
Network Working Group E. Rescorla
Internet-Draft RTFM, Inc.
Obsoletes: 5077 , 5246 , 5746 (if March 21, 2016
 approved)
Updates: 4492 (if approved)
Intended status: Standards Track
Expires: September 22, 2016

 The Transport Layer Security (TLS) Protocol Version 1.3
 draft-ietf-tls-tls13-12

Abstract

 This document specifies Version 1.3 of the Transport Layer Security
 (TLS) protocol. The TLS protocol allows client/server applications
 to communicate over the Internet in a way that is designed to prevent
 eavesdropping, tampering, and message forgery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4 .e of

Rescorla Expires September 22, 2016 [Page 1]

https://tools.ietf.org/pdf/rfc5077
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS March 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 1.1 . Conventions and Terminology 5
 1.2 . Major Differences from TLS 1.2 6
 2. Goals . 9
 3. Goals of This Document 10
 4. Presentation Language . 10
 4.1 . Basic Block Size . 10
 4.2 . Miscellaneous . 11
 4.3 . Vectors . 11
 4.4 . Numbers . 12
 4.5 . Enumerateds . 12
 4.6 . Constructed Types . 13
 4.6.1 . Variants . 14
 4.7 . Constants . 15
 4.8 . Cryptographic Attributes 15
 4.8.1 . Digital Signing 16
 4.8.2. Authenticated Encryption with Additional Data (AEAD) 17
 5. The TLS Record Protocol 17
 5.1 . Connection States . 18
 5.2 . Record Layer . 20
 5.2.1 . Fragmentation . 20
 5.2.2 . Record Payload Protection 21
 5.2.3 . Record Padding 24
 6. The TLS Handshaking Protocols 25
 6.1 . Alert Protocol . 25
 6.1.1 . Closure Alerts 26
 6.1.2 . Error Alerts . 28
 6.2 . Handshake Protocol Overview 31
 6.2.1 . Incorrect DHE Share 35
 6.2.2 . Zero-RTT Exchange 36
 6.2.3 . Resumption and Pre-Shared Key (PSK) 37

Rescorla Expires September 22, 2016 [Page 2]

Internet-Draft TLS March 2016

 6.3 . Handshake Protocol 39
 6.3.1 . Key Exchange Messages 40
 6.3.2 . Hello Extensions 46
 6.3.3 . Server Parameters 59
 6.3.4 . Authentication Messages 63
 6.3.5 . Post-Handshake Messages 71
 7. Cryptographic Computations 73
 7.1 . Key Schedule . 73
 7.2 . Updating Traffic Keys and IVs 76
 7.3 . Traffic Key Calculation 76
 7.3.1 . The Handshake Hash 77
 7.3.2 . Diffie-Hellman 78
 7.3.3 . Elliptic Curve Diffie-Hellman 78
 7.3.4 . Exporters . 78
 8. Mandatory Algorithms . 79
 8.1 . MTI Cipher Suites . 79
 8.2 . MTI Extensions . 79
 9. Application Data Protocol 80
 10. Security Considerations 80
 11. IANA Considerations . 81
 12. References . 83
 12.1 . Normative References 84
 12.2 . Informative References 86
 Appendix A . Protocol Data Structures and Constant Values 92
 A.1 . Record Layer . 92
 A.2 . Alert Messages . 92
 A.3 . Handshake Protocol 94
 A.3.1 . Key Exchange Messages 94
 A.3.2 . Server Parameters Messages 98
 A.3.3 . Authentication Messages 99
 A.3.4 . Ticket Establishment 100
 A.4 . Cipher Suites . 100
 A.4.1 . Unauthenticated Operation 105
 A.5 . The Security Parameters 105
 A.6 . Changes to RFC 4492 106
 Appendix B . Implementation Notes 107
 B.1 . Random Number Generation and Seeding 107
 B.2 . Certificates and Authentication 107
 B.3 . Cipher Suite Support 107
 B.4 . Implementation Pitfalls 107
 Appendix C . Backward Compatibility 109
 C.1 . Negotiating with an older server 109
 C.2 . Negotiating with an older client 110
 C.3 . Backwards Compatibility Security Restrictions 110
 Appendix D . Security Analysis 111
 D.1 . Handshake Protocol 112
 D.1.1 . Authentication and Key Exchange 112
 D.1.2 . Version Rollback Attacks 113

Rescorla Expires September 22, 2016 [Page 3]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS March 2016

 D.1.3 . Detecting Attacks Against the Handshake Protocol . . 113
 D.2 . Protecting Application Data 113
 D.3 . Denial of Service . 114
 D.4 . Final Notes . 114
 Appendix E . Working Group Information 114
 Appendix F . Contributors . 114
 Author’s Address . 118

1. Introduction

 DISCLAIMER: This is a WIP draft of TLS 1.3 and has not yet seen
 significant security analysis.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this
 draft is maintained in GitHub. Suggested changes should be submitted
 as pull requests at https://github.com/tlswg/tls13-spec .
 Instructions are on that page as well. Editorial changes can be
 managed in GitHub, but any substantive change should be discussed on
 the TLS mailing list.

 The primary goal of the TLS protocol is to provide privacy and data
 integrity between two communicating peers. The TLS protocol is
 composed of two layers: the TLS Record Protocol and the TLS Handshake
 Protocol. At the lowest level, layered on top of some reliable
 transport protocol (e.g., TCP [RFC0793]), is the TLS Record Protocol.
 The TLS Record Protocol provides connection security that has two
 basic properties:

 - The connection is private. Symmetric cryptography is used for
 data encryption (e.g., AES [AES]). The keys for this symmetric
 encryption are generated uniquely for each connection and are
 based on a secret negotiated by another protocol (such as the TLS
 Handshake Protocol).

 - The connection is reliable. Messages include an authentication
 tag which protects them against modification.

 Note: The TLS Record Protocol can operate in an insecure mode but is
 generally only used in this mode while another protocol is using the
 TLS Record Protocol as a transport for negotiating security
 parameters.

 The TLS Record Protocol is used for encapsulation of various higher-
 level protocols. One such encapsulated protocol, the TLS Handshake
 Protocol, allows the server and client to authenticate each other and
 to negotiate an encryption algorithm and cryptographic keys before
 the application protocol transmits or receives its first byte of

Rescorla Expires September 22, 2016 [Page 4]

https://github.com/tlswg/tls13-spec
https://tools.ietf.org/pdf/rfc0793

Internet-Draft TLS March 2016

 data. The TLS Handshake Protocol provides connection security that
 has three basic properties:

 - The peer’s identity can be authenticated using asymmetric, or
 public key, cryptography (e.g., RSA [RSA], ECDSA [ECDSA]). This
 authentication can be made optional, but is generally required for
 at least one of the peers.

 - The negotiation of a shared secret is secure: the negotiated
 secret is unavailable to eavesdroppers, and for any authenticated
 connection the secret cannot be obtained, even by an attacker who
 can place himself in the middle of the connection.

 - The negotiation is reliable: no attacker can modify the
 negotiation communication without being detected by the parties to
 the communication.

 One advantage of TLS is that it is application protocol independent.
 Higher-level protocols can layer on top of the TLS protocol
 transparently. The TLS standard, however, does not specify how
 protocols add security with TLS; the decisions on how to initiate TLS
 handshaking and how to interpret the authentication certificates
 exchanged are left to the judgment of the designers and implementors
 of protocols that run on top of TLS.

1.1 . Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 The following terms are used:

 client: The endpoint initiating the TLS connection.

 connection: A transport-layer connection between two endpoints.

 endpoint: Either the client or server of the connection.

 handshake: An initial negotiation between client and server that
 establishes the parameters of their transactions.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving records.

Rescorla Expires September 22, 2016 [Page 5]

https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119

Internet-Draft TLS March 2016

 sender: An endpoint that is transmitting records.

 session: An association between a client and a server resulting from
 a handshake.

 server: The endpoint which did not initiate the TLS connection.

1.2 . Major Differences from TLS 1.2

 draft-12

 - Provide a list of the PSK cipher sutes.

 - Remove the ability for the ServerHello to have no extensions (this
 aligns the syntax with the text).

 - Clarify that the server can send application data after its first
 flight (0.5 RTT data)

 - Revise signature algorithm negotiation to group hash, signature
 algorithm, and curve together. This is backwards compatible.

 - Make ticket lifetime mandatory and limit it to a week.

 - Make the purpose strings lower-case. This matches how people are
 implementing for interop.

 - Define exporters.

 - Editorial cleanup

 draft-11

 - Port the CFRG curves & signatures work from RFC4492bis.

 - Remove sequence number and version from additional_data, which is
 now empty.

 - Reorder values in HkdfLabel.

 - Add support for version anti-downgrade mechanism.

 - Update IANA considerations section and relax some of the policies.

 - Unify authentication modes. Add post-handshake client
 authentication.

Rescorla Expires September 22, 2016 [Page 6]

https://tools.ietf.org/pdf/draft-12
https://tools.ietf.org/pdf/draft-11

Internet-Draft TLS March 2016

 - Remove early_handshake content type. Terminate 0-RTT data with an
 alert.

 - Reset sequence number upon key change (as proposed by Fournet et
 al.)

 draft-10

 - Remove ClientCertificateTypes field from CertificateRequest and
 add extensions.

 - Merge client and server key shares into a single extension.

 draft-09

 - Change to RSA-PSS signatures for handshake messages.

 - Remove support for DSA.

 - Update key schedule per suggestions by Hugo, Hoeteck, and Bjoern
 Tackmann.

 - Add support for per-record padding.

 - Switch to encrypted record ContentType.

 - Change HKDF labeling to include protocol version and value
 lengths.

 - Shift the final decision to abort a handshake due to incompatible
 certificates to the client rather than having servers abort early.

 - Deprecate SHA-1 with signatures.

 - Add MTI algorithms.

 draft-08

 - Remove support for weak and lesser used named curves.

 - Remove support for MD5 and SHA-224 hashes with signatures.

 - Update lists of available AEAD cipher suites and error alerts.

 - Reduce maximum permitted record expansion for AEAD from 2048 to
 256 octets.

Rescorla Expires September 22, 2016 [Page 7]

https://tools.ietf.org/pdf/draft-10
https://tools.ietf.org/pdf/draft-09
https://tools.ietf.org/pdf/draft-08

Internet-Draft TLS March 2016

 - Require digital signatures even when a previous configuration is
 used.

 - Merge EarlyDataIndication and KnownConfiguration.

 - Change code point for server_configuration to avoid collision with
 server_hello_done.

 - Relax certificate_list ordering requirement to match current
 practice.

 draft-07

 - Integration of semi-ephemeral DH proposal.

 - Add initial 0-RTT support.

 - Remove resumption and replace with PSK + tickets.

 - Move ClientKeyShare into an extension.

 - Move to HKDF.

 draft-06

 - Prohibit RC4 negotiation for backwards compatibility.

 - Freeze & deprecate record layer version field.

 - Update format of signatures with context.

 - Remove explicit IV.

 draft-05

 - Prohibit SSL negotiation for backwards compatibility.

 - Fix which MS is used for exporters.

 draft-04

 - Modify key computations to include session hash.

 - Remove ChangeCipherSpec.

 - Renumber the new handshake messages to be somewhat more consistent
 with existing convention and to remove a duplicate registration.

Rescorla Expires September 22, 2016 [Page 8]

https://tools.ietf.org/pdf/draft-07
https://tools.ietf.org/pdf/draft-06
https://tools.ietf.org/pdf/draft-05
https://tools.ietf.org/pdf/draft-04

Internet-Draft TLS March 2016

 - Remove renegotiation.

 - Remove point format negotiation.

 draft-03

 - Remove GMT time.

 - Merge in support for ECC from RFC 4492 but without explicit
 curves.

 - Remove the unnecessary length field from the AD input to AEAD
 ciphers.

 - Rename {Client,Server}KeyExchange to {Client,Server}KeyShare.

 - Add an explicit HelloRetryRequest to reject the client’s.

 draft-02

 - Increment version number.

 - Rework handshake to provide 1-RTT mode.

 - Remove custom DHE groups.

 - Remove support for compression.

 - Remove support for static RSA and DH key exchange.

 - Remove support for non-AEAD ciphers.

2. Goals

 The goals of the TLS protocol, in order of priority, are as follows:

 1. Cryptographic security: TLS should be used to establish a secure
 connection between two parties.

 2. Interoperability: Independent programmers should be able to
 develop applications utilizing TLS that can successfully exchange
 cryptographic parameters without knowledge of one another’s code.

 3. Extensibility: TLS seeks to provide a framework into which new
 public key and record protection methods can be incorporated as
 necessary. This will also accomplish two sub-goals: preventing
 the need to create a new protocol (and risking the introduction

Rescorla Expires September 22, 2016 [Page 9]

https://tools.ietf.org/pdf/draft-03
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/draft-02

Internet-Draft TLS March 2016

 of possible new weaknesses) and avoiding the need to implement an
 entire new security library.

 4. Relative efficiency: Cryptographic operations tend to be highly
 CPU intensive, particularly public key operations. For this
 reason, the TLS protocol has incorporated an optional session
 caching scheme to reduce the number of connections that need to
 be established from scratch. Additionally, care has been taken
 to reduce network activity.

3. Goals of This Document

 This document and the TLS protocol itself have evolved from the SSL
 3.0 Protocol Specification as published by Netscape. The differences
 between this version and previous versions are significant enough
 that the various versions of TLS and SSL 3.0 do not interoperate
 (although each protocol incorporates a mechanism by which an
 implementation can back down to prior versions). This document is
 intended primarily for readers who will be implementing the protocol
 and for those doing cryptographic analysis of it. The specification
 has been written with this in mind, and it is intended to reflect the
 needs of those two groups. For that reason, many of the algorithm-
 dependent data structures and rules are included in the body of the
 text (as opposed to in an appendix), providing easier access to them.

 This document is not intended to supply any details of service
 definition or of interface definition, although it does cover select
 areas of policy as they are required for the maintenance of solid
 security.

4. Presentation Language

 This document deals with the formatting of data in an external
 representation. The following very basic and somewhat casually
 defined presentation syntax will be used. The syntax draws from
 several sources in its structure. Although it resembles the
 programming language "C" in its syntax and XDR [RFC4506] in both its
 syntax and intent, it would be risky to draw too many parallels. The
 purpose of this presentation language is to document TLS only; it has
 no general application beyond that particular goal.

4.1 . Basic Block Size

 The representation of all data items is explicitly specified. The
 basic data block size is one byte (i.e., 8 bits). Multiple byte data
 items are concatenations of bytes, from left to right, from top to
 bottom. From the byte stream, a multi-byte item (a numeric in the
 example) is formed (using C notation) by:

Rescorla Expires September 22, 2016 [Page 10]

https://tools.ietf.org/pdf/rfc4506

Internet-Draft TLS March 2016

 value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
 ... | byte[n-1];

 This byte ordering for multi-byte values is the commonplace network
 byte order or big-endian format.

4.2 . Miscellaneous

 Comments begin with "/*" and end with "*/".

 Optional components are denoted by enclosing them in "[[]]" double
 brackets.

 Single-byte entities containing uninterpreted data are of type
 opaque.

4.3 . Vectors

 A vector (single-dimensioned array) is a stream of homogeneous data
 elements. The size of the vector may be specified at documentation
 time or left unspecified until runtime. In either case, the length
 declares the number of bytes, not the number of elements, in the
 vector. The syntax for specifying a new type, T’, that is a fixed-
 length vector of type T is

 T T’[n];

 Here, T’ occupies n bytes in the data stream, where n is a multiple
 of the size of T. The length of the vector is not included in the
 encoded stream.

