desired distinguished name for a
 root CA or for a subordinate CA; thus, this message can be used to

Rescorla Expires January 9, 2016 [Page 58]

Internet-Draft TLS July 2015

 describe known roots as well as a desired authorization space. If
 the certificate_authorities list is empty, then the client MAY
 send any certificate of the appropriate ClientCertificateType,
 unless there is some external arrangement to the contrary.

 The interaction of the certificate_types and
 supported_signature_algorithms fields is somewhat complicated.
 certificate_types has been present in TLS since SSL 3.0, but was
 somewhat underspecified. Much of its functionality is superseded by
 supported_signature_algorithms. The following rules apply:

 - Any certificates provided by the client MUST be signed using a
 hash/signature algorithm pair found in
 supported_signature_algorithms.

 - The end-entity certificate provided by the client MUST contain a
 key that is compatible with certificate_types. If the key is a
 signature key, it MUST be usable with some hash/signature
 algorithm pair in supported_signature_algorithms.

 - For historical reasons, the names of some client certificate types
 include the algorithm used to sign the certificate. For example,
 in earlier versions of TLS, rsa_fixed_dh meant a certificate
 signed with RSA and containing a static DH key. In TLS 1.2, this
 functionality has been obsoleted by the
 supported_signature_algorithms, and the certificate type no longer
 restricts the algorithm used to sign the certificate. For
 example, if the server sends dss_fixed_dh certificate type and
 {{sha1, dsa}, {sha1, rsa}} signature types, the client MAY reply
 with a certificate containing a static DH key, signed with RSA-
 SHA1.

 New ClientCertificateType values are assigned by IANA as described in
 Section 11 .

 Note: Values listed as RESERVED MUST NOT be used. They were used in
 SSL 3.0.

 Note: It is a fatal "handshake_failure" alert for an anonymous server
 to request client authentication.

6.3.6 . Server Configuration

 When this message will be sent:

 This message is used to provide a server configuration which the
 client can use in future to skip handshake negotiation and

Rescorla Expires January 9, 2016 [Page 59]

Internet-Draft TLS July 2015

 (optionally) to allow 0-RTT handshakes. The ServerConfiguration
 message is sent as the last message before the CertificateVerify.

 Structure of this Message:

 struct {
 opaque configuration_id<1..2^16-1>;
 uint32 expiration_date;
 NamedGroup group;
 opaque server_key<1..2^16-1>;
 Boolean early_data_allowed;
 } ServerConfiguration;

 configuration_id
 The configuration identifier to be used with the known
 configuration extension Section 6.3.1.5.3 .

 group
 The group for the long-term DH key that is being established for
 this configuration.

 expiration_date
 The last time when this configuration is expected to be valid (in
 seconds since the Unix epoch). Servers MUST NOT use any value
 more than 604800 seconds (7 days) in the future. Clients MUST not
 cache configurations for longer than 7 days, regardless of the
 expiration_date. [[OPEN ISSUE: Is this the right value? The idea
 is just to minimize exposure.]]

 server_key
 The long-term DH key that is being established for this
 configuration.

 early_data_allowed
 Whether the client may send data in its first flight (see
 Section 6.3.1.5.5).

 The semantics of this message are to establish a shared state between
 the client and server for use with the "known_configuration"
 extension with the key specified in key and with the handshake
 parameters negotiated by this handshake. [[OPEN ISSUE: Should this
 allow some sort of parameter negotiation?]]

 When the ServerConfiguration message is sent, the server MUST also
 send a Certificate message and a CertificateVerify message, even if
 the "known_configuration" extension was used for this handshake, thus
 requiring a signature over the configuration before it can be used by
 the client.

Rescorla Expires January 9, 2016 [Page 60]

Internet-Draft TLS July 2015

6.3.7 . Server Certificate Verify

 When this message will be sent:

 This message is used to provide explicit proof that the server
 possesses the private key corresponding to its certificate and
 also provides integrity for the handshake up to this point. This
 message is only sent when the server is authenticated via a
 certificate. When sent, it MUST be the last server handshake
 message prior to the Finished.

 Structure of this message:

 struct {
 digitally-signed struct {
 opaque handshake_hash[hash_length];
 }
 } CertificateVerify;

 Where session_hash is as described in {{the-handshake-hash} and
 includes the messages sent or received, starting at ClientHello
 and up to, but not including, this message, including the type and
 length fields of the handshake messages. This is a digest of the
 concatenation of all the Handshake structures (as defined in
 Section 6.3) exchanged thus far. The digest MUST be the Hash used
 as the basis for HKDF.

 The context string for the signature is "TLS 1.3, server
 CertificateVerify". A hash of the handshake messages is signed
 rather than the messages themselves because the digitally-signed
 format requires padding and context bytes at the beginning of the
 input. Thus, by signing a digest of the messages, an
 implementation need only maintain one running hash per hash type
 for CertificateVerify, Finished and other messages.

 If the client has offered the "signature_algorithms" extension,
 the signature algorithm and hash algorithm MUST be a pair listed
 in that extension. Note that there is a possibility for
 inconsistencies here. For instance, the client might offer
 DHE_DSS key exchange but omit any DSA pairs from its
 "signature_algorithms" extension. In order to negotiate
 correctly, the server MUST check any candidate cipher suites
 against the "signature_algorithms" extension before selecting
 them. This is somewhat inelegant but is a compromise designed to
 minimize changes to the original cipher suite design.

 In addition, the hash and signature algorithms MUST be compatible
 with the key in the server’s end-entity certificate. RSA keys MAY

Rescorla Expires January 9, 2016 [Page 61]

Internet-Draft TLS July 2015

 be used with any permitted hash algorithm, subject to restrictions
 in the certificate, if any.

 Because DSA signatures do not contain any secure indication of
 hash algorithm, there is a risk of hash substitution if multiple
 hashes may be used with any key. Currently, DSA [DSS] may only be
 used with SHA-1. Future revisions of DSS [DSS-3] are expected to
 allow the use of other digest algorithms with DSA, as well as
 guidance as to which digest algorithms should be used with each
 key size. In addition, future revisions of [RFC5280] may specify
 mechanisms for certificates to indicate which digest algorithms
 are to be used with DSA. [[TODO: Update this to deal with DSS-3
 and DSS-4. https://github .com/tlswg/tls13-spec/issues/59]]

6.3.8 . Server Finished

 When this message will be sent:

 The Server’s Finished message is the final message sent by the
 server and is essential for providing authentication of the server
 side of the handshake and computed keys.

 Meaning of this message:

 Recipients of Finished messages MUST verify that the contents are
 correct. Once a side has sent its Finished message and received
 and validated the Finished message from its peer, it may begin to
 send and receive application data over the connection. This data
 will be protected under keys derived from the ephemeral secret
 (see Section 7).

 Structure of this message:

 struct {
 opaque verify_data[verify_data_length];
 } Finished;

 The verify_data value is computed as follows:

 verify_data
 HMAC(finished_secret, finished_label + ’\0’ + handshake_hash)
 where HMAC uses the Hash algorithm for the handshake. See
 Section 7.2.1 for the definition of handshake_hash.

 finished_label
 For Finished messages sent by the client, the string "client
 finished". For Finished messages sent by the server, the string
 "server finished".

Rescorla Expires January 9, 2016 [Page 62]

https://tools.ietf.org/pdf/rfc5280
https://github/

Internet-Draft TLS July 2015

 In previous versions of TLS, the verify_data was always 12 octets
 long. In the current version of TLS, it is the size of the HMAC
 output for the Hash used for the handshake.

 Note: Alerts and any other record types are not handshake messages
 and are not included in the hash computations. Also, HelloRequest
 messages and the Finished message are omitted from handshake hashes.
 The input to the client and server Finished messages may not be the
 same because the server’s Finished does not include the client’s
 Certificate and CertificateVerify message.