 In the following example, Datum is defined to be three consecutive
 bytes that the protocol does not interpret, while Data is three
 consecutive Datum, consuming a total of nine bytes.

 opaque Datum[3]; /* three uninterpreted bytes */
 Datum Data[9]; /* 3 consecutive 3 byte vectors */

 Variable-length vectors are defined by specifying a subrange of legal
 lengths, inclusively, using the notation <floor..ceiling>. When
 these are encoded, the actual length precedes the vector’s contents
 in the byte stream. The length will be in the form of a number
 consuming as many bytes as required to hold the vector’s specified
 maximum (ceiling) length. A variable-length vector with an actual
 length field of zero is referred to as an empty vector.

 T T’<floor..ceiling>;

Rescorla Expires September 22, 2016 [Page 11]

Internet-Draft TLS March 2016

 In the following example, mandatory is a vector that must contain
 between 300 and 400 bytes of type opaque. It can never be empty.
 The actual length field consumes two bytes, a uint16, which is
 sufficient to represent the value 400 (see Section 4.4). On the
 other hand, longer can represent up to 800 bytes of data, or 400
 uint16 elements, and it may be empty. Its encoding will include a
 two-byte actual length field prepended to the vector. The length of
 an encoded vector must be an even multiple of the length of a single
 element (for example, a 17-byte vector of uint16 would be illegal).

 opaque mandatory<300..400>;
 /* length field is 2 bytes, cannot be empty */
 uint16 longer<0..800>;
 /* zero to 400 16-bit unsigned integers */

4.4 . Numbers

 The basic numeric data type is an unsigned byte (uint8). All larger
 numeric data types are formed from fixed-length series of bytes
 concatenated as described in Section 4.1 and are also unsigned. The
 following numeric types are predefined.

 uint8 uint16[2];
 uint8 uint24[3];
 uint8 uint32[4];
 uint8 uint64[8];

 All values, here and elsewhere in the specification, are stored in
 network byte (big-endian) order; the uint32 represented by the hex
 bytes 01 02 03 04 is equivalent to the decimal value 16909060.

 Note that in some cases (e.g., DH parameters) it is necessary to
 represent integers as opaque vectors. In such cases, they are
 represented as unsigned integers (i.e., leading zero octets are not
 required even if the most significant bit is set).

4.5 . Enumerateds

 An additional sparse data type is available called enum. A field of
 type enum can only assume the values declared in the definition.
 Each definition is a different type. Only enumerateds of the same
 type may be assigned or compared. Every element of an enumerated
 must be assigned a value, as demonstrated in the following example.
 Since the elements of the enumerated are not ordered, they can be
 assigned any unique value, in any order.

 enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;

Rescorla Expires September 22, 2016 [Page 12]

Internet-Draft TLS March 2016

 An enumerated occupies as much space in the byte stream as would its
 maximal defined ordinal value. The following definition would cause
 one byte to be used to carry fields of type Color.

 enum { red(3), blue(5), white(7) } Color;

 One may optionally specify a value without its associated tag to
 force the width definition without defining a superfluous element.

 In the following example, Taste will consume two bytes in the data
 stream but can only assume the values 1, 2, or 4.

 enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

 The names of the elements of an enumeration are scoped within the
 defined type. In the first example, a fully qualified reference to
 the second element of the enumeration would be Color.blue. Such
 qualification is not required if the target of the assignment is well
 specified.

 Color color = Color.blue; /* overspecified, legal */
 Color color = blue; /* correct, type implicit */

 For enumerateds that are never converted to external representation,
 the numerical information may be omitted.

 enum { low, medium, high } Amount;

4.6 . Constructed Types

 Structure types may be constructed from primitive types for
 convenience. Each specification declares a new, unique type. The
 syntax for definition is much like that of C.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } [[T]];

 The fields within a structure may be qualified using the type’s name,
 with a syntax much like that available for enumerateds. For example,
 T.f2 refers to the second field of the previous declaration.
 Structure definitions may be embedded.

Rescorla Expires September 22, 2016 [Page 13]

Internet-Draft TLS March 2016

4.6.1 . Variants

 Defined structures may have variants based on some knowledge that is
 available within the environment. The selector must be an enumerated
 type that defines the possible variants the structure defines. There
 must be a case arm for every element of the enumeration declared in
 the select. Case arms have limited fall-through: if two case arms
 follow in immediate succession with no fields in between, then they
 both contain the same fields. Thus, in the example below, "orange"
 and "banana" both contain V2. Note that this is a new piece of
 syntax in TLS 1.2.

 The body of the variant structure may be given a label for reference.
 The mechanism by which the variant is selected at runtime is not
 prescribed by the presentation language.

 struct {
 T1 f1;
 T2 f2;

 Tn fn;
 select (E) {
 case e1: Te1;
 case e2: Te2;
 case e3: case e4: Te3;

 case en: Ten;
 } [[fv]];
 } [[Tv]];

 For example:

Rescorla Expires September 22, 2016 [Page 14]

Internet-Draft TLS March 2016

 enum { apple, orange, banana } VariantTag;

 struct {
 uint16 number;
 opaque string<0..10>; /* variable length */
 } V1;

 struct {
 uint32 number;
 opaque string[10]; /* fixed length */
 } V2;

 struct {
 select (VariantTag) { /* value of selector is implicit */
 case apple:
 V1; /* VariantBody, tag = apple */
 case orange:
 case banana:
 V2; /* VariantBody, tag = orange or banana */
 } variant_body; /* optional label on variant */
 } VariantRecord;

4.7 . Constants

 Typed constants can be defined for purposes of specification by
 declaring a symbol of the desired type and assigning values to it.

 Under-specified types (opaque, variable-length vectors, and
 structures that contain opaque) cannot be assigned values. No fields
 of a multi-element structure or vector may be elided.

 For example:

 struct {
 uint8 f1;
 uint8 f2;
 } Example1;

 Example1 ex1 = {1, 4}; /* assigns f1 = 1, f2 = 4 */

4.8 . Cryptographic Attributes

 The two cryptographic operations -- digital signing, and
 authenticated encryption with additional data (AEAD) -- are
 designated digitally-signed, and aead-ciphered, respectively. A
 field’s cryptographic processing is specified by prepending an
 appropriate key word designation before the field’s type

Rescorla Expires September 22, 2016 [Page 15]

Internet-Draft TLS March 2016

 specification. Cryptographic keys are implied by the current session
 state (see Section 5.1).

4.8.1 . Digital Signing

 A digitally-signed element is encoded as a struct DigitallySigned:

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } DigitallySigned;

 The algorithm field specifies the algorithm used (see Section 6.3.2.1
 for the definition of this field). The signature is a digital
 signature using those algorithms over the contents of the element.
 The contents themselves do not appear on the wire but are simply
 calculated. The length of the signature is specified by the signing
 algorithm and key.

 In previous versions of TLS, the ServerKeyExchange format meant that
 attackers can obtain a signature of a message with a chosen, 32-byte
 prefix. Because TLS 1.3 servers are likely to also implement prior
 versions, the contents of the element always start with 64 bytes of
 octet 32 in order to clear that chosen-prefix.

 Following that padding is a context string used to disambiguate
 signatures for different purposes. The context string will be
 specified whenever a digitally-signed element is used. A single 0
 byte is appended to the context to act as a separator.

 Finally, the specified contents of the digitally-signed structure
 follow the 0 byte after the context string. (See the example at the
 end of this section.)

 The combined input is then fed into the corresponding signature
 algorithm to produce the signature value on the wire. See
 Section 6.3.2.1 for algorithms defined in this specification.

 In the following example

 struct {
 uint8 field1;
 uint8 field2;
 digitally-signed opaque {
 uint8 field3<0..255>;
 uint8 field4;
 };
 } UserType;

Rescorla Expires September 22, 2016 [Page 16]

Internet-Draft TLS March 2016

 Assume that the context string for the signature was specified as
 "Example". The input for the signature/hash algorithm would be:

 20
 20
 4578616d706c6500

 followed by the encoding of the inner struct (field3 and field4).

 The length of the structure, in bytes, would be equal to two bytes
 for field1 and field2, plus two bytes for the signature algorithm,
 plus two bytes for the length of the signature, plus the length of
 the output of the signing algorithm. The length of the signature is
 known because the algorithm and key used for the signing are known
 prior to encoding or decoding this structure.

4.8.2 . Authenticated Encryption with Additional Data (AEAD)

 In AEAD encryption, the plaintext is simultaneously encrypted and
 integrity protected. The input may be of any length, and aead-
 ciphered output is generally larger than the input in order to
 accommodate the integrity check value.

5. The TLS Record Protocol

 The TLS Record Protocol is a layered protocol. At each layer,
 messages may include fields for length, description, and content.
 The TLS Record Protocol takes messages to be transmitted, fragments
 the data into manageable blocks, protects the records, and transmits
 the result. Received data is decrypted and verified, reassembled,
 and then delivered to higher-level clients.

 Three protocols that use the TLS Record Protocol are described in
 this document: the TLS Handshake Protocol, the Alert Protocol, and
 the application data protocol. In order to allow extension of the
 TLS protocol, additional record content types can be supported by the
 TLS Record Protocol. New record content type values are assigned by
 IANA in the TLS Content Type Registry as described in Section 11 .

 Implementations MUST NOT send record types not defined in this
 document unless negotiated by some extension. If a TLS
 implementation receives an unexpected record type, it MUST send an
 "unexpected_message" alert.

 Any protocol designed for use over TLS must be carefully designed to
 deal with all possible attacks against it. As a practical matter,
 this means that the protocol designer must be aware of what security

Rescorla Expires September 22, 2016 [Page 17]

Internet-Draft TLS March 2016

 properties TLS does and does not provide and cannot safely rely on
 the latter.

 Note in particular that the length of a record or absence of traffic
 itself is not protected by encryption unless the sender uses the
 supplied padding mechanism - see Section 5.2.3 for more details.

5.1 . Connection States

 [[TODO: I plan to totally rewrite or remove this. IT seems like just
 cruft.]]

 A TLS connection state is the operating environment of the TLS Record
 Protocol. It specifies a record protection algorithm and its
 parameters as well as the record protection keys and IVs for the
 connection in both the read and the write directions. The security
 parameters are set by the TLS Handshake Protocol, which also
 determines when new cryptographic keys are installed and used for
 record protection. The initial current state always specifies that
 records are not protected.

 The security parameters for a TLS Connection read and write state are
 set by providing the following values:

 connection end
 Whether this entity is considered the "client" or the "server" in
 this connection.

 Hash algorithm
 An algorithm used to generate keys from the appropriate secret
 (see Section 7.1 and Section 7.3).

 record protection algorithm
 The algorithm to be used for record protection. This algorithm
 must be of the AEAD type and thus provides integrity and
 confidentiality as a single primitive. This specification
 includes the key size of this algorithm and of the nonce for the
 AEAD algorithm.

 master secret
 A 48-byte secret shared between the two peers in the connection
 and used to generate keys for protecting data.

 client random
 A 32-byte value provided by the client.

 server random
 A 32-byte value provided by the server.

Rescorla Expires September 22, 2016 [Page 18]

Internet-Draft TLS March 2016

 These parameters are defined in the presentation language as:

 enum { server, client } ConnectionEnd;

 enum { tls_kdf_sha256, tls_kdf_sha384 } KDFAlgorithm;

 enum { aes_gcm } RecordProtAlgorithm;

 /* The algorithms specified in KDFAlgorithm and
 RecordProtAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;
 KDFAlgorithm kdf_algorithm;
 RecordProtAlgorithm record_prot_algorithm;
 uint8 enc_key_length;
 uint8 iv_length;
 opaque hs_master_secret[48];
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

 [TODO: update this to handle new key hierarchy.]

 The connection state will use the security parameters to generate the
 following four items:

 client write key
 server write key
 client write iv
 server write iv

 The client write parameters are used by the server when receiving and
 processing records and vice versa. The algorithm used for generating
 these items from the security parameters is described in Section 7.3 .

 Once the security parameters have been set and the keys have been
 generated, the connection states can be instantiated by making them
 the current states. These current states MUST be updated for each
 record processed. Each connection state includes the following
 elements:

 cipher state
 The current state of the encryption algorithm. This will consist
 of the scheduled key for that connection.

 sequence number

Rescorla Expires September 22, 2016 [Page 19]

Internet-Draft TLS March 2016

 Each connection state contains a sequence number, which is
 maintained separately for read and write states. The sequence
 number is set to zero at the beginning of a connection, and
 whenever the key is changed. The sequence number is incremented
 after each record: specifically, the first record transmitted
 under a particular connection state and record key MUST use
 sequence number 0. Sequence numbers are of type uint64 and MUST
 NOT exceed 2^64-1. Sequence numbers do not wrap. If a TLS
 implementation would need to wrap a sequence number, it MUST
 either rekey (Section 6.3.5.3) or terminate the connection.

5.2 . Record Layer

 The TLS record layer receives uninterpreted data from higher layers
 in non-empty blocks of arbitrary size.

5.2.1 . Fragmentation

 The record layer fragments information blocks into TLSPlaintext
 records carrying data in chunks of 2^14 bytes or less. Client
 message boundaries are not preserved in the record layer (i.e.,
 multiple client messages of the same ContentType MAY be coalesced
 into a single TLSPlaintext record, or a single message MAY be
 fragmented across several records). Alert messages Section 6.1 MUST
 NOT be fragmented across records.

 struct {
 uint8 major;
 uint8 minor;
 } ProtocolVersion;

 enum {
 alert(21),
 handshake(22),
 application_data(23)
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 type
 The higher-level protocol used to process the enclosed fragment.

Rescorla Expires September 22, 2016 [Page 20]

Internet-Draft TLS March 2016

 record_version
 The protocol version the current record is compatible with. This
 value MUST be set to { 3, 1 } for all records. This field is
 deprecated and MUST be ignored for all purposes.

 length
 The length (in bytes) of the following TLSPlaintext.fragment. The
 length MUST NOT exceed 2^14.

 fragment
 The application data. This data is transparent and treated as an
 independent block to be dealt with by the higher-level protocol
 specified by the type field.

 This document describes TLS Version 1.3, which uses the version { 3,
 4 }. The version value 3.4 is historical, deriving from the use of {
 3, 1 } for TLS 1.0 and { 3, 0 } for SSL 3.0. In order to maximize
 backwards compatibility, the record layer version identifies as
 simply TLS 1.0. Endpoints supporting other versions negotiate the
 version to use by following the procedure and requirements in
 Appendix C .

 Implementations MUST NOT send zero-length fragments of Handshake or
 Alert types, even if those fragments contain padding. Zero-length
 fragments of Application data MAY be sent as they are potentially
 useful as a traffic analysis countermeasure.

 When record protection has not yet been engaged, TLSPlaintext
 structures are written directly onto the wire. Once record
 protection has started, TLSPlaintext records are protected and sent
 as described in the following section.

5.2.2 . Record Payload Protection

 The record protection functions translate a TLSPlaintext structure
 into a TLSCiphertext. The deprotection functions reverse the
 process. In TLS 1.3 as opposed to previous versions of TLS, all
 ciphers are modeled as "Authenticated Encryption with Additional
 Data" (AEAD) [RFC5116]. AEAD functions provide a unified encryption
 and authentication operation which turns plaintext into authenticated
 ciphertext and back again.

 AEAD ciphers take as input a single key, a nonce, a plaintext, and
 "additional data" to be included in the authentication check, as
 described in Section 2.1 of [RFC5116] . The key is either the
 client_write_key or the server_write_key and in TLS 1.3 the
 additional data input is empty (zero length).