6.3.9 . Client Certificate

 When this message will be sent:

 This message is the first handshake message the client can send
 after receiving the server’s Finished. This message is only sent
 if the server requests a certificate. If no suitable certificate
 is available, the client MUST send a certificate message
 containing no certificates. That is, the certificate_list
 structure has a length of zero. If the client does not send any
 certificates, the server MAY at its discretion either continue the
 handshake without client authentication, or respond with a fatal
 "handshake_failure" alert. Also, if some aspect of the
 certificate chain was unacceptable (e.g., it was not signed by a
 known, trusted CA), the server MAY at its discretion either
 continue the handshake (considering the client unauthenticated) or
 send a fatal alert.

 Client certificates are sent using the Certificate structure
 defined in Section 6.3.4 .

 Meaning of this message:

 This message conveys the client’s certificate chain to the server;
 the server will use it when verifying the CertificateVerify
 message (when the client authentication is based on signing). The
 certificate MUST be appropriate for the negotiated cipher suite’s
 key exchange algorithm, and any negotiated extensions.

 In particular:

 - The certificate type MUST be X.509v3 [RFC5280], unless explicitly
 negotiated otherwise (e.g., [RFC5081]).

 - The end-entity certificate’s public key (and associated
 restrictions) has to be compatible with the certificate types
 listed in CertificateRequest:

Rescorla Expires January 9, 2016 [Page 63]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc5081

Internet-Draft TLS July 2015

 Client Cert. Type Certificate Key Type

 rsa_sign RSA public key; the certificate MUST allow the
 key to be used for signing with the signature
 scheme and hash algorithm that will be
 employed in the certificate verify message.

 dss_sign DSA public key; the certificate MUST allow the
 key to be used for signing with the hash
 algorithm that will be employed in the
 certificate verify message.

 ecdsa_sign ECDSA-capable public key; the certificate MUST
 allow the key to be used for signing with the
 hash algorithm that will be employed in the
 certificate verify message; the public key
 MUST use a curve and point format supported by
 the server.

 rsa_fixed_dh Diffie-Hellman public key; MUST use the same
 dss_fixed_dh parameters as server’s key.

 rsa_fixed_ecdh ECDH-capable public key; MUST use the
 ecdsa_fixed_ecdh same curve as the server’s key, and MUST use a
 point format supported by the server.

 - If the certificate_authorities list in the certificate request
 message was non-empty, one of the certificates in the certificate
 chain SHOULD be issued by one of the listed CAs.

 - The certificates MUST be signed using an acceptable hash/
 signature algorithm pair, as described in Section 6.3.5 . Note
 that this relaxes the constraints on certificate-signing
 algorithms found in prior versions of TLS.

 Note that, as with the server certificate, there are certificates
 that use algorithms/algorithm combinations that cannot be currently
 used with TLS.

6.3.10 . Client Certificate Verify

 When this message will be sent:

 This message is used to provide explicit verification of a client
 certificate. This message is only sent following a client
 certificate that has signing capability (i.e., all certificates
 except those containing fixed Diffie-Hellman parameters). When
 sent, it MUST immediately follow the client’s Certificate message.

Rescorla Expires January 9, 2016 [Page 64]

Internet-Draft TLS July 2015

 The contents of the message are computed as described in
 Section 6.3.7 , except that the context string is "TLS 1.3, client
 CertificateVerify".

 The hash and signature algorithms used in the signature MUST be
 one of those present in the supported_signature_algorithms field
 of the CertificateRequest message. In addition, the hash and
 signature algorithms MUST be compatible with the key in the
 client’s end-entity certificate. RSA keys MAY be used with any
 permitted hash algorithm, subject to restrictions in the
 certificate, if any.

 Because DSA signatures do not contain any secure indication of
 hash algorithm, there is a risk of hash substitution if multiple
 hashes may be used with any key. Currently, DSA [DSS] may only be
 used with SHA-1. Future revisions of DSS [DSS-3] are expected to
 allow the use of other digest algorithms with DSA, as well as
 guidance as to which digest algorithms should be used with each
 key size. In addition, future revisions of [RFC5280] may specify
 mechanisms for certificates to indicate which digest algorithms
 are to be used with DSA.

6.3.11 . New Session Ticket Message

 After the server has received the client Finished message, it MAY
 send a NewSessionTicket message. This message MUST be sent before
 the server sends any application data traffic, and is encrypted under
 the application traffic key. This message creates a pre-shared key
 (PSK) binding between the resumption master secret and the ticket
 label. The client MAY use this PSK for future handshakes by
 including it in the pre_shared_key extension in its ClientHello
 (Section 6.3.1.5.4) and supplying a suitable PSK cipher suite.

 struct {
 uint32 ticket_lifetime_hint;
 opaque ticket<0..2^16-1>;
 } NewSessionTicket;

 ticket_lifetime_hint
 Indicates the lifetime in seconds as a 32-bit unsigned integer in
 network byte order. A value of zero is reserved to indicate that
 the lifetime of the ticket is unspecified.

 ticket
 The value of the ticket to be used as the PSK identifier.

 The ticket lifetime hint is informative only. A client SHOULD delete
 the ticket and associated state when the time expires. It MAY delete

Rescorla Expires January 9, 2016 [Page 65]

https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS July 2015

 the ticket earlier based on local policy. A server MAY treat a
 ticket as valid for a shorter or longer period of time than what is
 stated in the ticket_lifetime_hint.

 The ticket itself is an opaque label. It MAY either be a database
 lookup key or a self-encrypted and self-authenticated value.
 Section 4 of [RFC5077] describes a recommended ticket construction
 mechanism.

 [[TODO: Should we require that tickets be bound to the existing
 symmetric cipher suite. See the TODO above about early_data and
 PSK.??]

7. Cryptographic Computations

 In order to begin connection protection, the TLS Record Protocol
 requires specification of a suite of algorithms, a master secret, and
 the client and server random values. The authentication, key
 agreement, and record protection algorithms are determined by the
 cipher_suite selected by the server and revealed in the ServerHello
 message. The random values are exchanged in the hello messages. All
 that remains is to calculate the key schedule.

7.1 . Key Schedule

 The TLS handshake establishes secret keying material which is then
 used to protect traffic. This keying material is derived from the
 two input secret values: Static Secret (SS) and Ephemeral Secret
 (ES).

 The exact source of each of these secrets depends on the operational
 mode (DHE, ECDHE, PSK, etc.) and is summarized in the table below:

 Key Exchange Static Secret (SS) Ephemeral Secret (ES)
 ------------ ------------------ ---------------------
 (EC)DHE Client ephemeral Client ephemeral
 (full handshake) w/ server ephemeral w/ server ephemeral

 (EC)DHE Client ephemeral Client ephemeral
 (w/ known_configuration) w/ Known Key w/ server ephemeral

 PSK Pre-Shared Key Pre-shared key

 PSK + (EC)DHE Pre-Shared Key Client ephemeral
 w/ server ephemeral

 These shared secret values are used to generate cryptographic keys as
 shown below.

Rescorla Expires January 9, 2016 [Page 66]

https://tools.ietf.org/pdf/rfc5077#section-4

Internet-Draft TLS July 2015

 The derivation process is as follows, where L denotes the length of
 the underlying hash function for HKDF.

 HKDF-Expand-Label(Secret, Label, HashValue, Length) =
 HKDF-Expand(Secret, Label + ’\0’ + HashValue, Length)

 1. xSS = HKDF(0, SS, "extractedSS", L)

 2. xES = HKDF(0, ES, "extractedES", L)

 3. master_secret= HKDF(xSS, xES, "master secret", L)

 4. finished_secret = HKDF-Expand-Label(xSS,
 "finished secret",
 handshake_hash, L)

 Where handshake_hash includes all the messages in the
 client’s first flight and the server’s flight, excluding
 the Finished messages (which are never included in the
 hashes).