Rescorla Expires September 22, 2016 [Page 21]

https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc5116#section-2.1

Internet-Draft TLS March 2016

 struct {
 ContentType opaque_type = application_data(23); /* see fragment.type */
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 aead-ciphered struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } fragment;
 } TLSCiphertext;

 opaque_type
 The outer opaque_type field of a TLSCiphertext record is always
 set to the value 23 (application_data) for outward compatibility
 with middleboxes used to parsing previous versions of TLS. The
 actual content type of the record is found in fragment.type after
 decryption.

 record_version
 The record_version field is identical to
 TLSPlaintext.record_version and is always { 3, 1 }. Note that the
 handshake protocol including the ClientHello and ServerHello
 messages authenticates the protocol version, so this value is
 redundant.

 length
 The length (in bytes) of the following TLSCiphertext.fragment.
 The length MUST NOT exceed 2^14 + 256. An endpoint that receives
 a record that exceeds this length MUST generate a fatal
 "record_overflow" alert.

 fragment.content
 The cleartext of TLSPlaintext.fragment.

 fragment.type
 The actual content type of the record.

 fragment.zeros
 An arbitrary-length run of zero-valued bytes may appear in the
 cleartext after the type field. This provides an opportunity for
 senders to pad any TLS record by a chosen amount as long as the
 total stays within record size limits. See Section 5.2.3 for more
 details.

 fragment
 The AEAD encrypted form of TLSPlaintext.fragment +
 TLSPlaintext.type + zeros, where "+" denotes concatenation.

Rescorla Expires September 22, 2016 [Page 22]

Internet-Draft TLS March 2016

 The length of the per-record nonce (iv_length) is set to max(8 bytes,
 N_MIN) for the AEAD algorithm (see [RFC5116] Section 4). An AEAD
 algorithm where N_MAX is less than 8 bytes MUST NOT be used with TLS.
 The per-record nonce for the AEAD construction is formed as follows:

 1. The 64-bit record sequence number is padded to the left with
 zeroes to iv_length.

 2. The padded sequence number is XORed with the static
 client_write_iv or server_write_iv, depending on the role.

 The resulting quantity (of length iv_length) is used as the per-
 record nonce.

 Note: This is a different construction from that in TLS 1.2, which
 specified a partially explicit nonce.

 The plaintext is the concatenation of TLSPlaintext.fragment and
 TLSPlaintext.type.

 The AEAD output consists of the ciphertext output by the AEAD
 encryption operation. The length of the plaintext is greater than
 TLSPlaintext.length due to the inclusion of TLSPlaintext.type and
 however much padding is supplied by the sender. The length of
 aead_output will generally be larger than the plaintext, but by an
 amount that varies with the AEAD cipher. Since the ciphers might
 incorporate padding, the amount of overhead could vary with different
 lengths of plaintext. Symbolically,

 AEADEncrypted =
 AEAD-Encrypt(write_key, nonce, plaintext of fragment)

 In order to decrypt and verify, the cipher takes as input the key,
 nonce, and the AEADEncrypted value. The output is either the
 plaintext or an error indicating that the decryption failed. There
 is no separate integrity check. That is:

 plaintext of fragment =
 AEAD-Decrypt(write_key, nonce, AEADEncrypted)

 If the decryption fails, a fatal "bad_record_mac" alert MUST be
 generated.

 An AEAD cipher MUST NOT produce an expansion of greater than 255
 bytes. An endpoint that receives a record from its peer with
 TLSCipherText.length larger than 2^14 + 256 octets MUST generate a
 fatal "record_overflow" alert. This limit is derived from the

Rescorla Expires September 22, 2016 [Page 23]

https://tools.ietf.org/pdf/rfc5116#section-4

Internet-Draft TLS March 2016

 maximum TLSPlaintext length of 2^14 octets + 1 octet for ContentType
 + the maximum AEAD expansion of 255 octets.

5.2.3 . Record Padding

 All encrypted TLS records can be padded to inflate the size of the
 TLSCipherText. This allows the sender to hide the size of the
 traffic from an observer.

 When generating a TLSCiphertext record, implementations MAY choose to
 pad. An unpadded record is just a record with a padding length of
 zero. Padding is a string of zero-valued bytes appended to the
 ContentType field before encryption. Implementations MUST set the
 padding octets to all zeros before encrypting.

 Application Data records may contain a zero-length fragment.content
 if the sender desires. This permits generation of plausibly-sized
 cover traffic in contexts where the presence or absence of activity
 may be sensitive. Implementations MUST NOT send Handshake or Alert
 records that have a zero-length fragment.content.

 The padding sent is automatically verified by the record protection
 mechanism: Upon successful decryption of a TLSCiphertext.fragment,
 the receiving implementation scans the field from the end toward the
 beginning until it finds a non-zero octet. This non-zero octet is
 the content type of the message.

 Implementations MUST limit their scanning to the cleartext returned
 from the AEAD decryption. If a receiving implementation does not
 find a non-zero octet in the cleartext, it should treat the record as
 having an unexpected ContentType, sending an "unexpected_message"
 alert.

 The presence of padding does not change the overall record size
 limitations - the full fragment plaintext may not exceed 2^14 octets.

 Versions of TLS prior to 1.3 had limited support for padding. This
 padding scheme was selected because it allows padding of any
 encrypted TLS record by an arbitrary size (from zero up to TLS record
 size limits) without introducing new content types. The design also
 enforces all-zero padding octets, which allows for quick detection of
 padding errors.

 Selecting a padding policy that suggests when and how much to pad is
 a complex topic, and is beyond the scope of this specification. If
 the application layer protocol atop TLS permits padding, it may be
 preferable to pad application_data TLS records within the application
 layer. Padding for encrypted handshake and alert TLS records must

Rescorla Expires September 22, 2016 [Page 24]

Internet-Draft TLS March 2016

 still be handled at the TLS layer, though. Later documents may
 define padding selection algorithms, or define a padding policy
 request mechanism through TLS extensions or some other means.

6. The TLS Handshaking Protocols

 TLS has three subprotocols that are used to allow peers to agree upon
 security parameters for the record layer, to authenticate themselves,
 to instantiate negotiated security parameters, and to report error
 conditions to each other.

 The TLS Handshake Protocol is responsible for negotiating a session,
 which consists of the following items:

 peer certificate
 X509v3 [RFC5280] certificate of the peer. This element of the
 state may be null.

 cipher spec
 Specifies the authentication and key establishment algorithms, the
 hash for use with HKDF to generate keying material, and the record
 protection algorithm (See Appendix A.5 for formal definition.)

 resumption master secret
 a secret shared between the client and server that can be used as
 a pre-shared symmetric key (PSK) in future connections.

 These items are then used to create security parameters for use by
 the record layer when protecting application data. Many connections
 can be instantiated using the same session using a PSK established in
 an initial handshake.

6.1 . Alert Protocol

 One of the content types supported by the TLS record layer is the
 alert type. Alert messages convey the severity of the message
 (warning or fatal) and a description of the alert. Alert messages
 with a level of fatal result in the immediate termination of the
 connection. In this case, other connections corresponding to the
 session may continue, but the session identifier MUST be invalidated,
 preventing the failed session from being used to establish new
 connections. Like other messages, alert messages are encrypted as
 specified by the current connection state.

Rescorla Expires September 22, 2016 [Page 25]

https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS March 2016

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 end_of_early_data(1),
 unexpected_message(10), /* fatal */
 bad_record_mac(20), /* fatal */
 record_overflow(22), /* fatal */
 handshake_failure(40), /* fatal */
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47), /* fatal */
 unknown_ca(48), /* fatal */
 access_denied(49), /* fatal */
 decode_error(50), /* fatal */
 decrypt_error(51), /* fatal */
 protocol_version(70), /* fatal */
 insufficient_security(71), /* fatal */
 internal_error(80), /* fatal */
 inappropriate_fallback(86), /* fatal */
 user_canceled(90),
 missing_extension(109), /* fatal */
 unsupported_extension(110), /* fatal */
 certificate_unobtainable(111),
 unrecognized_name(112),
 bad_certificate_status_response(113), /* fatal */
 bad_certificate_hash_value(114), /* fatal */
 unknown_psk_identity(115),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

6.1.1 . Closure Alerts

 The client and the server must share knowledge that the connection is
 ending in order to avoid a truncation attack. Failure to properly
 close a connection does not prohibit a session from being resumed.

 close_notify

Rescorla Expires September 22, 2016 [Page 26]

Internet-Draft TLS March 2016

 This alert notifies the recipient that the sender will not send
 any more messages on this connection. Any data received after a
 closure MUST be ignored.

 end_of_early_data
 This alert is sent by the client to indicate that all 0-RTT
 application_data messages have been transmitted (or none will be
 sent at all) and that this is the end of the flight. This alert
 MUST be at the warning level. Servers MUST NOT send this alert
 and clients receiving it MUST terminate the connection with an
 "unexpected_message" alert.

 user_canceled
 This alert notifies the recipient that the sender is canceling the
 handshake for some reason unrelated to a protocol failure. If a
 user cancels an operation after the handshake is complete, just
 closing the connection by sending a "close_notify" is more
 appropriate. This alert SHOULD be followed by a "close_notify".
 This alert is generally a warning.

 Either party MAY initiate a close by sending a "close_notify" alert.
 Any data received after a closure alert is ignored. If a transport-
 level close is received prior to a "close_notify", the receiver
 cannot know that all the data that was sent has been received.

 Each party MUST send a "close_notify" alert before closing the write
 side of the connection, unless some other fatal alert has been
 transmitted. The other party MUST respond with a "close_notify"
 alert of its own and close down the connection immediately,
 discarding any pending writes. The initiator of the close need not
 wait for the responding "close_notify" alert before closing the read
 side of the connection.

 If the application protocol using TLS provides that any data may be
 carried over the underlying transport after the TLS connection is
 closed, the TLS implementation must receive the responding
 "close_notify" alert before indicating to the application layer that
 the TLS connection has ended. If the application protocol will not
 transfer any additional data, but will only close the underlying
 transport connection, then the implementation MAY choose to close the
 transport without waiting for the responding "close_notify". No part
 of this standard should be taken to dictate the manner in which a
 usage profile for TLS manages its data transport, including when
 connections are opened or closed.

 Note: It is assumed that closing a connection reliably delivers
 pending data before destroying the transport.

Rescorla Expires September 22, 2016 [Page 27]

Internet-Draft TLS March 2016

6.1.2 . Error Alerts

 Error handling in the TLS Handshake Protocol is very simple. When an
 error is detected, the detecting party sends a message to its peer.
 Upon transmission or receipt of a fatal alert message, both parties
 immediately close the connection. Servers and clients MUST forget
 any session-identifiers, keys, and secrets associated with a failed
 connection. Thus, any connection terminated with a fatal alert MUST
 NOT be resumed.

 Whenever an implementation encounters a condition which is defined as
 a fatal alert, it MUST send the appropriate alert prior to closing
 the connection. For all errors where an alert level is not
 explicitly specified, the sending party MAY determine at its
 discretion whether to treat this as a fatal error or not. If the
 implementation chooses to send an alert but intends to close the
 connection immediately afterwards, it MUST send that alert at the
 fatal alert level.

 If an alert with a level of warning is sent and received, generally
 the connection can continue normally. If the receiving party decides
 not to proceed with the connection (e.g., after having received a
 "user_canceled" alert that it is not willing to accept), it SHOULD
 send a fatal alert to terminate the connection. Given this, the
 sending peer cannot, in general, know how the receiving party will
 behave. Therefore, warning alerts are not very useful when the
 sending party wants to continue the connection, and thus are
 sometimes omitted. For example, if a party decides to accept an
 expired certificate (perhaps after confirming this with the user) and
 wants to continue the connection, it would not generally send a
 "certificate_expired" alert.

 The following error alerts are defined:

 unexpected_message
 An inappropriate message was received. This alert is always fatal
 and should never be observed in communication between proper
 implementations.

 bad_record_mac
 This alert is returned if a record is received which cannot be
 deprotected. Because AEAD algorithms combine decryption and
 verification, this alert is used for all deprotection failures.
 This alert is always fatal and should never be observed in
 communication between proper implementations (except when messages
 were corrupted in the network).

 record_overflow

Rescorla Expires September 22, 2016 [Page 28]

Internet-Draft TLS March 2016

 A TLSCiphertext record was received that had a length more than
 2^14 + 256 bytes, or a record decrypted to a TLSPlaintext record
 with more than 2^14 bytes. This alert is always fatal and should
 never be observed in communication between proper implementations
 (except when messages were corrupted in the network).

 handshake_failure
 Reception of a "handshake_failure" alert message indicates that
 the sender was unable to negotiate an acceptable set of security
 parameters given the options available. This alert is always
 fatal.

 bad_certificate
 A certificate was corrupt, contained signatures that did not
 verify correctly, etc.

 unsupported_certificate
 A certificate was of an unsupported type.

 certificate_revoked
 A certificate was revoked by its signer.

 certificate_expired
 A certificate has expired or is not currently valid.

 certificate_unknown
 Some other (unspecified) issue arose in processing the
 certificate, rendering it unacceptable.

 illegal_parameter
 A field in the handshake was out of range or inconsistent with
 other fields. This alert is always fatal.

 unknown_ca
 A valid certificate chain or partial chain was received, but the
 certificate was not accepted because the CA certificate could not
 be located or couldn’t be matched with a known, trusted CA. This
 alert is always fatal.

 access_denied
 A valid certificate or PSK was received, but when access control
 was applied, the sender decided not to proceed with negotiation.
 This alert is always fatal.

 decode_error
 A message could not be decoded because some field was out of the
 specified range or the length of the message was incorrect. This
 alert is always fatal and should never be observed in

Rescorla Expires September 22, 2016 [Page 29]

Internet-Draft TLS March 2016

 communication between proper implementations (except when messages
 were corrupted in the network).

 decrypt_error
 A handshake cryptographic operation failed, including being unable
 to correctly verify a signature or validate a Finished message.
 This alert is always fatal.

 protocol_version
 The protocol version the peer has attempted to negotiate is
 recognized but not supported. (For example, old protocol versions
 might be avoided for security reasons.) This alert is always
 fatal.

 insufficient_security
 Returned instead of "handshake_failure" when a negotiation has
 failed specifically because the server requires ciphers more
 secure than those supported by the client. This alert is always
 fatal.

 internal_error
 An internal error unrelated to the peer or the correctness of the
 protocol (such as a memory allocation failure) makes it impossible
 to continue. This alert is always fatal.

 inappropriate_fallback
 Sent by a server in response to an invalid connection retry
 attempt from a client. (see [RFC7507]) This alert is always fatal.

 missing_extension
 Sent by endpoints that receive a hello message not containing an
 extension that is mandatory to send for the offered TLS version.
 This message is always fatal. [[TODO: IANA Considerations.]]

 unsupported_extension
 Sent by endpoints receiving any hello message containing an
 extension known to be prohibited for inclusion in the given hello
 message, including any extensions in a ServerHello not first
 offered in the corresponding ClientHello. This alert is always
 fatal.

 certificate_unobtainable
 Sent by servers when unable to obtain a certificate from a URL
 provided by the client via the "client_certificate_url" extension
 [RFC6066].

 unrecognized_name

Rescorla Expires September 22, 2016 [Page 30]

https://tools.ietf.org/pdf/rfc7507
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS March 2016

 Sent by servers when no server exists identified by the name
 provided by the client via the "server_name" extension [RFC6066].

 bad_certificate_status_response
 Sent by clients when an invalid or unacceptable OCSP response is
 provided by the server via the "status_request" extension
 [RFC6066]. This alert is always fatal.

 bad_certificate_hash_value
 Sent by servers when a retrieved object does not have the correct
 hash provided by the client via the "client_certificate_url"
 extension [RFC6066]. This alert is always fatal.

 unknown_psk_identity
 Sent by servers when a PSK cipher suite is selected but no
 acceptable PSK identity is provided by the client. Sending this
 alert is OPTIONAL; servers MAY instead choose to send a
 "decrypt_error" alert to merely indicate an invalid PSK identity.
 [[TODO: This doesn’t really make sense with the current PSK
 negotiation scheme where the client provides multiple PSKs in
 flight 1. https://github .com/tlswg/tls13-spec/issues/230]]

 New Alert values are assigned by IANA as described in Section 11 .

6.2 . Handshake Protocol Overview

 The cryptographic parameters of the session state are produced by the
 TLS Handshake Protocol, which operates on top of the TLS record
 layer. When a TLS client and server first start communicating, they
 agree on a protocol version, select cryptographic algorithms,
 optionally authenticate each other, and establish shared secret
 keying material.