 5. resumption_secret = HKDF-Expand-Label(master_secret,
 "resumption master secret"
 session_hash, L)

 Where session_hash is as defined in {{the-handshake-hash}}.

 6. exporter_secret = HKDF-Expand-Label(master_secret,
 "exporter master secret",
 session_hash, L)

 Where session_hash is the session hash as defined in
 {{the-handshake-hash}} (i.e., the entire handshake except
 for Finished).

 The traffic keys are computed from xSS, xES, and the master_secret as
 described in Section 7.2 below.

7.2 . Traffic Key Calculation

 [[OPEN ISSUE: This needs to be revised. Most likely we’ll extract
 each key component separately. See https://github.com/tlswg/tls13-
 spec/issues/5]]

 The Record Protocol requires an algorithm to generate keys required
 by the current connection state (see Appendix A.5) from the security
 parameters provided by the handshake protocol.

Rescorla Expires January 9, 2016 [Page 67]

https://github.com/tlswg/tls13-

Internet-Draft TLS July 2015

 The traffic key computation takes four input values and returns a key
 block of sufficient size to produce the needed traffic keys:

 - A secret value

 - A string label that indicates the purpose of keys being generated.

 - The current handshake hash.

 - The total length in octets of the key block.

 The keying material is computed using:

 key_block = HKDF-Expand-Label(Secret, Label,
 handshake_hash,
 total_length)

 The key_block is partitioned as follows:

 client_write_key[SecurityParameters.enc_key_length]
 server_write_key[SecurityParameters.enc_key_length]
 client_write_IV[SecurityParameters.iv_length]
 server_write_IV[SecurityParameters.iv_length]

 The following table describes the inputs to the key calculation for
 each class of traffic keys:

 Record Type Secret Label Handshake Hash
 ----------- ------ ----- ---------------
 Early data xSS "early data key expansion" ClientHello

 Handshake xES "handshake key expansion" ClientHello...
 ServerKeyShare

 Application master "application data key expansion" All handshake
 secret messages but
 Finished
 (session_hash)

7.2.1 . The Handshake Hash

 handshake_hash = Hash(
 Hash(handshake_messages) ||
 Hash(configuration)
)

 handshake_messages

Rescorla Expires January 9, 2016 [Page 68]

Internet-Draft TLS July 2015

 All handshake messages sent or received, starting at ClientHello
 up to the present time, with the exception of the Finished
 message, including the type and length fields of the handshake
 messages. This is the concatenation of all the exchanged
 Handshake structures in plaintext form (even if they were
 encrypted on the wire).

 configuration
 When the known_configuration extension is in use
 (Section 6.3.1.5.3 , this contains the concatenation of the
 ServerConfiguration and Certificate messages from the handshake
 where the configuration was established. Note that this requires
 the client and server to memorize these values.

 This final value of the handshake hash is referred to as the "session
 hash" because it contains all the handshake messages required to
 establish the session. Note that if client authentication is not
 used, then the session hash is complete at the point when the server
 has sent its first flight. Otherwise, it is only complete when the
 client has sent its first flight, as it covers the client’s
 Certificate and CertificateVerify.

7.2.2 . Diffie-Hellman

 A conventional Diffie-Hellman computation is performed. The
 negotiated key (Z) is used as the shared_secret, and is used in the
 key schedule as specified above. Leading bytes of Z that contain all
 zero bits are stripped before it is used as the input to HKDF.

7.2.3 . Elliptic Curve Diffie-Hellman

 All ECDH calculations (including parameter and key generation as well
 as the shared secret calculation) are performed according to [6]
 using the ECKAS-DH1 scheme with the identity map as key derivation
 function (KDF), so that the shared secret is the x-coordinate of the
 ECDH shared secret elliptic curve point represented as an octet
 string. Note that this octet string (Z in IEEE 1363 terminology) as
 output by FE2OSP, the Field Element to Octet String Conversion
 Primitive, has constant length for any given field; leading zeros
 found in this octet string MUST NOT be truncated.

 (Note that this use of the identity KDF is a technicality. The
 complete picture is that ECDH is employed with a non-trivial KDF
 because TLS does not directly use this secret for anything other than
 for computing other secrets.)

Rescorla Expires January 9, 2016 [Page 69]

Internet-Draft TLS July 2015

8. Mandatory Cipher Suites

 In the absence of an application profile standard specifying
 otherwise, a TLS-compliant application MUST implement the cipher
 suite TODO:Needs to be selected [1]. (See Appendix A.4 for the
 definition.)

9. Application Data Protocol

 Application data messages are carried by the record layer and are
 fragmented and encrypted based on the current connection state. The
 messages are treated as transparent data to the record layer.

10. Security Considerations

 Security issues are discussed throughout this memo, especially in
 Appendices C, D, and E.

11. IANA Considerations

 [[TODO: Update https://github .com/tlswg/tls13-spec/issues/62]]

 This document uses several registries that were originally created in
 [RFC4346]. IANA has updated these to reference this document. The
 registries and their allocation policies (unchanged from [RFC4346])
 are listed below.

 - TLS ClientCertificateType Identifiers Registry: Future values in
 the range 0-63 (decimal) inclusive are assigned via Standards
 Action [RFC2434]. Values in the range 64-223 (decimal) inclusive
 are assigned via Specification Required [RFC2434]. Values from
 224-255 (decimal) inclusive are reserved for Private Use
 [RFC2434].

 - TLS Cipher Suite Registry: Future values with the first byte in
 the range 0-191 (decimal) inclusive are assigned via Standards
 Action [RFC2434]. Values with the first byte in the range 192-254
 (decimal) are assigned via Specification Required [RFC2434].
 Values with the first byte 255 (decimal) are reserved for Private
 Use [RFC2434].

 - TLS ContentType Registry: Future values are allocated via
 Standards Action [RFC2434].

 - TLS Alert Registry: Future values are allocated via Standards
 Action [RFC2434].

Rescorla Expires January 9, 2016 [Page 70]

https://github/
https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434

Internet-Draft TLS July 2015

 - TLS HandshakeType Registry: Future values are allocated via
 Standards Action [RFC2434].

 This document also uses a registry originally created in [RFC4366].
 IANA has updated it to reference this document. The registry and its
 allocation policy (unchanged from [RFC4366]) is listed below:

 - TLS ExtensionType Registry: Future values are allocated via IETF
 Consensus [RFC2434]. IANA has updated this registry to include
 the signature_algorithms extension and its corresponding value
 (see Section 6.3.1.4).

 This document also uses two registries originally created in
 [RFC4492]. IANA [should update/has updated] it to reference this
 document. The registries and their allocation policies are listed
 below.

 - TLS NamedCurve registry: Future values are allocated via IETF
 Consensus [RFC2434].

 - TLS ECPointFormat Registry: Future values are allocated via IETF
 Consensus [RFC2434].

 In addition, this document defines two new registries to be
 maintained by IANA:

 - TLS SignatureAlgorithm Registry: The registry has been initially
 populated with the values described in Section 6.3.1.4.1 . Future
 values in the range 0-63 (decimal) inclusive are assigned via
 Standards Action [RFC2434]. Values in the range 64-223 (decimal)
 inclusive are assigned via Specification Required [RFC2434].
 Values from 224-255 (decimal) inclusive are reserved for Private
 Use [RFC2434].

 - TLS HashAlgorithm Registry: The registry has been initially
 populated with the values described in Section 6.3.1.4.1 . Future
 values in the range 0-63 (decimal) inclusive are assigned via
 Standards Action [RFC2434]. Values in the range 64-223 (decimal)
 inclusive are assigned via Specification Required [RFC2434].
 Values from 224-255 (decimal) inclusive are reserved for Private
 Use [RFC2434].

12. References

Rescorla Expires January 9, 2016 [Page 71]

https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434

Internet-Draft TLS July 2015

12.1 . Normative References

 [AES] National Institute of Standards and Technology,
 "Specification for the Advanced Encryption Standard
 (AES)", NIST FIPS 197, November 2001.

 [DH] Diffie, W. and M. Hellman, "New Directions in
 Cryptography", IEEE Transactions on Information Theory,
 V.IT-22 n.6 , June 1977.

 [DSS] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Digital Signature Standard", NIST
 FIPS PUB 186-2, 2000.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321 ,
 April 1992.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104 , February
 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26 , RFC 2434 ,
 October 1998.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447 , February 2003.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280 , May 2008.

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288 ,
 August 2008.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289 ,
 August 2008.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869 , May 2010.

Rescorla Expires January 9, 2016 [Page 72]

https://tools.ietf.org/pdf/rfc1321
https://tools.ietf.org/pdf/rfc2104
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp26
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc3447
https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc5869

Internet-Draft TLS July 2015

 [SHS] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Secure Hash Standard", NIST FIPS
 PUB 180-2, August 2002.

 [X680] ITU-T, "Information technology - Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ISO/IEC
 8824-1:2002, 2002.

 [X690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2002, 2002.

 [X962] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 1998.

12.2 . Informative References

 [CBCATT] Moeller, B., "Security of CBC Ciphersuites in SSL/TLS:
 Problems and Countermeasures", May 2004,
 < https://www.openssl.org/~bodo/tls-cbc.txt >.

 [DSS-3] National Institute of Standards and Technology, U.S.,
 "Digital Signature Standard", NIST FIPS PUB 186-3 Draft,
 2006.

 [ECDSA] American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry: The
 Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI
 ANS X9.62-2005, November 2005.

 [FI06] "Bleichenbacher’s RSA signature forgery based on
 implementation error", August 2006, < http://www.imc.org/
 ietf-openpgp/mail-archive/msg14307.html >.

 [GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC", NIST
 Special Publication 800-38D, November 2007.

 [I-D.ietf-tls-negotiated-ff-dhe]
 Gillmor, D., "Negotiated Finite Field Diffie-Hellman
 Ephemeral Parameters for TLS", draft-ietf-tls-negotiated-
 ff-dhe-10 (work in progress), June 2015.

Rescorla Expires January 9, 2016 [Page 73]

https://www.openssl.org/~bodo/tls-cbc.txt
http://www.imc.org/ietf-openpgp/mail-archive/msg14307.html
http://www.imc.org/ietf-openpgp/mail-archive/msg14307.html
https://tools.ietf.org/pdf/draft-ietf-tls-negotiated-ff-dhe-10
https://tools.ietf.org/pdf/draft-ietf-tls-negotiated-ff-dhe-10

Internet-Draft TLS July 2015

 [I-D.ietf-tls-session-hash]
 Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
 A., and M. Ray, "Transport Layer Security (TLS) Session
 Hash and Extended Master Secret Extension", draft-ietf-
 tls-session-hash-05 (work in progress), April 2015.

 [PKCS6] RSA Laboratories, "PKCS #6: RSA Extended Certificate
 Syntax Standard, version 1.5", November 1993.

 [PKCS7] RSA Laboratories, "PKCS #7: RSA Cryptographic Message
 Syntax Standard, version 1.5", November 1993.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793 , September 1981.

 [RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
 RFC 1948 , May 1996.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246 , January 1999.

 [RFC3268] Chown, P., "Advanced Encryption Standard (AES)
 Ciphersuites for Transport Layer Security (TLS)", RFC
 3268 , June 2002.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106 , RFC 4086 , June 2005.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279 , December
 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302 , December
 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
 4303 , December 2005.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346 , April 2006.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366 , April 2006.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492 , May 2006.

Rescorla Expires January 9, 2016 [Page 74]

https://tools.ietf.org/pdf/draft-ietf-tls-session-hash-05
https://tools.ietf.org/pdf/draft-ietf-tls-session-hash-05
https://tools.ietf.org/pdf/rfc793
https://tools.ietf.org/pdf/rfc793
https://tools.ietf.org/pdf/rfc1948
https://tools.ietf.org/pdf/rfc2246
https://tools.ietf.org/pdf/rfc3268
https://tools.ietf.org/pdf/rfc3268
https://tools.ietf.org/pdf/bcp106
https://tools.ietf.org/pdf/rfc4086
https://tools.ietf.org/pdf/rfc4279
https://tools.ietf.org/pdf/rfc4302
https://tools.ietf.org/pdf/rfc4303
https://tools.ietf.org/pdf/rfc4303
https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2015

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506 , May 2006.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077 , January 2008.

 [RFC5081] Mavrogiannopoulos, N., "Using OpenPGP Keys for Transport
 Layer Security (TLS) Authentication", RFC 5081 , November
 2007.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116 , January 2008.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705 , March 2010.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763 , May 2010.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066 , January 2011.

 [RFC6176] Turner, S. and T. Polk, "Prohibiting Secure Sockets Layer
 (SSL) Version 2.0", RFC 6176 , March 2011.

 [RFC7465] Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465 ,
 February 2015.

 [RFC7568] Barnes, R., Thomson, M., Pironti, A., and A. Langley,
 "Deprecating Secure Sockets Layer Version 3.0", RFC 7568 ,
 June 2015.

 [RSA] Rivest, R., Shamir, A., and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems", Communications of the ACM v. 21, n. 2, pp.
 120-126., February 1978.

 [SSL2] Netscape Communications Corp., "The SSL Protocol",
 February 1995.

 [SSL3] Freier, A., Karlton, P., and P. Kocher, "The SSL 3.0
 Protocol", November 1996.

 [TIMING] Boneh, D. and D. Brumley, "Remote timing attacks are
 practical", USENIX Security Symposium, 2003.

Rescorla Expires January 9, 2016 [Page 75]

https://tools.ietf.org/pdf/rfc4506
https://tools.ietf.org/pdf/rfc5077
https://tools.ietf.org/pdf/rfc5081
https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc5705
https://tools.ietf.org/pdf/rfc5763
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6176
https://tools.ietf.org/pdf/rfc7465
https://tools.ietf.org/pdf/rfc7568

Internet-Draft TLS July 2015

 [X501] "Information Technology - Open Systems Interconnection -
 The Directory: Models", ITU-T X.501, 1993.

12.3 . URIs

 [1] https://github.com/tlswg/tls13-spec/issues/32

 [2] mailto:tls@ietf.org

Rescorla Expires January 9, 2016 [Page 76]

https://github.com/tlswg/tls13-spec/issues/32

Internet-Draft TLS July 2015

Appendix A . Protocol Data Structures and Constant Values

 This section describes protocol types and constants.