 TLS supports three basic key exchange modes:

 - Diffie-Hellman (of both the finite field and elliptic curve
 varieties).

 - A pre-shared symmetric key (PSK)

 - A combination of a symmetric key and Diffie-Hellman

 Which mode is used depends on the negotiated cipher suite.
 Conceptually, the handshake establishes three secrets which are used
 to derive all the keys.

 Ephemeral Secret (ES): A secret which is derived from fresh (EC)DHE
 shares for this connection. Keying material derived from ES is

Rescorla Expires September 22, 2016 [Page 31]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://github/

Internet-Draft TLS March 2016

 intended to be forward secret (with the exception of pre-shared key
 only modes).

 Static Secret (SS): A secret which may be derived from static or
 semi-static keying material, such as a pre-shared key or the server’s
 semi-static (EC)DH share.

 Master Secret (MS): A secret derived from both the static and the
 ephemeral secret.

 In some cases, as with the DH handshake shown in Figure 1, the
 ephemeral and shared secrets are the same, but having both allows for
 a uniform key derivation scheme for all cipher modes.

 The basic TLS Handshake for DH is shown in Figure 1:

 Client Server

Key / ClientHello
Exch \ + key_share -------->
 ServerHello \ Key
 + key_share / Exch
 {EncryptedExtensions} ^
 {CertificateRequest*} | Server
 {ServerConfiguration*} v Params
 {Certificate*} ^
 {CertificateVerify*} | Auth
 {Finished} v
 <-------- [Application Data*]
 ^ {Certificate*}
Auth | {CertificateVerify*}
 v {Finished} -------->
 [Application Data] <-------> [Application Data]

 + Indicates extensions sent in the
 previously noted message.

 * Indicates optional or situation-dependent
 messages that are not always sent.

 {} Indicates messages protected using keys
 derived from the ephemeral secret.

 [] Indicates messages protected using keys
 derived from the master secret.

 Figure 1: Message flow for full TLS Handshake

Rescorla Expires September 22, 2016 [Page 32]

Internet-Draft TLS March 2016

 The handshake can be thought of as having three phases, indicated in
 the diagram above.

 Key Exchange: establish shared keying material and select the
 cryptographic parameters. Everything after this phase is encrypted.

 Server Parameters: establish other handshake parameters (whether the
 client is authenticated, support for 0-RTT, etc.)

 Authentication: authenticate the server (and optionally the client)
 and provide key confirmation and handshake integrity.

 In the Key Exchange phase, the client sends the ClientHello
 (Section 6.3.1.1) message, which contains a random nonce
 (ClientHello.random), its offered protocol version, cipher suite, and
 extensions, and one or more Diffie-Hellman key shares in the
 "key_share" extension Section 6.3.2.3 .

 The server processes the ClientHello and determines the appropriate
 cryptographic parameters for the connection. It then responds with
 its own ServerHello which indicates the negotiated connection
 parameters. [Section 6.3.1.2] If DH is in use, this will contain a
 "key_share" extension with the server’s ephemeral Diffie-Hellman
 share which MUST be in the same group as one of the shares offered by
 the client. The server’s KeyShare and the client’s KeyShare
 corresponding to the negotiated key exchange are used together to
 derive the Static Secret and Ephemeral Secret (in this mode they are
 the same). [Section 6.3.2.3]

 The server then sends three messages to establish the Server
 Parameters:

 EncryptedExtensions
 responses to any extensions which are not required in order to
 determine the cryptographic parameters. [Section 6.3.3.1]

 CertificateRequest
 if certificate-based client authentication is desired, the desired
 parameters for that certificate. This message will be omitted if
 client authentication is not desired. [[OPEN ISSUE: See
 https://github .com/tlswg/tls13-spec/issues/184]].
 [Section 6.3.3.2]

 ServerConfiguration
 supplies a configuration for 0-RTT handshakes (see Section 6.2.2).
 [Section 6.3.3.3]

Rescorla Expires September 22, 2016 [Page 33]

https://github/

Internet-Draft TLS March 2016

 Finally, the client and server exchange Authentication messages. TLS
 uses the same set of messages every time that authentication is
 needed. Specifically:

 Certificate
 the certificate of the endpoint. This message is omitted if
 certificate authentication is not being used. [Section 6.3.4.1]

 CertificateVerify
 a signature over the entire handshake using the public key in the
 Certificate message. This message will be omitted if the server
 is not authenticating via a certificate. [Section 6.3.4.2]

 Finished
 a MAC over the entire handshake. This message provides key
 confirmation, binds the endpoint’s identity to the exchanged keys,
 and in some modes (0-RTT and PSK) also authenticates the handshake
 using the the Static Secret. [Section 6.3.4.3]

 Upon receiving the server’s messages, the client responds with its
 Authentication messages, namely Certificate and CertificateVerify (if
 requested), and Finished.

 At this point, the handshake is complete, and the client and server
 may exchange application layer data. Application data MUST NOT be
 sent prior to sending the Finished message. Note that while the
 server may send application data prior to receiving the client’s
 Authentication messages, any data sent at that point is of course
 being sent to an unauthenticated peer.

 [[TODO: Move this elsewhere? Note that higher layers should not be
 overly reliant on whether TLS always negotiates the strongest
 possible connection between two endpoints. There are a number of
 ways in which a man-in-the-middle attacker can attempt to make two
 entities drop down to the least secure method they support (i.e.,
 perform a downgrade attack). The TLS protocol has been designed to
 minimize this risk, but there are still attacks available: for
 example, an attacker could block access to the port a secure service
 runs on, or attempt to get the peers to negotiate an unauthenticated
 connection. The fundamental rule is that higher levels must be
 cognizant of what their security requirements are and never transmit
 information over a channel less secure than what they require. The
 TLS protocol is secure in that any cipher suite offers its promised
 level of security: if you negotiate AES-GCM [GCM] with a 255-bit
 ECDHE key exchange with a host whose certificate chain you have
 verified, you can expect that to be reasonably "secure" against
 algorithmic attacks, at least in the year 2015.]]

Rescorla Expires September 22, 2016 [Page 34]

Internet-Draft TLS March 2016

6.2.1 . Incorrect DHE Share

 If the client has not provided an appropriate "key_share" extension
 (e.g. it includes only DHE or ECDHE groups unacceptable or
 unsupported by the server), the server corrects the mismatch with a
 HelloRetryRequest and the client will need to restart the handshake
 with an appropriate "key_share" extension, as shown in Figure 2:

 Client Server

 ClientHello
 + key_share -------->
 <-------- HelloRetryRequest

 ClientHello
 + key_share -------->
 ServerHello
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {ServerConfiguration*}
 {Certificate*}
 {CertificateVerify*}
 {Finished}
 <-------- [Application Data*]
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 2: Message flow for a full handshake with mismatched
 parameters

 [[OPEN ISSUE: Should we restart the handshake hash?
 https://github.com/tlswg/tls13-spec/issues/104 .]] [[OPEN ISSUE: We
 need to make sure that this flow doesn’t introduce downgrade issues.
 Potential options include continuing the handshake hashes (as long as
 clients don’t change their opinion of the server’s capabilities with
 aborted handshakes) and requiring the client to send the same
 ClientHello (as is currently done) and then checking you get the same
 negotiated parameters.]]

 If no common cryptographic parameters can be negotiated, the server
 will send a "handshake_failure" or "insufficient_security" fatal
 alert (see Section 6.1).

 TLS also allows several optimized variants of the basic handshake, as
 described below.

Rescorla Expires September 22, 2016 [Page 35]

https://github.com/tlswg/tls13-spec/issues/104

Internet-Draft TLS March 2016

6.2.2 . Zero-RTT Exchange

 TLS 1.3 supports a "0-RTT" mode in which the client can both
 authenticate and send application on its first flight, thus reducing
 handshake latency. In order to enable this functionality, the server
 provides a ServerConfiguration message containing a long-term (EC)DH
 share. On future connections to the same server, the client can use
 that share to protect the first-flight data.

 Client Server

 ClientHello
 + key_share
 + early_data
 ^ (Certificate*)
 0-RTT | (CertificateVerify*)
 Data | (Finished)
 v (Application Data*)
 (end_of_early_data) -------->
 ServerHello
 + early_data
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {ServerConfiguration*}
 {Certificate*}
 {CertificateVerify*}
 {Finished}
 <-------- [Application Data*]
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 * Indicates optional or situation-dependent
 messages that are not always sent.

 () Indicates messages protected using keys
 derived from the static secret.

 {} Indicates messages protected using keys
 derived from the ephemeral secret.

 [] Indicates messages protected using keys
 derived from the master secret.

 Figure 3: Message flow for a zero round trip handshake

Rescorla Expires September 22, 2016 [Page 36]

Internet-Draft TLS March 2016

 As shown in Figure 3, the Zero-RTT data is just added to the 1-RTT
 handshake in the first flight. Specifically, the client sends its
 Authentication messages after the ClientHello, followed by any
 application data. The rest of the handshake messages are the same as
 with Figure 1. This implies that the server can request client
 authentication even if the client offers a certificate on its first
 flight. This is consistent with the server being able to ask for
 client authentication after the handshake is complete (see
 Section 6.3.5.2). When offering PSK support, the "pre_shared_key"
 extension will be used instead of (or in addition to) the "key_share"
 extension as specified above.

 IMPORTANT NOTE: The security properties for 0-RTT data (regardless of
 the cipher suite) are weaker than those for other kinds of TLS data.
 Specifically:

 1. This data is not forward secret, because it is encrypted solely
 with the server’s semi-static (EC)DH share.

 2. There are no guarantees of non-replay between connections.
 Unless the server takes special measures outside those provided
 by TLS (See Section 6.3.2.5.2), the server has no guarantee that
 the same 0-RTT data was not transmitted on multiple 0-RTT
 connections. This is especially relevant if the data is
 authenticated either with TLS client authentication or inside the
 application layer protocol. However, 0-RTT data cannot be
 duplicated within a connection (i.e., the server will not process
 the same data twice for the same connection) and also cannot be
 sent as if it were ordinary TLS data.

 3. If the server key is compromised, then the attacker can tamper
 with the 0-RTT data without detection. If the client’s ephemeral
 share is compromised and client authentication is used, then the
 attacker can impersonate the client on subsequent connections.

6.2.3 . Resumption and Pre-Shared Key (PSK)

 Finally, TLS provides a pre-shared key (PSK) mode which allows a
 client and server who share an existing secret (e.g., a key
 established out of band) to establish a connection authenticated by
 that key. PSKs can also be established in a previous session and
 then reused ("session resumption"). Once a handshake has completed,
 the server can send the client a PSK identity which corresponds to a
 key derived from the initial handshake (See Section 6.3.5.1). The
 client can then use that PSK identity in future handshakes to
 negotiate use of the PSK; if the server accepts it, then the security
 context of the original connection is tied to the new connection. In
 TLS 1.2 and below, this functionality was provided by "session

Rescorla Expires September 22, 2016 [Page 37]

Internet-Draft TLS March 2016

 resumption" and "session tickets" [RFC5077]. Both mechanisms are
 obsoleted in TLS 1.3.

 PSK cipher suites can either use PSK in combination with an (EC)DHE
 exchange in order to provide forward secrecy in combination with
 shared keys, or can use PSKs alone, at the cost of losing forward
 secrecy.

 Figure 4 shows a pair of handshakes in which the first establishes a
 PSK and the second uses it:

 Client Server

 Initial Handshake:
 ClientHello
 + key_share -------->
 ServerHello
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {ServerConfiguration*}
 {Certificate*}
 {CertificateVerify*}
 {Finished}
 <-------- [Application Data*]
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 <-------- [NewSessionTicket]
 [Application Data] <-------> [Application Data]

 Subsequent Handshake:
 ClientHello
 + key_share
 + pre_shared_key -------->
 ServerHello
 + pre_shared_key
 {EncryptedExtensions}
 {Finished}
 <-------- [Application Data*]
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 4: Message flow for resumption and PSK

Rescorla Expires September 22, 2016 [Page 38]

https://tools.ietf.org/pdf/rfc5077

Internet-Draft TLS March 2016

 As the server is authenticating via a PSK, it does not send a
 Certificate or a CertificateVerify. PSK-based resumption cannot be
 used to provide a new ServerConfiguration. Note that the client
 supplies a KeyShare to the server as well, which allows the server to
 decline resumption and fall back to a full handshake.

 The contents and significance of each message will be presented in
 detail in the following sections.

6.3 . Handshake Protocol

 The TLS Handshake Protocol is one of the defined higher-level clients
 of the TLS Record Protocol. This protocol is used to negotiate the
 secure attributes of a session. Handshake messages are supplied to
 the TLS record layer, where they are encapsulated within one or more
 TLSPlaintext or TLSCiphertext structures, which are processed and
 transmitted as specified by the current active session state.

Rescorla Expires September 22, 2016 [Page 39]

Internet-Draft TLS March 2016

 enum {
 client_hello(1),
 server_hello(2),
 session_ticket(4),
 hello_retry_request(6),
 encrypted_extensions(8),
 certificate(11),
 certificate_request(13),
 certificate_verify(15),
 server_configuration(17),
 finished(20),
 key_update(24),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_retry_request: HelloRetryRequest;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case server_configuration: ServerConfiguration;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 } body;
 } Handshake;

 The TLS Handshake Protocol messages are presented below in the order
 they MUST be sent; sending handshake messages in an unexpected order
 results in an "unexpected_message" fatal error. Unneeded handshake
 messages can be omitted, however.

 New handshake message types are assigned by IANA as described in
 Section 11 .

6.3.1 . Key Exchange Messages

 The key exchange messages are used to exchange security capabilities
 between the client and server and to establish the traffic keys used
 to protect the handshake and the data.

Rescorla Expires September 22, 2016 [Page 40]

Internet-Draft TLS March 2016

6.3.1.1 . Client Hello

 When this message will be sent:

 When a client first connects to a server, it is required to send
 the ClientHello as its first message. The client will also send a
 ClientHello when the server has responded to its ClientHello with
 a ServerHello that selects cryptographic parameters that don’t
 match the client’s "key_share" extension. In that case, the
 client MUST send the same ClientHello (without modification)
 except including a new KeyShareEntry as the lowest priority share
 (i.e., appended to the list of shares in the KeyShare message).
 [[OPEN ISSUE: New random values? See: https://github.com/tlswg/
 tls13-spec/issues/185]] If a server receives a ClientHello at any
 other time, it MUST send a fatal "unexpected_message" alert and
 close the connection.

 Structure of this message:

 The ClientHello message includes a random structure, which is used
 later in the protocol.

 struct {
 opaque random_bytes[32];
 } Random;

 random_bytes
 32 bytes generated by a secure random number generator. See
 Appendix B for additional information.

 TLS 1.3 server implementations which respond to a ClientHello with a
 client_version indicating TLS 1.2 or below MUST set the first eight
 bytes of their Random value to the bytes:

 44 4F 57 4E 47 52 44 01

 TLS 1.2 server implementations which respond to a ClientHello with a
 client_version indicating TLS 1.1 or below SHOULD set the first eight
 bytes of their Random value to the bytes:

 44 4F 57 4E 47 52 44 00

 TLS 1.3 clients receiving a TLS 1.2 or below ServerHello MUST check
 that the top eight octets are not equal to either of these values.
 TLS 1.2 clients SHOULD also perform this check if the ServerHello
 indicates TLS 1.1 or below. If a match is found the client MUST
 abort the handshake with a fatal "illegal_parameter" alert. This
 mechanism provides limited protection against downgrade attacks over

Rescorla Expires September 22, 2016 [Page 41]

https://github.com/tlswg/

Internet-Draft TLS March 2016

 and above that provided by the Finished exchange: because the
 ServerKeyExchange includes a signature over both random values, it is
 not possible for an active attacker to modify the randoms without
 detection as long as ephemeral ciphers are used. It does not provide
 downgrade protection when static RSA is used.

 Note: This is an update to TLS 1.2 so in practice many TLS 1.2
 clients and servers will not behave as specified above.