A.1 . Record Layer

 struct {
 uint8 major;
 uint8 minor;
 } ProtocolVersion;

 enum {
 reserved(20), alert(21), handshake(22),
 application_data(23), early_handshake(25),
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 struct {
 ContentType type;
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 aead-ciphered struct {
 opaque content[TLSPlaintext.length];
 } fragment;
 } TLSCiphertext;

A.2 . Alert Messages

Rescorla Expires January 9, 2016 [Page 77]

Internet-Draft TLS July 2015

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10), /* fatal */
 bad_record_mac(20), /* fatal */
 decryption_failed_RESERVED(21), /* fatal */
 record_overflow(22), /* fatal */
 decompression_failure_RESERVED(30), /* fatal */
 handshake_failure(40), /* fatal */
 no_certificate_RESERVED(41), /* fatal */
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47), /* fatal */
 unknown_ca(48), /* fatal */
 access_denied(49), /* fatal */
 decode_error(50), /* fatal */
 decrypt_error(51), /* fatal */
 export_restriction_RESERVED(60), /* fatal */
 protocol_version(70), /* fatal */
 insufficient_security(71), /* fatal */
 internal_error(80), /* fatal */
 user_canceled(90),
 no_renegotiation(100), /* fatal */
 unsupported_extension(110), /* fatal */
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

A.3 . Handshake Protocol

Rescorla Expires January 9, 2016 [Page 78]

Internet-Draft TLS July 2015

 enum {
 reserved(0), client_hello(1), server_hello(2),
 session_ticket(4), hello_retry_request(6),
 server_key_share(7), certificate(11), reserved(12),
 certificate_request(13), server_configuration(14),
 certificate_verify(15), reserved(16), finished(20), (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_retry_request: HelloRetryRequest;
 case server_key_share: ServerKeyShare;
 case server_configuration:ServerConfiguration;
 case certificate: Certificate;
 case certificate_request: CertificateRequest;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case session_ticket: NewSessionTicket;
 } body;
 } Handshake;

A.3.1 . Hello Messages

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 enum { null(0), (255) } CompressionMethod;

 struct {
 ProtocolVersion client_version = { 3, 4 }; /* TLS v1.3 */
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ClientHello;

 struct {
 ProtocolVersion server_version;
 Random random;

Rescorla Expires January 9, 2016 [Page 79]

Internet-Draft TLS July 2015

 uint8 session_id_len; // Must be 0.
 CipherSuite cipher_suite;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
 } ServerHello;

 struct {
 ProtocolVersion server_version;
 CipherSuite cipher_suite;
 NamedGroup selected_group;
 Extension extensions<0..2^16-1>;
 } HelloRetryRequest;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 signature_algorithms(13),
 early_data(TBD),
 supported_groups(TBD),
 known_configuration(TBD),
 pre_shared_key(TBD)
 client_key_shares(TBD)
 (65535)
 } ExtensionType;

 struct {
 select (Role) {
 case client:
 opaque identifier<0..2^16-1>;

 case server:
 struct {};
 }
 } KnownConfigurationExtension

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<0..2^16-1>;

Rescorla Expires January 9, 2016 [Page 80]

Internet-Draft TLS July 2015

 case server:
 psk_identity identity;

 } PreSharedKeyExtension;

 enum { early_handshake(1), early_data(2),
 early_handshake_and_data(3), (255) } EarlyDataType;

 struct {
 select (Role) {
 case client:
 opaque context<0..255>;
 EarlyDataType type;
 case server:
 struct {};
 }
 } EarlyDataIndication;

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 struct {
 opaque configuration_id<1..2^16-1>;
 uint32 expiration_date;
 NamedGroup group;
 opaque server_key<1..2^16-1>;
 Boolean early_data_allowed;
 } ServerConfiguration;

A.3.1.1 . Signature Algorithm Extension

 enum {
 none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
 sha512(6), (255)
 } HashAlgorithm;

 enum { anonymous(0), rsa(1), dsa(2), ecdsa(3), (255) }
 SignatureAlgorithm;

 struct {
 HashAlgorithm hash;
 SignatureAlgorithm signature;
 } SignatureAndHashAlgorithm;

 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;

Rescorla Expires January 9, 2016 [Page 81]

Internet-Draft TLS July 2015

A.3.1.2 . Named Group Extension

 enum {
 // Elliptic Curve Groups.
 sect163k1 (1), sect163r1 (2), sect163r2 (3),
 sect193r1 (4), sect193r2 (5), sect233k1 (6),
 sect233r1 (7), sect239k1 (8), sect283k1 (9),
 sect283r1 (10), sect409k1 (11), sect409r1 (12),
 sect571k1 (13), sect571r1 (14), secp160k1 (15),
 secp160r1 (16), secp160r2 (17), secp192k1 (18),
 secp192r1 (19), secp224k1 (20), secp224r1 (21),
 secp256k1 (22), secp256r1 (23), secp384r1 (24),
 secp521r1 (25),

 // Finite Field Groups.
 ffdhe2048 (256), ffdhe3072 (257), ffdhe4096 (258),
 ffdhe6144 (259), ffdhe8192 (260),
 ffdhe_private_use (0x01FC..0x01FF),

 // Reserved Code Points.
 reserved (0xFE00..0xFEFF),
 reserved(0xFF01),
 reserved(0xFF02),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<1..2^16-1>;
 } NamedGroupList;

A.3.2 . Key Exchange Messages

Rescorla Expires January 9, 2016 [Page 82]

Internet-Draft TLS July 2015

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } ClientKeyShareOffer;

 struct {
 ClientKeyShareOffer offers<0..2^16-1>;
 } ClientKeyShare;

 opaque dh_Y<1..2^16-1>;

 opaque point <1..2^8-1>;

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } ServerKeyShare;

A.3.3 . Authentication Messages

 opaque ASN1Cert<1..2^24-1>;

 struct {
 ASN1Cert certificate_list<0..2^24-1>;
 } Certificate;

 enum {
 rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
 rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
 fortezza_dms_RESERVED(20), (255)
 } ClientCertificateType;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 } CertificateRequest;

 struct {
 digitally-signed struct {
 opaque handshake_hash[hash_length];
 }
 } CertificateVerify;

Rescorla Expires January 9, 2016 [Page 83]

Internet-Draft TLS July 2015

A.3.4 . Handshake Finalization Messages

 struct {
 opaque verify_data[verify_data_length];
 } Finished;

A.3.5 . Ticket Establishment

 struct {
 uint32 ticket_lifetime_hint;
 opaque ticket<0..2^16-1>;
 } NewSessionTicket;

A.4 . The Cipher Suite

 The following values define the cipher suite codes used in the
 ClientHello and ServerHello messages. A cipher suite defines a
 cipher specification supported in TLS.

 TLS_NULL_WITH_NULL_NULL is specified and is the initial state of a
 TLS connection during the first handshake on that channel, but MUST
 NOT be negotiated, as it provides no more protection than an
 unsecured connection.

 CipherSuite TLS_NULL_WITH_NULL_NULL = {0x00,0x00};

 The following cipher suite definitions, defined in [RFC5288], are
 used for server-authenticated (and optionally client-authenticated)
 Diffie-Hellman. DHE denotes ephemeral Diffie-Hellman, where the
 Diffie-Hellman parameters are signed by a signature-capable
 certificate, which has been signed by the CA. The signing algorithm
 used by the server is specified after the DHE component of the
 CipherSuite name. The server can request any signature-capable
 certificate from the client for client authentication.

 CipherSuite TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9E};
 CipherSuite TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9F};
 CipherSuite TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA2};
 CipherSuite TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA3};

 The following cipher suite definitions, defined in [RFC5289], are
 used for server-authenticated (and optionally client-authenticated)
 Elliptic Curve Diffie-Hellman. ECDHE denotes ephemeral Diffie-
 Hellman, where the Diffie-Hellman parameters are signed by a
 signature-capable certificate, which has been signed by the CA. The
 signing algorithm used by the server is specified after the DHE
 component of the CipherSuite name. The server can request any

Rescorla Expires January 9, 2016 [Page 84]

https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5289

Internet-Draft TLS July 2015

 signature-capable certificate from the client for client
 authentication.

 CipherSuite TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 = {0xC0,0x2B};
 CipherSuite TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 = {0xC0,0x2C};
 CipherSuite TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 = {0xC0,0x2F};
 CipherSuite TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 = {0xC0,0x30};

 The following ciphers, defined in [RFC5288], are used for completely
 anonymous Diffie-Hellman communications in which neither party is
 authenticated. Note that this mode is vulnerable to man-in-the-
 middle attacks. Using this mode therefore is of limited use: These
 cipher suites MUST NOT be used by TLS implementations unless the
 application layer has specifically requested to allow anonymous key
 exchange. (Anonymous key exchange may sometimes be acceptable, for
 example, to support opportunistic encryption when no set-up for
 authentication is in place, or when TLS is used as part of more
 complex security protocols that have other means to ensure
 authentication.)