 Note: Versions of TLS prior to TLS 1.3 used the top 32 bits of the
 Random value to encode the time since the UNIX epoch. The sentinel
 value above was selected to avoid conflicting with any valid TLS 1.2
 Random value and to have a low (2^{-64}) probability of colliding
 with randomly selected Random values.

 The cipher suite list, passed from the client to the server in the
 ClientHello message, contains the combinations of cryptographic
 algorithms supported by the client in order of the client’s
 preference (favorite choice first). Each cipher suite defines a key
 exchange algorithm, a record protection algorithm (including secret
 key length) and a hash to be used with HKDF. The server will select
 a cipher suite or, if no acceptable choices are presented, return a
 "handshake_failure" alert and close the connection. If the list
 contains cipher suites the server does not recognize, support, or
 wish to use, the server MUST ignore those cipher suites, and process
 the remaining ones as usual.

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion client_version = { 3, 4 }; /* TLS v1.3 */
 Random random;
 opaque legacy_session_id<0..32>;
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<0..2^16-1>;
 } ClientHello;

 TLS allows extensions to follow the compression_methods field in an
 extensions block. The presence of extensions can be detected by
 determining whether there are bytes following the compression_methods
 at the end of the ClientHello. Note that this method of detecting
 optional data differs from the normal TLS method of having a
 variable-length field, but it is used for compatibility with TLS
 before extensions were defined. As of TLS 1.3, all clients and
 servers will send at least one extension (at least "key_share" or
 "pre_shared_key").

Rescorla Expires September 22, 2016 [Page 42]

Internet-Draft TLS March 2016

 client_version
 The version of the TLS protocol by which the client wishes to
 communicate during this session. This SHOULD be the latest
 (highest valued) version supported by the client. For this
 version of the specification, the version will be { 3, 4 }. (See
 Appendix C for details about backward compatibility.)

 random
 A client-generated random structure.

 legacy_session_id
 Versions of TLS before TLS 1.3 supported a session resumption
 feature which has been merged with Pre-Shared Keys in this version
 (see Section 6.2.3). This field MUST be ignored by a server
 negotiating TLS 1.3 and SHOULD be set as a zero length vector
 (i.e., a single zero byte length field) by clients which do not
 have a cached session ID set by a pre-TLS 1.3 server.

 cipher_suites
 This is a list of the cryptographic options supported by the
 client, with the client’s first preference first. Values are
 defined in Appendix A.4 .

 legacy_compression_methods
 Versions of TLS before 1.3 supported compression and the list of
 compression methods was supplied in this field. For any TLS 1.3
 ClientHello, this vector MUST contain exactly one byte set to
 zero, which corresponds to the "null" compression method in prior
 versions of TLS. If a TLS 1.3 ClientHello is received with any
 other value in this field, the server MUST generate a fatal
 "illegal_parameter" alert. Note that TLS 1.3 servers might
 receive TLS 1.2 or prior ClientHellos which contain other
 compression methods and MUST follow the procedures for the
 appropriate prior version of TLS.

 extensions
 Clients request extended functionality from servers by sending
 data in the extensions field. The actual "Extension" format is
 defined in Section 6.3.2 .

 In the event that a client requests additional functionality using
 extensions, and this functionality is not supplied by the server, the
 client MAY abort the handshake. A server MUST accept ClientHello
 messages both with and without the extensions field, and (as for all
 other messages) it MUST check that the amount of data in the message
 precisely matches one of these formats; if not, then it MUST send a
 fatal "decode_error" alert.

Rescorla Expires September 22, 2016 [Page 43]

Internet-Draft TLS March 2016

 After sending the ClientHello message, the client waits for a
 ServerHello or HelloRetryRequest message.

6.3.1.2 . Server Hello

 When this message will be sent:

 The server will send this message in response to a ClientHello
 message when it was able to find an acceptable set of algorithms
 and the client’s "key_share" extension was acceptable. If the
 client proposed groups are not acceptable by the server, it will
 respond with a "handshake_failure" fatal alert.

 Structure of this message:

 struct {
 ProtocolVersion server_version;
 Random random;
 CipherSuite cipher_suite;
 Extension extensions<0..2^16-1>;
 } ServerHello;

 In prior versions of TLS, the extensions field could be omitted
 entirely if not needed, similar to ClientHello. As of TLS 1.3, all
 clients and servers will send at least one extension (at least
 "key_share" or "pre_shared_key").

 server_version
 This field will contain the lower of that suggested by the client
 in the ClientHello and the highest supported by the server. For
 this version of the specification, the version is { 3, 4 }. (See
 Appendix C for details about backward compatibility.)

 random
 This structure is generated by the server and MUST be generated
 independently of the ClientHello.random.

 cipher_suite
 The single cipher suite selected by the server from the list in
 ClientHello.cipher_suites. For resumed sessions, this field is
 the value from the state of the session being resumed. [[TODO:
 interaction with PSK.]]

 extensions
 A list of extensions. Note that only extensions offered by the
 client can appear in the server’s list. In TLS 1.3 as opposed to
 previous versions of TLS, the server’s extensions are split
 between the ServerHello and the EncryptedExtensions

Rescorla Expires September 22, 2016 [Page 44]

Internet-Draft TLS March 2016

 Section 6.3.3.1 message. The ServerHello MUST only include
 extensions which are required to establish the cryptographic
 context. Currently the only such extensions are "key_share",
 "pre_shared_key", and "early_data". Clients MUST check the
 ServerHello for the presence of any forbidden extensions and if
 any are found MUST terminate the handshake with a
 "illegal_parameter" alert.

6.3.1.3 . Hello Retry Request

 When this message will be sent:

 Servers send this message in response to a ClientHello message
 when it was able to find an acceptable set of algorithms and
 groups that are mutually supported, but the client’s KeyShare did
 not contain an acceptable offer. If it cannot find such a match,
 it will respond with a fatal "handshake_failure" alert.

 Structure of this message:

 struct {
 ProtocolVersion server_version;
 CipherSuite cipher_suite;
 NamedGroup selected_group;
 Extension extensions<0..2^16-1>;
 } HelloRetryRequest;

 [[OPEN ISSUE: Merge in DTLS Cookies?]]

 selected_group
 The mutually supported group the server intends to negotiate and
 is requesting a retried ClientHello/KeyShare for.

 The server_version, cipher_suite, and extensions fields have the same
 meanings as their corresponding values in the ServerHello. The
 server SHOULD send only the extensions necessary for the client to
 generate a correct ClientHello pair. As with ServerHello, a
 HelloRetryRequest MUST NOT contain any extensions that were not first
 offered by the client in its ClientHello.

 Upon receipt of a HelloRetryRequest, the client MUST first verify
 that the selected_group field corresponds to a group which was
 provided in the "supported_groups" extension in the original
 ClientHello. It MUST then verify that the selected_group field does
 not correspond to a group which was provided in the "key_share"
 extension in the original ClientHello. If either of these checks
 fails, then the client MUST abort the handshake with a fatal
 "handshake_failure" alert. Clients SHOULD also abort with

Rescorla Expires September 22, 2016 [Page 45]

Internet-Draft TLS March 2016

 "handshake_failure" in response to any second HelloRetryRequest which
 was sent in the same connection (i.e., where the ClientHello was
 itself in response to a HelloRetryRequest).

 Otherwise, the client MUST send a ClientHello with an updated
 KeyShare extension to the server. The client MUST append a new
 KeyShareEntry for the group indicated in the selected_group field to
 the groups in its original KeyShare.

 Upon re-sending the ClientHello and receiving the server’s
 ServerHello/KeyShare, the client MUST verify that the selected
 CipherSuite and NamedGroup match that supplied in the
 HelloRetryRequest. If either of these values differ, the client MUST
 abort the connection with a fatal "handshake_failure" alert.

 [[OPEN ISSUE: https://github .com/tlswg/tls13-spec/issues/104]]

6.3.2 . Hello Extensions

 The extension format is:

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 supported_groups(10),
 signature_algorithms(13),
 key_share(40),
 pre_shared_key(41),
 early_data(42),
 (65535)
 } ExtensionType;

 Here:

 - "extension_type" identifies the particular extension type.

 - "extension_data" contains information specific to the particular
 extension type.

 The initial set of extensions is defined in [RFC6066]. The list of
 extension types is maintained by IANA as described in Section 11 .

 An extension type MUST NOT appear in the ServerHello or
 HelloRetryRequest unless the same extension type appeared in the
 corresponding ClientHello. If a client receives an extension type in

Rescorla Expires September 22, 2016 [Page 46]

https://github/
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS March 2016

 ServerHello or HelloRetryRequest that it did not request in the
 associated ClientHello, it MUST abort the handshake with an
 "unsupported_extension" fatal alert.

 Nonetheless, "server-oriented" extensions may be provided in the
 future within this framework. Such an extension (say, of type x)
 would require the client to first send an extension of type x in a
 ClientHello with empty extension_data to indicate that it supports
 the extension type. In this case, the client is offering the
 capability to understand the extension type, and the server is taking
 the client up on its offer.

 When multiple extensions of different types are present in the
 ClientHello or ServerHello messages, the extensions MAY appear in any
 order. There MUST NOT be more than one extension of the same type.

 Finally, note that extensions can be sent both when starting a new
 session and when requesting session resumption or 0-RTT mode.
 Indeed, a client that requests session resumption does not in general
 know whether the server will accept this request, and therefore it
 SHOULD send the same extensions as it would send if it were not
 attempting resumption.

 In general, the specification of each extension type needs to
 describe the effect of the extension both during full handshake and
 session resumption. Most current TLS extensions are relevant only
 when a session is initiated: when an older session is resumed, the
 server does not process these extensions in ClientHello, and does not
 include them in ServerHello. However, some extensions may specify
 different behavior during session resumption. [[TODO: update this
 and the previous paragraph to cover PSK-based resumption.]]

 There are subtle (and not so subtle) interactions that may occur in
 this protocol between new features and existing features which may
 result in a significant reduction in overall security. The following
 considerations should be taken into account when designing new
 extensions:

 - Some cases where a server does not agree to an extension are error
 conditions, and some are simply refusals to support particular
 features. In general, error alerts should be used for the former,
 and a field in the server extension response for the latter.

 - Extensions should, as far as possible, be designed to prevent any
 attack that forces use (or non-use) of a particular feature by
 manipulation of handshake messages. This principle should be
 followed regardless of whether the feature is believed to cause a
 security problem. Often the fact that the extension fields are

Rescorla Expires September 22, 2016 [Page 47]

Internet-Draft TLS March 2016

 included in the inputs to the Finished message hashes will be
 sufficient, but extreme care is needed when the extension changes
 the meaning of messages sent in the handshake phase. Designers
 and implementors should be aware of the fact that until the
 handshake has been authenticated, active attackers can modify
 messages and insert, remove, or replace extensions.

 - It would be technically possible to use extensions to change major
 aspects of the design of TLS; for example the design of cipher
 suite negotiation. This is not recommended; it would be more
 appropriate to define a new version of TLS -- particularly since
 the TLS handshake algorithms have specific protection against
 version rollback attacks based on the version number, and the
 possibility of version rollback should be a significant
 consideration in any major design change.

6.3.2.1 . Signature Algorithms

 The client uses the "signature_algorithms" extension to indicate to
 the server which signature algorithms may be used in digital
 signatures.

 Clients which offer one or more cipher suites which use certificate
 authentication (i.e., any non-PSK cipher suite) MUST send the
 "signature_algorithms" extension. If this extension is not provided
 and no alternative cipher suite is available, the server MUST close
 the connection with a fatal "missing_extension" alert. (see
 Section 8.2)

 The "extension_data" field of this extension contains a
 "supported_signature_algorithms" value:

Rescorla Expires September 22, 2016 [Page 48]

Internet-Draft TLS March 2016

 enum {
 // RSASSA-PKCS-v1_5 algorithms.
 rsa_pkcs1_sha1 (0x0201),
 rsa_pkcs1_sha256 (0x0401),
 rsa_pkcs1_sha384 (0x0501),
 rsa_pkcs1_sha512 (0x0601),

 // DSA algorithms (deprecated).
 dsa_sha1 (0x0202),
 dsa_sha256 (0x0402),
 dsa_sha384 (0x0502),
 dsa_sha512 (0x0602),

 // ECDSA algorithms.
 ecdsa_secp256r1_sha256 (0x0403),
 ecdsa_secp384r1_sha384 (0x0503),
 ecdsa_secp521r1_sha512 (0x0603),

 // RSASSA-PSS algorithms.
 rsa_pss_sha256 (0x0700),
 rsa_pss_sha384 (0x0701),
 rsa_pss_sha512 (0x0702),

 // EdDSA algorithms.
 ed25519 (0x0703),
 ed448 (0x0704),

 // Reserved Code Points.
 private_use (0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 SignatureScheme supported_signature_algorithms<2..2^16-2>;

 Note: This production is named "SignatureScheme" because there is
 already a SignatureAlgorithm type in TLS 1.2. We use the term
 "signature algorithm" throughout the text.

 Each SignatureScheme value lists a single signature algorithm that
 the client is willing to verify. The values are indicated in
 descending order of preference. Note that a signature algorithm
 takes as input an arbitrary-length message, rather than a digest.
 Algorithms which traditionally act on a digest should be defined in
 TLS to first hash the input with a specified hash function and then
 proceed as usual.

 rsa_pkcs1_sha1, etc.

Rescorla Expires September 22, 2016 [Page 49]

Internet-Draft TLS March 2016

 Indicates a signature algorithm using RSASSA-PKCS1-v1_5 [RFC3447]
 with the corresponding hash algorithm as defined in [SHS]. These
 values refer solely to signatures which appear in certificates
 (see Section 6.3.4.1.1) and are not defined for use in signed TLS
 handshake messages (see Section 4.8.1).

 ecdsa_secp256r1_sha256, etc.
 Indicates a signature algorithm using ECDSA [ECDSA], the
 corresponding curve as defined in ANSI X9.62 [X962] and FIPS 186-4
 [DSS], and the corresponding hash algorithm as defined in [SHS].
 The signature is represented as a DER-encoded [X690] ECDSA-Sig-
 Value structure.

 rsa_pss_sha256, etc.
 Indicates a signature algorithm using RSASSA-PSS [RFC3447] with
 MGF1. The digest used in the mask generation function and the
 digest being signed are both the corresponding hash algorithm as
 defined in [SHS]. When used in signed TLS handshake messages (see
 Section 4.8.1), the length of the salt MUST be equal to the length
 of the digest output.

 ed25519, ed448
 Indicates a signature algorithm using EdDSA as defined in
 [I-D.irtf-cfrg-eddsa] or its successors. Note that these
 correspond to the "PureEdDSA" algorithms and not the "prehash"
 variants.

 The semantics of this extension are somewhat complicated because the
 cipher suite adds additional constraints on signature algorithms.
 Section 6.3.4.1.1 describes the appropriate rules.

 rsa_pkcs1_sha1 and dsa_sha1 SHOULD NOT be offered. Clients offering
 these values for backwards compatibility MUST list them as the lowest
 priority (listed after all other algorithms in the
 supported_signature_algorithms vector). TLS 1.3 servers MUST NOT
 offer a SHA-1 signed certificate unless no valid certificate chain
 can be produced without it (see Section 6.3.4.1.1).

 The signatures on certificates that are self-signed or certificates
 that are trust anchors are not validated since they begin a
 certification path (see [RFC5280], Section 3.2). A certificate that
 begins a certification path MAY use a signature algorithm that is not
 advertised as being supported in the "signature_algorithms"
 extension.

 Note that TLS 1.2 defines this extension differently. TLS 1.3
 implementations willing to negotiate TLS 1.2 MUST behave in

Rescorla Expires September 22, 2016 [Page 50]

https://tools.ietf.org/pdf/rfc3447
https://tools.ietf.org/pdf/rfc3447
https://tools.ietf.org/pdf/rfc5280#section-3.2

Internet-Draft TLS March 2016

 accordance with the requirements of [RFC5246] when negotiating that
 version. In particular:

 - TLS 1.2 ClientHellos may omit this extension.

 - In TLS 1.2, the extension contained hash/signature pairs. The
 pairs are encoded in two octets, so SignatureScheme values have
 been allocated to align with TLS 1.2’s encoding. Some legacy
 pairs are left unallocated. These algorithms are deprecated as of
 TLS 1.3. They MUST NOT be offered or negotiated by any
 implementation. In particular, MD5 [SLOTH] and SHA-224 MUST NOT
 be used.

 - ecdsa_secp256r1_sha256, etc., align with TLS 1.2’s ECDSA hash/
 signature pairs. However, the old semantics did not constrain the
 signing curve.

6.3.2.2 . Negotiated Groups

 When sent by the client, the "supported_groups" extension indicates
 the named groups which the client supports, ordered from most
 preferred to least preferred.

 Note: In versions of TLS prior to TLS 1.3, this extension was named
 "elliptic_curves" and only contained elliptic curve groups. See
 [RFC4492] and [I-D.ietf-tls-negotiated-ff-dhe]. This extension was
 also used to negotiate ECDSA curves. Signature algorithms are now
 negotiated independently (see Section 6.3.2.1).

 Clients which offer one or more (EC)DHE cipher suites MUST send at
 least one supported NamedGroup value and servers MUST NOT negotiate
 any of these cipher suites unless a supported value was provided. If
 this extension is not provided and no alternative cipher suite is
 available, the server MUST close the connection with a fatal
 "missing_extension" alert. (see Section 8.2) If the extension is
 provided, but no compatible group is offered, the server MUST NOT
 negotiate a cipher suite of the relevant type. For instance, if a
 client supplies only ECDHE groups, the server MUST NOT negotiate
 finite field Diffie-Hellman. If no acceptable group can be selected
 across all cipher suites, then the server MUST generate a fatal
 "handshake_failure" alert.

 The "extension_data" field of this extension contains a
 "NamedGroupList" value:

Rescorla Expires September 22, 2016 [Page 51]

https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS March 2016

 enum {
 // Elliptic Curve Groups (ECDHE).
 secp256r1 (23), secp384r1 (24), secp521r1 (25),
 x25519 (29), x448 (30),

 // Finite Field Groups (DHE).
 ffdhe2048 (256), ffdhe3072 (257), ffdhe4096 (258),
 ffdhe6144 (259), ffdhe8192 (260),

 // Reserved Code Points.
 ffdhe_private_use (0x01FC..0x01FF),
 ecdhe_private_use (0xFE00..0xFEFF),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<1..2^16-1>;
 } NamedGroupList;

 secp256r1, etc.
 Indicates support of the corresponding named curve. Note that
 some curves are also recommended in ANSI X9.62 [X962] and FIPS
 186-4 [DSS]. Others are recommended in [I-D.irtf-cfrg-curves].
 Values 0xFE00 through 0xFEFF are reserved for private use.

 ffdhe2048, etc.
 Indicates support of the corresponding finite field group, defined
 in [I-D.ietf-tls-negotiated-ff-dhe]. Values 0x01FC through 0x01FF
 are reserved for private use.

 Items in named_group_list are ordered according to the client’s
 preferences (most preferred choice first).

 As an example, a client that only supports secp256r1 (aka NIST P-256;
 value 23 = 0x0017) and secp384r1 (aka NIST P-384; value 24 = 0x0018)
 and prefers to use secp256r1 would include a TLS extension consisting
 of the following octets. Note that the first two octets indicate the
 extension type ("supported_groups" extension):

 00 0A 00 06 00 04 00 17 00 18

 [[TODO: IANA Considerations.]]

6.3.2.3 . Key Share

 The "key_share" extension contains the endpoint’s cryptographic
 parameters for non-PSK key establishment methods (currently DHE or
 ECDHE).

Rescorla Expires September 22, 2016 [Page 52]

Internet-Draft TLS March 2016

 Clients which offer one or more (EC)DHE cipher suites MUST send this
 extension and SHOULD send at least one supported KeyShareEntry value.
 Servers MUST NOT negotiate any of these cipher suites unless a
 supported value was provided. If this extension is not provided in a
 ServerHello or ClientHello, and the peer is offering (EC)DHE cipher
 suites, then the endpoint MUST close the connection with a fatal
 "missing_extension" alert. (see Section 8.2) Clients MAY send an
 empty client_shares vector in order to request group selection from
 the server at the cost of an additional round trip. (see
 Section 6.3.1.3)

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

 group
 The named group for the key being exchanged. Finite Field Diffie-
 Hellman [DH] parameters are described in Section 6.3.2.3.1 ;
 Elliptic Curve Diffie-Hellman parameters are described in
 Section 6.3.2.3.2 .

 key_exchange
 Key exchange information. The contents of this field are
 determined by the specified group and its corresponding
 definition. Endpoints MUST NOT send empty or otherwise invalid
 key_exchange values for any reason.

 The "extension_data" field of this extension contains a "KeyShare"
 value:

 struct {
 select (role) {
 case client:
 KeyShareEntry client_shares<4..2^16-1>;

 case server:
 KeyShareEntry server_share;
 }
 } KeyShare;

 client_shares
 A list of offered KeyShareEntry values in descending order of
 client preference. This vector MAY be empty if the client is
 requesting a HelloRetryRequest. The ordering of values here
 SHOULD match that of the ordering of offered support in the
 "supported_groups" extension.

Rescorla Expires September 22, 2016 [Page 53]

Internet-Draft TLS March 2016

 server_share
 A single KeyShareEntry value for the negotiated cipher suite.

 Servers offer exactly one KeyShareEntry value, which corresponds to
 the key exchange used for the negotiated cipher suite.

 Clients offer an arbitrary number of KeyShareEntry values, each
 representing a single set of key exchange parameters. For instance,
 a client might offer shares for several elliptic curves or multiple
 integer DH groups. The key_exchange values for each KeyShareEntry
 MUST by generated independently. Clients MUST NOT offer multiple
 KeyShareEntry values for the same parameters. Clients and servers
 MUST NOT offer any KeyShareEntry values for groups not listed in the
 client’s "supported_groups" extension. Servers MUST NOT offer a
 KeyShareEntry value for a group not offered by the client in its
 corresponding KeyShare. Implementations receiving any KeyShare
 containing any of these prohibited values MUST abort the connection
 with a fatal "illegal_parameter" alert.

 If the server selects an (EC)DHE cipher suite and no mutually
 supported group is available between the two endpoints’ KeyShare
 offers, yet there is a mutually supported group that can be found via
 the "supported_groups" extension, then the server MUST reply with a
 HelloRetryRequest. If there is no mutually supported group at all,
 the server MUST NOT negotiate an (EC)DHE cipher suite.

 [[TODO: Recommendation about what the client offers. Presumably
 which integer DH groups and which curves.]]

6.3.2.3.1 . Diffie-Hellman Parameters

 Diffie-Hellman [DH] parameters for both clients and servers are
 encoded in the opaque key_exchange field of a KeyShareEntry in a
 KeyShare structure. The opaque value contains the Diffie-Hellman
 public value (dh_Y = g^X mod p), encoded as a big-endian integer.

 opaque dh_Y<1..2^16-1>;

6.3.2.3.2 . ECDHE Parameters

 ECDHE parameters for both clients and servers are encoded in the the
 opaque key_exchange field of a KeyShareEntry in a KeyShare structure.
 The opaque value conveys the Elliptic Curve Diffie-Hellman public
 value (ecdh_Y) represented as a byte string ECPoint.point.

 opaque point <1..2^8-1>;

 point

Rescorla Expires September 22, 2016 [Page 54]

Internet-Draft TLS March 2016

 For secp256r1, secp384r1 and secp521r1, this is the byte string
 representation of an elliptic curve point following the conversion
 routine in Section 4.3.6 of ANSI X9.62 [X962]. For x25519 and
 x448, this is raw opaque octet-string representation of point (in
 the format those functions use), 32 octets for x25519 and 56
 octets for x448.

 Although X9.62 supports multiple point formats, any given curve MUST
 specify only a single point format. All curves currently specified
 in this document MUST only be used with the uncompressed point format
 (the format for all ECDH functions is considered uncompressed).

 Note: Versions of TLS prior to 1.3 permitted point negotiation; TLS
 1.3 removes this feature in favor of a single point format for each
 curve.

6.3.2.4 . Pre-Shared Key Extension

 The "pre_shared_key" extension is used to indicate the identity of
 the pre-shared key to be used with a given handshake in association
 with a PSK or (EC)DHE-PSK cipher suite (see [RFC4279] for
 background).

 Clients which offer one or more PSK cipher suites MUST send at least
 one supported psk_identity value and servers MUST NOT negotiate any
 of these cipher suites unless a supported value was provided. If
 this extension is not provided and no alternative cipher suite is
 available, the server MUST close the connection with a fatal
 "missing_extension" alert. (see Section 8.2)

 The "extension_data" field of this extension contains a
 "PreSharedKeyExtension" value:

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<2..2^16-1>;

 case server:
 psk_identity identity;
 }
 } PreSharedKeyExtension;

 identity
 An opaque label for the pre-shared key.

Rescorla Expires September 22, 2016 [Page 55]

https://tools.ietf.org/pdf/rfc4279

Internet-Draft TLS March 2016

 If no suitable identity is provided, the server MUST NOT negotiate a
 PSK cipher suite and MAY respond with an "unknown_psk_identity" alert
 message. Sending this alert is OPTIONAL; servers MAY instead choose
 to send a "decrypt_error" alert to merely indicate an invalid PSK
 identity or instead negotiate use of a non-PSK cipher suite, if
 available.

 If the server selects a PSK cipher suite, it MUST send a
 "pre_shared_key" extension with the identity that it selected. The
 client MUST verify that the server has selected one of the identities
 that the client supplied. If any other identity is returned, the
 client MUST generate a fatal "unknown_psk_identity" alert and close
 the connection.

6.3.2.5 . Early Data Indication

 In cases where TLS clients have previously interacted with the server
 and the server has supplied a ServerConfiguration (Section 6.3.3.3),
 the client can send application data and its Certificate/
 CertificateVerify messages (if client authentication is required).
 If the client opts to do so, it MUST supply an "early_data"
 extension.

 The "extension_data" field of this extension contains an
 "EarlyDataIndication" value:

 struct {
 select (Role) {
 case client:
 opaque configuration_id<1..2^16-1>;
 CipherSuite cipher_suite;
 Extension extensions<0..2^16-1>;
 opaque context<0..255>;

 case server:
 struct {};
 }
 } EarlyDataIndication;

 configuration_id
 The label for the configuration in question.

 cipher_suite
 The cipher suite which the client is using to encrypt the early
 data.

 extensions

Rescorla Expires September 22, 2016 [Page 56]

Internet-Draft TLS March 2016

 The extensions required to define the cryptographic configuration
 for the clients early data (see below for details).

 context
 An optional context value that can be used for anti-replay (see
 below).

 The client specifies the cryptographic configuration for the 0-RTT
 data using the "configuration_id", "cipher_suite", and "extensions"
 values. For configurations received in-band (in a previous TLS
 connection) the client MUST:

 - Send the same cryptographic determining parameters
 (Section Section 6.3.2.5.1) with the previous connection. If a
 0-RTT handshake is being used with a PSK that was negotiated via a
 non-PSK handshake, then the client MUST use the same symmetric
 cipher parameters as were negotiated on that handshake but with a
 PSK cipher suite.

 - Indicate the same parameters as the server indicated in that
 connection.

 0-RTT messages sent in the first flight have the same content types
 as their corresponding messages sent in other flights (handshake,
 application_data, and alert respectively) but are protected under
 different keys. After all the 0-RTT application data messages (if
 any) have been sent, a "end_of_early_data" alert of type "warning" is
 sent to indicate the end of the flight. Clients which do 0-RTT MUST
 always send "end_of_early_data" even if the ServerConfiguration
 indicates that no application data is allowed (EarlyDataType of
 "client_authentication"), though in that case it MUST NOT send any
 non-empty data records (i.e., those which consist of anything other
 than padding).

 A server which receives an "early_data" extension can behave in one
 of two ways:

 - Ignore the extension and return no response. This indicates that
 the server has ignored any early data and an ordinary 1-RTT
 handshake is required.

 - Return an empty extension, indicating that it intends to process
 the early data. It is not possible for the server to accept only
 a subset of the early data messages.

 Prior to accepting the "early_data" extension, the server MUST
 perform the following checks:

Rescorla Expires September 22, 2016 [Page 57]

Internet-Draft TLS March 2016

 - The configuration_id matches a known server configuration.

 - The client’s cryptographic determining parameters match the
 parameters that the server has negotiated based on the rest of the
 ClientHello. If (EC)DHE is selected, this includes verifying that
 (1) the ClientHello contains a key from the same group that is
 indicated by the server configuration and (2) that the server has
 negotiated that group and will therefore include a share from that
 group in its own "key_share" extension.

 If any of these checks fail, the server MUST NOT respond with the
 extension and must discard all the remaining first flight data (thus
 falling back to 1-RTT). If the client attempts a 0-RTT handshake but
 the server rejects it, it will generally not have the 0-RTT record
 protection keys and will instead trial decrypt each record with the
 1-RTT handshake keys until it finds one that decrypts properly, and
 then pick up the handshake from that point.

 If the server chooses to accept the "early_data" extension, then it
 MUST comply with the same error handling requirements specified for
 all records when processing early data records. Specifically,
 decryption failure of any 0-RTT record following an accepted
 "early_data" extension MUST produce a fatal "bad_record_mac" alert as
 per Section 5.2.2 .

 [[TODO: How does the client behave if the indication is rejected.]]

 [[OPEN ISSUE: This just specifies the signaling for 0-RTT but not the
 the 0-RTT cryptographic transforms, including:

 - What is in the handshake hash (including potentially some
 speculative data from the server).

 - What is signed in the client’s CertificateVerify.

 - Whether we really want the Finished to not include the server’s
 data at all.

 What’s here now needs a lot of cleanup before it is clear and
 correct.]]

6.3.2.5.1 . Cryptographic Determining Parameters

 In order to allow the server to decrypt 0-RTT data, the client needs
 to provide enough information to allow the server to decrypt the
 traffic without negotiation. This is accomplished by having the
 client indicate the "cryptographic determining parameters" in its
 ClientHello, which are necessary to decrypt the client’s packets

Rescorla Expires September 22, 2016 [Page 58]

Internet-Draft TLS March 2016

 (i.e., those present in the ServerHello). This includes the
 following values:

 - The cipher suite identifier.

 - If (EC)DHE is being used, the server’s version of the "key_share"
 extension.

 - If PSK is being used, the server’s version of the "pre_shared_key"
 extension (indicating the PSK the client is using).

6.3.2.5.2 . Replay Properties

 As noted in Section 6.2.2 , TLS does not provide any inter-connection
 mechanism for replay protection for data sent by the client in the
 first flight. As a special case, implementations where the server
 configuration, is delivered out of band (as has been proposed for
 DTLS-SRTP [RFC5763]), MAY use a unique server configuration
 identifier for each connection, thus preventing replay.
 Implementations are responsible for ensuring uniqueness of the
 identifier in this case.

6.3.3 . Server Parameters

6.3.3.1 . Encrypted Extensions

 When this message will be sent:

 The EncryptedExtensions message MUST be sent immediately after the
 ServerHello message. This is the first message that is encrypted
 under keys derived from ES.

 Meaning of this message:

 The EncryptedExtensions message simply contains any extensions
 which should be protected, i.e., any which are not needed to
 establish the cryptographic context. The same extension types
 MUST NOT appear in both the ServerHello and EncryptedExtensions.
 If the same extension appears in both locations, the client MUST
 rely only on the value in the EncryptedExtensions block. All
 server-sent extensions other than those explicitly listed in
 Section 6.3.1.2 or designated in the IANA registry MUST only
 appear in EncryptedExtensions. Extensions which are designated to
 appear in ServerHello MUST NOT appear in EncryptedExtensions.
 Clients MUST check EncryptedExtensions for the presence of any
 forbidden extensions and if any are found MUST terminate the
 handshake with a "illegal_parameter" alert.