 CipherSuite TLS_DH_anon_WITH_AES_128_GCM_SHA256 = {0x00,0xA6};
 CipherSuite TLS_DH_anon_WITH_AES_256_GCM_SHA384 = {0x00,0xA7};

 [[TODO: Add all the defined AEAD ciphers. This currently only lists
 GCM. https://github .com/tlswg/tls13-spec/issues/53]] Note that using
 non-anonymous key exchange without actually verifying the key
 exchange is essentially equivalent to anonymous key exchange, and the
 same precautions apply. While non-anonymous key exchange will
 generally involve a higher computational and communicational cost
 than anonymous key exchange, it may be in the interest of
 interoperability not to disable non-anonymous key exchange when the
 application layer is allowing anonymous key exchange.

 o For cipher suites ending with _SHA256, HKDF is used with SHA-256 as
 the hash function.

 o For cipher suites ending with _SHA384, HKDF is used with SHA-384 as
 the hash function.

 New cipher suite values are assigned by IANA as described in
 Section 11 .

 Note: The cipher suite values { 0x00, 0x1C } and { 0x00, 0x1D } are
 reserved to avoid collision with Fortezza-based cipher suites in SSL
 3.0.

Rescorla Expires January 9, 2016 [Page 85]

https://tools.ietf.org/pdf/rfc5288
https://github/

Internet-Draft TLS July 2015

A.5 . The Security Parameters

 These security parameters are determined by the TLS Handshake
 Protocol and provided as parameters to the TLS record layer in order
 to initialize a connection state. SecurityParameters includes:

 enum { server, client } ConnectionEnd;

 enum { tls_kdf_sha256, tls_kdf_sha384 } KDFAlgorithm;

 enum { aes_gcm } RecordProtAlgorithm;

 /* The algorithms specified in KDFAlgorithm and
 RecordProtAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;
 KDFAlgorithm kdf_algorithm;
 RecordProtAlgorithm record_prot_algorithm;
 uint8 enc_key_length;
 uint8 iv_length;
 opaque hs_master_secret[48];
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

A.6 . Changes to RFC 4492

 RFC 4492 [RFC4492] adds Elliptic Curve cipher suites to TLS. This
 document changes some of the structures used in that document. This
 section details the required changes for implementors of both RFC
 4492 and TLS 1.2. Implementors of TLS 1.2 who are not implementing
 RFC 4492 do not need to read this section.

 This document adds a "signature_algorithm" field to the digitally-
 signed element in order to identify the signature and digest
 algorithms used to create a signature. This change applies to
 digital signatures formed using ECDSA as well, thus allowing ECDSA
 signatures to be used with digest algorithms other than SHA-1,
 provided such use is compatible with the certificate and any
 restrictions imposed by future revisions of [RFC5280].

 As described in Section 6.3.4 and Section 6.3.9 , the restrictions on
 the signature algorithms used to sign certificates are no longer tied
 to the cipher suite (when used by the server) or the
 ClientCertificateType (when used by the client). Thus, the
 restrictions on the algorithm used to sign certificates specified in

Rescorla Expires January 9, 2016 [Page 86]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS July 2015

 Sections 2 and 3 of RFC 4492 are also relaxed. As in this document,
 the restrictions on the keys in the end-entity certificate remain.

Appendix B . Cipher Suite Definitions

 Cipher Suite Key Record
 Exchange Protection Hash

 TLS_NULL_WITH_NULL_NULL NULL NULL_NULL N/A
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 DHE_RSA AES_128_GCM SHA256
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 DHE_RSA AES_256_GCM SHA384
 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 DHE_DSS AES_128_GCM SHA256
 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 DHE_DSS AES_256_GCM SHA384
 TLS_DH_anon_WITH_AES_128_GCM_SHA256 DH_anon AES_128_GCM SHA256
 TLS_DH_anon_WITH_AES_256_GCM_SHA384 DH_anon AES_128_GCM SHA384

Appendix C . Implementation Notes

 The TLS protocol cannot prevent many common security mistakes. This
 section provides several recommendations to assist implementors.

C.1 . Random Number Generation and Seeding

 TLS requires a cryptographically secure pseudorandom number generator
 (PRNG). Care must be taken in designing and seeding PRNGs. PRNGs
 based on secure hash operations, most notably SHA-1, are acceptable,
 but cannot provide more security than the size of the random number
 generator state.

 To estimate the amount of seed material being produced, add the
 number of bits of unpredictable information in each seed byte. For
 example, keystroke timing values taken from a PC compatible 18.2 Hz
 timer provide 1 or 2 secure bits each, even though the total size of
 the counter value is 16 bits or more. Seeding a 128-bit PRNG would
 thus require approximately 100 such timer values.

 [RFC4086] provides guidance on the generation of random values.

C.2 . Certificates and Authentication

 Implementations are responsible for verifying the integrity of
 certificates and should generally support certificate revocation
 messages. Certificates should always be verified to ensure proper
 signing by a trusted Certificate Authority (CA). The selection and
 addition of trusted CAs should be done very carefully. Users should
 be able to view information about the certificate and root CA.

Rescorla Expires January 9, 2016 [Page 87]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2015

C.3 . Cipher Suites

 TLS supports a range of key sizes and security levels, including some
 that provide no or minimal security. A proper implementation will
 probably not support many cipher suites. For instance, anonymous
 Diffie-Hellman is strongly discouraged because it cannot prevent man-
 in-the-middle attacks. Applications should also enforce minimum and
 maximum key sizes. For example, certificate chains containing keys
 or signatures weaker than 2048-bit RSA or 224-bit ECDSA are not
 appropriate for secure applications.

C.4 . Implementation Pitfalls

 Implementation experience has shown that certain parts of earlier TLS
 specifications are not easy to understand, and have been a source of
 interoperability and security problems. Many of these areas have
 been clarified in this document, but this appendix contains a short
 list of the most important things that require special attention from
 implementors.

 TLS protocol issues:

 - Do you correctly handle handshake messages that are fragmented to
 multiple TLS records (see Section 5.2.1)? Including corner cases
 like a ClientHello that is split to several small fragments? Do
 you fragment handshake messages that exceed the maximum fragment
 size? In particular, the certificate and certificate request
 handshake messages can be large enough to require fragmentation.

 - Do you ignore the TLS record layer version number in all TLS
 records? (see Appendix D)

 - Have you ensured that all support for SSL, RC4, and EXPORT ciphers
 is completely removed from all possible configurations that
 support TLS 1.3 or later, and that attempts to use these obsolete
 capabilities fail correctly? (see Appendix D)

 - Do you handle TLS extensions in ClientHello correctly, including
 omitting the extensions field completely?

 - When the server has requested a client certificate, but no
 suitable certificate is available, do you correctly send an empty
 Certificate message, instead of omitting the whole message (see
 Section 6.3.9)?

 Cryptographic details:

Rescorla Expires January 9, 2016 [Page 88]

Internet-Draft TLS July 2015

 - What countermeasures do you use to prevent timing attacks against
 RSA signing operations [TIMING].

 - When verifying RSA signatures, do you accept both NULL and missing
 parameters (see Section 4.9)? Do you verify that the RSA padding
 doesn’t have additional data after the hash value? [FI06]

 - When using Diffie-Hellman key exchange, do you correctly strip
 leading zero bytes from the negotiated key (see Section 7.2.2)?

 - Does your TLS client check that the Diffie-Hellman parameters sent
 by the server are acceptable (see Appendix E.1.1.2)?

 - Do you use a strong and, most importantly, properly seeded random
 number generator (see Appendix C.1) Diffie-Hellman private values,
 the DSA "k" parameter, and other security-critical values?

Appendix D . Backward Compatibility

 The TLS protocol provides a built-in mechanism for version
 negotiation between endpoints potentially supporting different
 versions of TLS.