Rescorla Expires September 22, 2016 [Page 59]

https://tools.ietf.org/pdf/rfc5763

Internet-Draft TLS March 2016

 Structure of this message:

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 extensions
 A list of extensions.

6.3.3.2 . Certificate Request

 When this message will be sent:

 A non-anonymous server can optionally request a certificate from
 the client, if appropriate for the selected cipher suite. This
 message, if sent, will follow EncryptedExtensions.

 Structure of this message:

 opaque DistinguishedName<1..2^16-1>;

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } CertificateExtension;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 SignatureScheme
 supported_signature_algorithms<2..2^16-2>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 CertificateExtension certificate_extensions<0..2^16-1>;
 } CertificateRequest;

 certificate_request_context
 An opaque string which identifies the certificate request and
 which will be echoed in the client’s Certificate message. The
 certificate_request_context MUST be unique within the scope of
 this connection (thus preventing replay of client
 CertificateVerify messages).

 supported_signature_algorithms
 A list of the signature algorithms that the server is able to
 verify, listed in descending order of preference. Any
 certificates provided by the client MUST be signed using a
 signature algorithm found in supported_signature_algorithms.

 certificate_authorities

Rescorla Expires September 22, 2016 [Page 60]

Internet-Draft TLS March 2016

 A list of the distinguished names [X501] of acceptable
 certificate_authorities, represented in DER-encoded [X690] format.
 These distinguished names may specify a desired distinguished name
 for a root CA or for a subordinate CA; thus, this message can be
 used to describe known roots as well as a desired authorization
 space. If the certificate_authorities list is empty, then the
 client MAY send any certificate that meets the rest of the
 selection criteria in the CertificateRequest, unless there is some
 external arrangement to the contrary.

 certificate_extensions
 A list of certificate extension OIDs [RFC5280] with their allowed
 values, represented in DER-encoded [X690] format. Some
 certificate extension OIDs allow multiple values (e.g. Extended
 Key Usage). If the server has included a non-empty
 certificate_extensions list, the client certificate MUST contain
 all of the specified extension OIDs that the client recognizes.
 For each extension OID recognized by the client, all of the
 specified values MUST be present in the client certificate (but
 the certificate MAY have other values as well). However, the
 client MUST ignore and skip any unrecognized certificate extension
 OIDs. If the client has ignored some of the required certificate
 extension OIDs, and supplied a certificate that does not satisfy
 the request, the server MAY at its discretion either continue the
 session without client authentication, or terminate the session
 with a fatal unsupported_certificate alert. PKIX RFCs define a
 variety of certificate extension OIDs and their corresponding
 value types. Depending on the type, matching certificate
 extension values are not necessarily bitwise-equal. It is
 expected that TLS implementations will rely on their PKI libraries
 to perform certificate selection using certificate extension OIDs.
 This document defines matching rules for two standard certificate
 extensions defined in [RFC5280]:

 o The Key Usage extension in a certificate matches the request
 when all key usage bits asserted in the request are also
 asserted in the Key Usage certificate extension.

 o The Extended Key Usage extension in a certificate matches the
 request when all key purpose OIDs present in the request are
 also found in the Extended Key Usage certificate extension.
 The special anyExtendedKeyUsage OID MUST NOT be used in the
 request.

 Separate specifications may define matching rules for other
 certificate extensions.

Rescorla Expires September 22, 2016 [Page 61]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS March 2016

 Note: It is a fatal "handshake_failure" alert for an anonymous server
 to request client authentication.

6.3.3.3 . Server Configuration

 When this message will be sent:

 This message is used to provide a server configuration which the
 client can use in the future to skip handshake negotiation and
 (optionally) to allow 0-RTT handshakes. The ServerConfiguration
 message is sent as the last message before the CertificateVerify.

 Structure of this Message:

 enum { (65535) } ConfigurationExtensionType;

 enum { client_authentication(1), early_data(2),
 client_authentication_and_data(3), (255) } EarlyDataType;

 struct {
 ConfigurationExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } ConfigurationExtension;

 struct {
 opaque configuration_id<1..2^16-1>;
 uint32 expiration_date;
 KeyShareEntry static_key_share;
 EarlyDataType early_data_type;
 ConfigurationExtension extensions<0..2^16-1>;
 } ServerConfiguration;

 configuration_id
 The configuration identifier to be used in 0-RTT mode.

 expiration_date
 The last time when this configuration is expected to be valid (in
 seconds since the Unix epoch). Servers MUST NOT use any value
 more than 604800 seconds (7 days) in the future. Clients MUST NOT
 cache configurations for longer than 7 days, regardless of the
 expiration_date. [[OPEN ISSUE: Is this the right value? The idea
 is just to minimize exposure.]]

 static_key_share
 The long-term DH key that is being established for this
 configuration.

 early_data_type

Rescorla Expires September 22, 2016 [Page 62]

Internet-Draft TLS March 2016

 The type of 0-RTT handshake that this configuration is to be used
 for (see Section 6.3.2.5). If "client_authentication" or
 "client_authentication_and_data", then the client MUST select the
 certificate for future handshakes based on the CertificateRequest
 parameters supplied in this handshake. The server MUST NOT send
 either of these two options unless it also requested a certificate
 on this handshake. [[OPEN ISSUE: Should we relax this?]]

 extensions
 This field is a placeholder for future extensions to the
 ServerConfiguration format.

 The semantics of this message are to establish a shared state between
 the client and server for use with the "early_data" extension with
 the key specified in "static_key_share" and with the handshake
 parameters negotiated by this handshake.

 When the ServerConfiguration message is sent, the server MUST also
 send a Certificate message and a CertificateVerify message, even if
 the "early_data" extension was used for this handshake, thus
 requiring a signature over the configuration before it can be used by
 the client. Clients MUST NOT rely on the ServerConfiguration message
 until successfully receiving and processing the server’s Certificate,
 CertificateVerify, and Finished. If there is a failure in processing
 those messages, the client MUST discard the ServerConfiguration.

6.3.4 . Authentication Messages

 As discussed in Section 6.2 , TLS uses a common set of messages for
 authentication, key confirmation, and handshake integrity:
 Certificate, CertificateVerify, and Finished. These messages are
 always sent as the last messages in their handshake flight. The
 Certificate and CertificateVerify messages are only sent under
 certain circumstances, as defined below. The Finished message is
 always sent as part of the Authentication block.

 The computations for the Authentication messages all uniformly take
 the following inputs:

 - The certificate and signing key to be used.

 - A Handshake Context based on the handshake hash (see
 Section 7.3.1).

 - A base key to be used to compute a MAC key.

 Based on these inputs, the messages then contain:

Rescorla Expires September 22, 2016 [Page 63]

Internet-Draft TLS March 2016

 Certificate
 The certificate to be used for authentication and any supporting
 certificates in the chain.

 CertificateVerify
 A signature over the hash of Handshake Context + Certificate.

 Finished
 A MAC over the hash of Handshake Context + Certificate +
 CertificateVerify using a MAC key derived from the base key.

 Because the CertificateVerify signs the Handshake Context +
 Certificate and the Finished MACs the Handshake Context + Certificate
 + CertificateVerify, this is mostly equivalent to keeping a running
 hash of the handshake messages (exactly so in the pure 1-RTT cases).
 Note, however, that subsequent post-handshake authentications do not
 include each other, just the messages through the end of the main
 handshake.

 The following table defines the Handshake Context and MAC Key for
 each scenario:

 +----------------+---+--------+
 | Mode | Handshake Context | Base |
 | | | Key |
 +----------------+---+--------+
0-RTT	ClientHello + ServerConfiguration +	xSS
	Server Certificate + CertificateRequest	
	(where ServerConfiguration, etc. are	
	from the previous handshake)	
1-RTT (Server)	ClientHello ... ServerConfiguration	master
		secret
1-RTT (Client)	ClientHello ... ServerFinished	master
		secret
Post-Handshake	ClientHello ... ClientFinished +	master
	CertificateRequest	secret
 +----------------+---+--------+

 Note 1: The ServerConfiguration, CertificateRequest, and Server
 Certificate in the 0-RTT case are the messages from the handshake
 where the ServerConfiguration was established.

 Note 2: The Handshake Context for the last three rows does not
 include any 0-RTT handshake messages, regardless of whether 0-RTT
 is used.

Rescorla Expires September 22, 2016 [Page 64]

Internet-Draft TLS March 2016

6.3.4.1 . Certificate

 When this message will be sent:

 The server MUST send a Certificate message whenever the agreed-
 upon key exchange method uses certificates for authentication
 (this includes all key exchange methods defined in this document
 except PSK).

 The client MUST send a Certificate message whenever the server has
 requested client authentication via a CertificateRequest message
 (Section 6.3.3.2) or when the EarlyDataType provided with the
 server configuration indicates a need for client authentication.
 This message is only sent if the server requests a certificate via
 one of these mechanisms. If no suitable certificate is available,
 the client MUST send a Certificate message containing no
 certificates (i.e., with the "certificate_list" field having
 length 0).

 Meaning of this message:

 This message conveys the endpoint’s certificate chain to the peer.

 The certificate MUST be appropriate for the negotiated cipher
 suite’s key exchange algorithm and any negotiated extensions.

 Structure of this message:

 opaque ASN1Cert<1..2^24-1>;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 ASN1Cert certificate_list<0..2^24-1>;
 } Certificate;

 certificate_request_context:
 If this message is in response to a CertificateRequest, the value
 of certificate_request_context in that message. Otherwise, in the
 case of server authentication or client authentication in 0-RTT,
 this field SHALL be zero length.

 certificate_list
 This is a sequence (chain) of certificates. The sender’s
 certificate MUST come first in the list. Each following
 certificate SHOULD directly certify one preceding it. Because
 certificate validation requires that trust anchors be distributed
 independently, a certificate that specifies a trust anchor MAY be

Rescorla Expires September 22, 2016 [Page 65]

Internet-Draft TLS March 2016

 omitted from the chain, provided that supported peers are known to
 possess any omitted certificates.

 Note: Prior to TLS 1.3, "certificate_list" ordering required each
 certificate to certify the one immediately preceding it, however some
 implementations allowed some flexibility. Servers sometimes send
 both a current and deprecated intermediate for transitional purposes,
 and others are simply configured incorrectly, but these cases can
 nonetheless be validated properly. For maximum compatibility, all
 implementations SHOULD be prepared to handle potentially extraneous
 certificates and arbitrary orderings from any TLS version, with the
 exception of the end-entity certificate which MUST be first.

 The server’s certificate list MUST always be non-empty. A client
 will send an empty certificate list if it does not have an
 appropriate certificate to send in response to the server’s
 authentication request.

6.3.4.1.1 . Server Certificate Selection

 The following rules apply to the certificates sent by the server:

 - The certificate type MUST be X.509v3 [RFC5280], unless explicitly
 negotiated otherwise (e.g., [RFC5081]).

 - The server’s end-entity certificate’s public key (and associated
 restrictions) MUST be compatible with the selected key exchange
 algorithm.

 +----------------------+---------------------------+
 | Key Exchange Alg. | Certificate Key Type |
 +----------------------+---------------------------+
 | DHE_RSA or ECDHE_RSA | RSA public key |
 | | |
 | ECDHE_ECDSA | ECDSA or EdDSA public key |
 +----------------------+---------------------------+

 - The certificate MUST allow the key to be used for signing (i.e.,
 the digitalSignature bit MUST be set if the Key Usage extension is
 present) with a signature scheme indicated in the client’s
 "signature_algorithms" extension.

 - The "server_name" and "trusted_ca_keys" extensions [RFC6066] are
 used to guide certificate selection. As servers MAY require the
 presence of the "server_name" extension, clients SHOULD send this
 extension.

Rescorla Expires September 22, 2016 [Page 66]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc5081
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS March 2016

 All certificates provided by the server MUST be signed by a signature
 algorithm that appears in the "signature_algorithms" extension
 provided by the client, if they are able to provide such a chain (see
 Section 6.3.2.1). Certificates that are self-signed or certificates
 that are expected to be trust anchors are not validated as part of
 the chain and therefore MAY be signed with any algorithm.

 If the server cannot produce a certificate chain that is signed only
 via the indicated supported algorithms, then it SHOULD continue the
 handshake by sending the client a certificate chain of its choice
 that may include algorithms that are not known to be supported by the
 client. This fallback chain MAY use the deprecated SHA-1 hash
 algorithm only if the "signature_algorithms" extension provided by
 the client permits it. If the client cannot construct an acceptable
 chain using the provided certificates and decides to abort the
 handshake, then it MUST send an "unsupported_certificate" alert
 message and close the connection.

 If the server has multiple certificates, it chooses one of them based
 on the above-mentioned criteria (in addition to other criteria, such
 as transport layer endpoint, local configuration and preferences).

 As cipher suites that specify new key exchange methods are specified
 for the TLS protocol, they will imply the certificate format and the
 required encoded keying information.

6.3.4.1.2 . Client Certificate Selection

 The following rules apply to certificates sent by the client:

 In particular:

 - The certificate type MUST be X.509v3 [RFC5280], unless explicitly
 negotiated otherwise (e.g., [RFC5081]).

 - If the certificate_authorities list in the certificate request
 message was non-empty, one of the certificates in the certificate
 chain SHOULD be issued by one of the listed CAs.

 - The certificates MUST be signed using an acceptable hash/
 signature algorithm pair, as described in Section 6.3.3.2 . Note
 that this relaxes the constraints on certificate-signing
 algorithms found in prior versions of TLS.

 - If the certificate_extensions list in the certificate request
 message was non-empty, the end-entity certificate MUST match the
 extension OIDs recognized by the client, as described in
 Section 6.3.3.2 .

Rescorla Expires September 22, 2016 [Page 67]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc5081

Internet-Draft TLS March 2016

 Note that, as with the server certificate, there are certificates
 that use algorithm combinations that cannot be currently used with
 TLS.

6.3.4.1.3 . Receiving a Certificate Message

 In general, detailed certificate validation procedures are out of
 scope for TLS (see [RFC5280]). This section provides TLS-specific
 requirements.

 If server supplies an empty Certificate message, the client MUST
 terminate the handshake with a fatal "decode_error" alert.

 If the client does not send any certificates, the server MAY at its
 discretion either continue the handshake without client
 authentication, or respond with a fatal "handshake_failure" alert.
 Also, if some aspect of the certificate chain was unacceptable (e.g.,
 it was not signed by a known, trusted CA), the server MAY at its
 discretion either continue the handshake (considering the client
 unauthenticated) or send a fatal alert.

 Any endpoint receiving any certificate signed using any signature
 algorithm using an MD5 hash MUST send a "bad_certificate" alert
 message and close the connection.

 SHA-1 is deprecated and therefore NOT RECOMMENDED. Endpoints that
 reject certification paths due to use of a deprecated hash MUST send
 a fatal "bad_certificate" alert message before closing the
 connection. All endpoints are RECOMMENDED to transition to SHA-256
 or better as soon as possible to maintain interoperability with
 implementations currently in the process of phasing out SHA-1
 support.

 Note that a certificate containing a key for one signature algorithm
 MAY be signed using a different signature algorithm (for instance, an
 RSA key signed with a ECDSA key).

6.3.4.2 . Certificate Verify

 When this message will be sent:

 This message is used to provide explicit proof that an endpoint
 possesses the private key corresponding to its certificate and
 also provides integrity for the handshake up to this point.
 Servers MUST send this message when using a cipher suite which is
 authenticated via a certificate. Clients MUST send this message
 whenever authenticating via a Certificate (i.e., when the
 Certificate message is non-empty). When sent, this message MUST

Rescorla Expires September 22, 2016 [Page 68]

https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS March 2016

 appear immediately after the Certificate Message and immediately
 prior to the Finished message.