 TLS 1.x and SSL 3.0 use compatible ClientHello messages. Servers can
 also handle clients trying to use future versions of TLS as long as
 the ClientHello format remains compatible and the client supports the
 highest protocol version available in the server.

 Prior versions of TLS used the record layer version number for
 various purposes. (TLSPlaintext.record_version &
 TLSCiphertext.record_version) As of TLS 1.3, this field is deprecated
 and its value MUST be ignored by all implementations. Version
 negotiation is performed using only the handshake versions.
 (ClientHello.client_version & ServerHello.server_version) In order to
 maximize interoperability with older endpoints, implementations that
 negotiate the usage of TLS 1.0-1.2 SHOULD set the record layer
 version number to the negotiated version for the ServerHello and all
 records thereafter.

D.1 . Negotiating with an older server

 A TLS 1.3 client who wishes to negotiate with such older servers will
 send a normal TLS 1.3 ClientHello containing { 3, 4 } (TLS 1.3) in
 ClientHello.client_version. If the server does not support this
 version it will respond with a ServerHello containing an older
 version number. If the client agrees to use this version, the
 negotiation will proceed as appropriate for the negotiated protocol.

Rescorla Expires January 9, 2016 [Page 89]

Internet-Draft TLS July 2015

 A client resuming a session SHOULD initiate the connection using the
 version that was previously negotiated.

 If the version chosen by the server is not supported by the client
 (or not acceptable), the client MUST send a "protocol_version" alert
 message and close the connection.

 If a TLS server receives a ClientHello containing a version number
 greater than the highest version supported by the server, it MUST
 reply according to the highest version supported by the server.

 Some legacy server implementations are known to not implement the TLS
 specification properly and might abort connections upon encountering
 TLS extensions or versions which it is not aware of.
 Interoperability with buggy servers is a complex topic beyond the
 scope of this document. Multiple connection attempts may be required
 in order to negotiate a backwards compatible connection, however this
 practice is vulnerable to downgrade attacks and is NOT RECOMMENDED.

D.2 . Negotiating with an older client

 A TLS server can also receive a ClientHello containing a version
 number smaller than the highest supported version. If the server
 wishes to negotiate with old clients, it will proceed as appropriate
 for the highest version supported by the server that is not greater
 than ClientHello.client_version. For example, if the server supports
 TLS 1.0, 1.1, and 1.2, and client_version is TLS 1.0, the server will
 proceed with a TLS 1.0 ServerHello. If the server only supports
 versions greater than client_version, it MUST send a
 "protocol_version" alert message and close the connection.

 Note that earlier versions of TLS did not clearly specify the record
 layer version number value in all cases
 (TLSPlaintext.record_version). Servers will receive various TLS 1.x
 versions in this field, however its value MUST always be ignored.

D.3 . Backwards Compatibility Security Restrictions

 If an implementation negotiates usage of TLS 1.2, then negotiation of
 cipher suites also supported by TLS 1.3 SHOULD be preferred, if
 available.

 The security of RC4 cipher suites is considered insufficient for the
 reasons cited in [RFC7465]. Implementations MUST NOT offer or
 negotiate RC4 cipher suites for any version of TLS for any reason.

Rescorla Expires January 9, 2016 [Page 90]

https://tools.ietf.org/pdf/rfc7465

Internet-Draft TLS July 2015

 Old versions of TLS permitted the usage of very low strength ciphers.
 Ciphers with a strength less than 112 bits MUST NOT be offered or
 negotiated for any version of TLS for any reason.

 The security of SSL 2.0 [SSL2] is considered insufficient for the
 reasons enumerated in [RFC6176], and MUST NOT be negotiated for any
 reason.

 Implementations MUST NOT send an SSL version 2.0 compatible CLIENT-
 HELLO. Implementations MUST NOT negotiate TLS 1.3 or later using an
 SSL version 2.0 compatible CLIENT-HELLO. Implementations are NOT
 RECOMMENDED to accept an SSL version 2.0 compatible CLIENT-HELLO in
 order to negotiate older versions of TLS.

 Implementations MUST NOT send or accept any records with a version
 less than { 3, 0 }.

 The security of SSL 3.0 [SSL3] is considered insufficient for the
 reasons enumerated in [RFC7568], and MUST NOT be negotiated for any
 reason.

 Implementations MUST NOT send a ClientHello.client_version or
 ServerHello.server_version set to { 3, 0 } or less. Any endpoint
 receiving a Hello message with ClientHello.client_version or
 ServerHello.server_version set to { 3, 0 } MUST respond with a
 "protocol_version" alert message and close the connection.

Appendix E . Security Analysis

 [[TODO: The entire security analysis needs a rewrite.]]

 The TLS protocol is designed to establish a secure connection between
 a client and a server communicating over an insecure channel. This
 document makes several traditional assumptions, including that
 attackers have substantial computational resources and cannot obtain
 secret information from sources outside the protocol. Attackers are
 assumed to have the ability to capture, modify, delete, replay, and
 otherwise tamper with messages sent over the communication channel.
 This appendix outlines how TLS has been designed to resist a variety
 of attacks.

E.1 . Handshake Protocol

 The handshake protocol is responsible for selecting a cipher spec and
 generating a master secret, which together comprise the primary
 cryptographic parameters associated with a secure session. The
 handshake protocol can also optionally authenticate parties who have
 certificates signed by a trusted certificate authority.

Rescorla Expires January 9, 2016 [Page 91]

https://tools.ietf.org/pdf/rfc6176
https://tools.ietf.org/pdf/rfc7568

Internet-Draft TLS July 2015

E.1.1 . Authentication and Key Exchange

 TLS supports three authentication modes: authentication of both
 parties, server authentication with an unauthenticated client, and
 total anonymity. Whenever the server is authenticated, the channel
 is secure against man-in-the-middle attacks, but completely anonymous
 sessions are inherently vulnerable to such attacks. Anonymous
 servers cannot authenticate clients. If the server is authenticated,
 its certificate message must provide a valid certificate chain
 leading to an acceptable certificate authority. Similarly,
 authenticated clients must supply an acceptable certificate to the
 server. Each party is responsible for verifying that the other’s
 certificate is valid and has not expired or been revoked.

 [[TODO: Rewrite this because the master_secret is not used this way
 any more after Hugo’s changes.]] The general goal of the key exchange
 process is to create a master_secret known to the communicating
 parties and not to attackers (see Section 7.1). The master_secret is
 required to generate the Finished messages and record protection keys
 (see Section 6.3.8 and Section 7.2). By sending a correct Finished
 message, parties thus prove that they know the correct master_secret.

E.1.1.1 . Anonymous Key Exchange

 Completely anonymous sessions can be established using Diffie-Hellman
 for key exchange. The server’s public parameters are contained in
 the server key share message, and the client’s are sent in the client
 key share message. Eavesdroppers who do not know the private values
 should not be able to find the Diffie-Hellman result.

 Warning: Completely anonymous connections only provide protection
 against passive eavesdropping. Unless an independent tamper-proof
 channel is used to verify that the Finished messages were not
 replaced by an attacker, server authentication is required in
 environments where active man-in-the-middle attacks are a concern.

E.1.1.2 . Diffie-Hellman Key Exchange with Authentication

 When Diffie-Hellman key exchange is used, the client and server use
 the client key exchange and server key exchange messages to send
 temporary Diffie-Hellman parameters. The signature in the
 certificate verify message (if present) covers the entire handshake
 up to that point and thus attests the certificate holder’s desire to
 use the the ephemeral DHE keys.

 Peers SHOULD validate each other’s public key Y (dh_Ys offered by the
 server or DH_Yc offered by the client) by ensuring that 1 < Y < p-1.

Rescorla Expires January 9, 2016 [Page 92]

Internet-Draft TLS July 2015

 This simple check ensures that the remote peer is properly behaved
 and isn’t forcing the local system into a small subgroup.

 Additionally, using a fresh key for each handshake provides Perfect
 Forward Secrecy. Implementations SHOULD generate a new X for each
 handshake when using DHE cipher suites.

E.1.2 . Version Rollback Attacks

 Because TLS includes substantial improvements over SSL Version 2.0,
 attackers may try to make TLS-capable clients and servers fall back
 to Version 2.0. This attack can occur if (and only if) two TLS-
 capable parties use an SSL 2.0 handshake.

 Although the solution using non-random PKCS #1 block type 2 message
 padding is inelegant, it provides a reasonably secure way for Version
 3.0 servers to detect the attack. This solution is not secure
 against attackers who can brute-force the key and substitute a new
 ENCRYPTED-KEY-DATA message containing the same key (but with normal
 padding) before the application-specified wait threshold has expired.
 Altering the padding of the least-significant 8 bytes of the PKCS
 padding does not impact security for the size of the signed hashes
 and RSA key lengths used in the protocol, since this is essentially
 equivalent to increasing the input block size by 8 bytes.

E.1.3 . Detecting Attacks Against the Handshake Protocol

 An attacker might try to influence the handshake exchange to make the
 parties select different encryption algorithms than they would
 normally choose.

 For this attack, an attacker must actively change one or more
 handshake messages. If this occurs, the client and server will
 compute different values for the handshake message hashes. As a
 result, the parties will not accept each others’ Finished messages.
 Without the static secret, the attacker cannot repair the Finished
 messages, so the attack will be discovered.

E.2 . Protecting Application Data

 The shared secrets are hashed with the handshake transcript to
 produce unique record protection secrets for each connection.

 Outgoing data is protected using an AEAD algorithm before
 transmission. The authentication data includes the sequence number,
 message type, message length, and the message contents. The message
 type field is necessary to ensure that messages intended for one TLS
 record layer client are not redirected to another. The sequence

Rescorla Expires January 9, 2016 [Page 93]

Internet-Draft TLS July 2015

 number ensures that attempts to delete or reorder messages will be
 detected. Since sequence numbers are 64 bits long, they should never
 overflow. Messages from one party cannot be inserted into the
 other’s output, since they use independent keys.

E.3 . Denial of Service

 TLS is susceptible to a number of denial-of-service (DoS) attacks.
 In particular, an attacker who initiates a large number of TCP
 connections can cause a server to consume large amounts of CPU doing
 asymmetric crypto operations. However, because TLS is generally used
 over TCP, it is difficult for the attacker to hide his point of
 origin if proper TCP SYN randomization is used [RFC1948] by the TCP
 stack.

 Because TLS runs over TCP, it is also susceptible to a number of DoS
 attacks on individual connections. In particular, attackers can
 forge RSTs, thereby terminating connections, or forge partial TLS
 records, thereby causing the connection to stall. These attacks
 cannot in general be defended against by a TCP-using protocol.
 Implementors or users who are concerned with this class of attack
 should use IPsec AH [RFC4302] or ESP [RFC4303].

E.4 . Final Notes

 For TLS to be able to provide a secure connection, both the client
 and server systems, keys, and applications must be secure. In
 addition, the implementation must be free of security errors.

 The system is only as strong as the weakest key exchange and
 authentication algorithm supported, and only trustworthy
 cryptographic functions should be used. Short public keys and
 anonymous servers should be used with great caution. Implementations
 and users must be careful when deciding which certificates and
 certificate authorities are acceptable; a dishonest certificate
 authority can do tremendous damage.

Appendix F . Working Group Information

 The discussion list for the IETF TLS working group is located at the
 e-mail address tls@ietf.org [2]. Information on the group and
 information on how to subscribe to the list is at
 https://www1.ietf.org/mailman/listinfo/tls

 Archives of the list can be found at: https://www.ietf.org/mail-
 archive/web/tls/current/index.html

Rescorla Expires January 9, 2016 [Page 94]

https://tools.ietf.org/pdf/rfc1948
https://tools.ietf.org/pdf/rfc4302
https://tools.ietf.org/pdf/rfc4303
https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html

Internet-Draft TLS July 2015

Appendix G . Contributors

 Martin Abadi
 University of California, Santa Cruz
 abadi@cs.ucsc.edu

 Christopher Allen (co-editor of TLS 1.0)
 Alacrity Ventures
 ChristopherA@AlacrityManagement.com

 Steven M. Bellovin
 Columbia University
 smb@cs.columbia.edu

 Benjamin Beurdouche

 Karthikeyan Bhargavan (co-author of [I-D.ietf-tls-session-hash])
 INRIA
 karthikeyan.bhargavan@inria.fr

 Simon Blake-Wilson (co-author of RFC4492)
 BCI
 sblakewilson@bcisse.com

 Nelson Bolyard
 Sun Microsystems, Inc.
 nelson@bolyard.com (co-author of RFC4492)

 Ran Canetti
 IBM
 canetti@watson.ibm.com

 Pete Chown
 Skygate Technology Ltd
 pc@skygate.co.uk

 Antoine Delignat-Lavaud (co-author of [I-D.ietf-tls-session-hash])
 INRIA
 antoine.delignat-lavaud@inria.fr

 Tim Dierks (co-editor of TLS 1.0, 1.1, and 1.2)
 Independent
 tim@dierks.org

 Taher Elgamal
 Securify
 taher@securify.com

Rescorla Expires January 9, 2016 [Page 95]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2015

 Pasi Eronen
 Nokia
 pasi.eronen@nokia.com

 Anil Gangolli
 anil@busybuddha.org

 David M. Garrett

 Vipul Gupta (co-author of RFC4492)
 Sun Microsystems Laboratories
 vipul.gupta@sun.com

 Chris Hawk (co-author of RFC4492)
 Corriente Networks LLC
 chris@corriente.net

 Kipp Hickman

 Alfred Hoenes

 David Hopwood
 Independent Consultant
 david.hopwood@blueyonder.co.uk

 Daniel Kahn Gillmor
 ACLU
 dkg@fifthhorseman.net

 Phil Karlton (co-author of SSL 3.0)

 Paul Kocher (co-author of SSL 3.0)
 Cryptography Research
 paul@cryptography.com

 Hugo Krawczyk
 IBM
 hugo@ee.technion.ac.il

 Adam Langley (co-author of [I-D.ietf-tls-session-hash])
 Google
 agl@google.com

 Ilari Liusvaara
 ilari.liusvaara@elisanet.fi

 Jan Mikkelsen
 Transactionware

Rescorla Expires January 9, 2016 [Page 96]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2015

 janm@transactionware.com

 Bodo Moeller (co-author of RFC4492)
 Google
 bodo@openssl.org

 Erik Nygren
 Akamai Technologies
 erik+ietf@nygren.org

 Magnus Nystrom
 RSA Security
 magnus@rsasecurity.com

 Alfredo Pironti (co-author of [I-D.ietf-tls-session-hash])
 INRIA
 alfredo.pironti@inria.fr

 Marsh Ray (co-author of [I-D.ietf-tls-session-hash])
 Microsoft
 maray@microsoft.com

 Robert Relyea
 Netscape Communications
 relyea@netscape.com

 Jim Roskind
 Netscape Communications
 jar@netscape.com

 Michael Sabin

 Dan Simon
 Microsoft, Inc.
 dansimon@microsoft.com

 Martin Thomson
 Mozilla
 mt@mozilla.com

 Tom Weinstein

 Tim Wright
 Vodafone
 timothy.wright@vodafone.com

Rescorla Expires January 9, 2016 [Page 97]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2015

Author’s Address

 Eric Rescorla
 RTFM, Inc.

 EMail: ekr@rtfm.com

Rescorla Expires January 9, 2016 [Page 98]