 Structure of this message:

 struct {
 digitally-signed struct {
 opaque hashed_data[hash_length];
 };
 } CertificateVerify;

 Where hashed_data is the hash output described in Section 6.3.4 ,
 namely Hash(Handshake Context + Certificate). For concreteness,
 this means that the value that is signed is:

 padding + context_string + 00 + hashed_data

 The context string for a server signature is "TLS 1.3, server
 CertificateVerify" and for a client signature is "TLS 1.3, client
 CertificateVerify". A hash of the handshake messages is signed
 rather than the messages themselves because the digitally-signed
 format requires padding and context bytes at the beginning of the
 input. Thus, by signing a digest of the messages, an
 implementation need only maintain one running hash per hash type
 for CertificateVerify, Finished and other messages.

 If sent by a server, the signature algorithm MUST be one offered
 in the client’s "signature_algorithms" extension unless no valid
 certificate chain can be produced without unsupported algorithms
 (see Section 6.3.2.1). Note that there is a possibility for
 inconsistencies here. For instance, the client might offer
 ECDHE_ECDSA key exchange but omit any ECDSA and EdDSA values from
 its "signature_algorithms" extension. In order to negotiate
 correctly, the server MUST check any candidate cipher suites
 against the "signature_algorithms" extension before selecting
 them. This is somewhat inelegant but is a compromise designed to
 minimize changes to the original cipher suite design.

 If sent by a client, the signature algorithm used in the signature
 MUST be one of those present in the supported_signature_algorithms
 field of the CertificateRequest message.

 In addition, the signature algorithm MUST be compatible with the
 key in the sender’s end-entity certificate. RSA signatures MUST
 use an RSASSA-PSS algorithm, regardless of whether RSASSA-PKCS-
 v1_5 algorithms appear in "signature_algorithms". SHA-1 MUST NOT
 be used in any signatures in CertificateVerify. (Note that

Rescorla Expires September 22, 2016 [Page 69]

Internet-Draft TLS March 2016

 rsa_pkcs1_sha1 and dsa_sha1, the only defined SHA-1 signature
 algorithms, are undefined for CertificateVerify signatures.)

 Note: When used with non-certificate-based handshakes (e.g., PSK),
 the client’s signature does not cover the server’s certificate
 directly, although it does cover the server’s Finished message, which
 transitively includes the server’s certificate when the PSK derives
 from a certificate-authenticated handshake. [PSK-FINISHED] describes
 a concrete attack on this mode if the Finished is omitted from the
 signature. It is unsafe to use certificate-based client
 authentication when the client might potentially share the same PSK/
 key-id pair with two different endpoints. In order to ensure this,
 implementations MUST NOT mix certificate-based client authentication
 with pure PSK modes (i.e., those where the PSK was not derived from a
 previous non-PSK handshake).

6.3.4.3 . Finished

 When this message will be sent:

 The Finished message is the final message in the authentication
 block. It is essential for providing authentication of the
 handshake and of the computed keys.

 Meaning of this message:

 Recipients of Finished messages MUST verify that the contents are
 correct. Once a side has sent its Finished message and received
 and validated the Finished message from its peer, it may begin to
 send and receive application data over the connection. This data
 will be protected under keys derived from the ephemeral secret
 (see Section 7).

 The key used to compute the finished message is computed from the
 Base key defined in Section 6.3.4 using HKDF (see Section 7.1).
 Specifically:

 client_finished_key =
 HKDF-Expand-Label(BaseKey, "client finished", "", L)

 server_finished_key =
 HKDF-Expand-Label(BaseKey, "server finished", "", L)

 Structure of this message:

 struct {
 opaque verify_data[verify_data_length];
 } Finished;

Rescorla Expires September 22, 2016 [Page 70]

Internet-Draft TLS March 2016

 The verify_data value is computed as follows:

 verify_data =
 HMAC(finished_key, Hash(
 Handshake Context + Certificate* + CertificateVerify*
))

 * Only included if present.

 Where HMAC [RFC2104] uses the Hash algorithm for the handshake. As
 noted above: the HMAC input can generally be implemented by a running
 hash, i.e., just the handshake hash at this point.

 In previous versions of TLS, the verify_data was always 12 octets
 long. In the current version of TLS, it is the size of the HMAC
 output for the Hash used for the handshake.

 Note: Alerts and any other record types are not handshake messages
 and are not included in the hash computations.

6.3.5 . Post-Handshake Messages

 TLS also allows other messages to be sent after the main handshake.
 These message use a handshake content type and are encrypted under
 the application traffic key.

6.3.5.1 . New Session Ticket Message

 At any time after the server has received the client Finished
 message, it MAY send a NewSessionTicket message. This message
 creates a pre-shared key (PSK) binding between the resumption master
 secret and the ticket label. The client MAY use this PSK for future
 handshakes by including it in the "pre_shared_key" extension in its
 ClientHello (Section 6.3.2.4) and supplying a suitable PSK cipher
 suite. Servers may send multiple tickets on a single connection, for
 instance after post-handshake authentication.

 struct {
 uint32 ticket_lifetime;
 opaque ticket<0..2^16-1>;
 } NewSessionTicket;

 ticket_lifetime
 Indicates the lifetime in seconds as a 32-bit unsigned integer in
 network byte order from the time of ticket issuance. Servers MUST
 NOT use any value more than 604800 seconds (7 days). The value of
 zero indicates that the ticket should be discarded immediately.
 Clients MUST NOT cache session tickets for longer than 7 days,

Rescorla Expires September 22, 2016 [Page 71]

https://tools.ietf.org/pdf/rfc2104

Internet-Draft TLS March 2016

 regardless of the ticket_lifetime. It MAY delete the ticket
 earlier based on local policy. A server MAY treat a ticket as
 valid for a shorter period of time than what is stated in the
 ticket_lifetime.

 ticket
 The value of the ticket to be used as the PSK identifier.

 The ticket itself is an opaque label. It MAY either be a database
 lookup key or a self-encrypted and self-authenticated value.
 Section 4 of [RFC5077] describes a recommended ticket construction
 mechanism.

 [[TODO: Should we require that tickets be bound to the existing
 symmetric cipher suite. See the TODO above about early_data and
 PSK.??]

6.3.5.2 . Post-Handshake Authentication

 The server is permitted to request client authentication at any time
 after the handshake has completed by sending a CertificateRequest
 message. The client SHOULD respond with the appropriate
 Authentication messages. If the client chooses to authenticate, it
 MUST send Certificate, CertificateVerify, and Finished. If it
 declines, it MUST send a Certificate message containing no
 certificates followed by Finished.

 Note: Because client authentication may require prompting the user,
 servers MUST be prepared for some delay, including receiving an
 arbitrary number of other messages between sending the
 CertificateRequest and receiving a response. In addition, clients
 which receive multiple CertificateRequests in close succession MAY
 respond to them in a different order than they were received (the
 certificate_request_context value allows the server to disambiguate
 the responses).

6.3.5.3 . Key and IV Update

 struct {} KeyUpdate;

 The KeyUpdate handshake message is used to indicate that the sender
 is updating its sending cryptographic keys. This message can be sent
 by the server after sending its first flight and the client after
 sending its second flight. Implementations that receive a KeyUpdate
 message prior to receiving a Finished message as part of the 1-RTT
 handshake MUST generate a fatal "unexpected_message" alert. After
 sending a KeyUpdate message, the sender SHALL send all its traffic
 using the next generation of keys, computed as described in

Rescorla Expires September 22, 2016 [Page 72]

https://tools.ietf.org/pdf/rfc5077#section-4

Internet-Draft TLS March 2016

 Section 7.2 . Upon receiving a KeyUpdate, the receiver MUST update
 their receiving keys and if they have not already updated their
 sending state up to or past the then current receiving generation
 MUST send their own KeyUpdate prior to sending any other messages.
 This mechanism allows either side to force an update to the entire
 connection. Note that implementations may receive an arbitrary
 number of messages between sending a KeyUpdate and receiving the
 peer’s KeyUpdate because those messages may already be in flight.

 Note that if implementations independently send their own KeyUpdates
 and they cross in flight, this only results in an update of one
 generation; when each side receives the other side’s update it just
 updates its receive keys and notes that the generations match and
 thus no send update is needed.

 Note that the side which sends its KeyUpdate first needs to retain
 the traffic keys (though not the traffic secret) for the previous
 generation of keys until it receives the KeyUpdate from the other
 side.

 Both sender and receiver must encrypt their KeyUpdate messages with
 the old keys. Additionally, both sides MUST enforce that a KeyUpdate
 with the old key is received before accepting any messages encrypted
 with the new key. Failure to do so may allow message truncation
 attacks.

7. Cryptographic Computations

 In order to begin connection protection, the TLS Record Protocol
 requires specification of a suite of algorithms, a master secret, and
 the client and server random values. The authentication, key
 exchange, and record protection algorithms are determined by the
 cipher_suite selected by the server and revealed in the ServerHello
 message. The random values are exchanged in the hello messages. All
 that remains is to calculate the key schedule.

7.1 . Key Schedule

 The TLS handshake establishes secret keying material which is then
 used to protect traffic. This keying material is derived from the
 two input secret values: Static Secret (SS) and Ephemeral Secret
 (ES).

 The exact source of each of these secrets depends on the operational
 mode (DHE, ECDHE, PSK, etc.) and is summarized in the table below:

Rescorla Expires September 22, 2016 [Page 73]

Internet-Draft TLS March 2016

 +-----------------+------------------------+------------------------+
 | Key Exchange | Static Secret (SS) | Ephemeral Secret (ES) |
 +-----------------+------------------------+------------------------+
(EC)DHE (full	Client ephemeral w/	Client ephemeral w/
handshake)	server ephemeral	server ephemeral
(EC)DHE (w/	Client ephemeral w/	Client ephemeral w/
0-RTT)	server static	server ephemeral
PSK	Pre-Shared Key	Pre-shared key
PSK + (EC)DHE	Pre-Shared Key	Client ephemeral w/
		server ephemeral
 +-----------------+------------------------+------------------------+

 These shared secret values are used to generate cryptographic keys as
 shown below.

 The derivation process is as follows, where L denotes the length of
 the underlying hash function for HKDF [RFC5869]. SS and ES denote
 the sources from the table above.

 HKDF-Expand-Label(Secret, Label, HashValue, Length) =
 HKDF-Expand(Secret, HkdfLabel, Length)

 Where HkdfLabel is specified as:

 struct HkdfLabel {
 uint16 length;
 opaque label<9..255>;
 opaque hash_value<0..255>;
 };

 Where:
 - HkdfLabel.length is Length
 - HkdfLabel.label is "TLS 1.3, " + Label
 - HkdfLabel.hash_value is HashValue.

 1. xSS = HKDF-Extract(0, SS). Note that HKDF-Extract always
 produces a value the same length as the underlying hash
 function.

 2. xES = HKDF-Extract(0, ES)

 3. mSS = HKDF-Expand-Label(xSS, "expanded static secret",
 handshake_hash, L)

 4. mES = HKDF-Expand-Label(xES, "expanded ephemeral secret",

Rescorla Expires September 22, 2016 [Page 74]

https://tools.ietf.org/pdf/rfc5869

Internet-Draft TLS March 2016

 handshake_hash, L)

 5. master_secret = HKDF-Extract(mSS, mES)

 6. traffic_secret_0 = HKDF-Expand-Label(master_secret,
 "traffic secret",
 handshake_hash, L)

 Where handshake_hash includes all messages up through the
 server CertificateVerify message, but not including any
 0-RTT handshake messages (the server’s Finished is not
 included because the master_secret is need to compute
 the finished key). [[OPEN ISSUE: Should we be including
 0-RTT handshake messages here and below?.
 https://github.com/tlswg/tls13-spec/issues/351
]] At this point,
 SS, ES, xSS, xES, mSS, and mES SHOULD be securely deleted,
 along with any ephemeral (EC)DH secrets.

 7. resumption_secret = HKDF-Expand-Label(master_secret,
 "resumption master secret"
 handshake_hash, L)

 8. exporter_secret = HKDF-Expand-Label(master_secret,
 "exporter master secret",
 handshake_hash, L)

 Where handshake_hash contains the entire handshake up to
 and including the client’s Finished, but not including
 any 0-RTT handshake messages or post-handshake messages.
 AT this point master_secret SHOULD be securely deleted.

 The traffic keys are computed from xSS, xES, and the traffic_secret
 as described in Section 7.3 below. The traffic_secret may be updated
 throughout the connection as described in Section 7.2 .

 Note: Although the steps above are phrased as individual HKDF-Extract
 and HKDF-Expand operations, because each HKDF-Expand operation is
 paired with an HKDF-Extract, it is possible to implement this key
 schedule with a black-box HKDF API, albeit at some loss of efficiency
 as some HKDF-Extract operations will be repeated.

Rescorla Expires September 22, 2016 [Page 75]

https://github.com/tlswg/tls13-spec/issues/351

Internet-Draft TLS March 2016

7.2 . Updating Traffic Keys and IVs

 Once the handshake is complete, it is possible for either side to
 update its sending traffic keys using the KeyUpdate handshake message
 Section 6.3.5.3 . The next generation of traffic keys is computed by
 generating traffic_secret_N+1 from traffic_secret_N as described in
 this section then re-deriving the traffic keys as described in
 Section 7.3 .

 The next-generation traffic_secret is computed as:

 traffic_secret_N+1 = HKDF-Expand-Label(traffic_secret_N, "traffic
 secret", "", L)

 Once traffic_secret_N+1 and its associated traffic keys have been
 computed, implementations SHOULD delete traffic_secret_N. Once the
 directional keys are no longer needed, they SHOULD be deleted as
 well.

7.3 . Traffic Key Calculation

 The traffic keying material is generated from the following input
 values:

 - A secret value

 - A phase value indicating the phase of the protocol the keys are
 being generated for.

 - A purpose value indicating the specific value being generated

 - The length of the key.

 - The handshake context which is used to generate the keys.

 The keying material is computed using:

 key = HKDF-Expand-Label(Secret,
 phase + ", " + purpose,
 handshake_context,
 key_length)

 The following table describes the inputs to the key calculation for
 each class of traffic keys:

Rescorla Expires September 22, 2016 [Page 76]

Internet-Draft TLS March 2016

 +-------------+---------+-----------------+-------------------------+
 | Record Type | Secret | Phase | Handshake Context |
 +-------------+---------+-----------------+-------------------------+
0-RTT	xSS	"early	ClientHello +
Handshake		handshake key	ServerConfiguration +
		expansion"	Server Certificate
0-RTT	xSS	"early	ClientHello +
Application		application	ServerConfiguration +
		data key	Server Certificate
		expansion"	
Handshake	xES	"handshake key	ClientHello...
		expansion"	ServerHello
Application	traffic	"application	ClientHello... Server
Data	secret	data key	Finished
		expansion"	
 +-------------+---------+-----------------+-------------------------+

 The following table indicates the purpose values for each type of
 key:

 +------------------+--------------------+
 | Key Type | Purpose |
 +------------------+--------------------+
 | Client Write Key | "client write key" |
 | | |
 | Server Write Key | "server write key" |
 | | |
 | Client Write IV | "client write iv" |
 | | |
 | Server Write IV | "server write iv" |
 +------------------+--------------------+

 All the traffic keying material is recomputed whenever the underlying
 Secret changes (e.g., when changing from the handshake to application
 data keys or upon a key update).

7.3.1 . The Handshake Hash

 The handshake hash ("handshake_hash") is defined as the hash (using
 the Hash algorithm for the handshake) of all handshake messages sent
 or received, starting at ClientHello up to the present time, with the
 exception of the client’s 0-RTT authentication messages (Certificate,
 CertificateVerify, and Finished) including the type and length fields
 of the handshake messages. This is the concatenation of the
 exchanged Handshake structures in plaintext form (even if they were

Rescorla Expires September 22, 2016 [Page 77]

Internet-Draft TLS March 2016

 encrypted on the wire). [[OPEN ISSUE: See https://github.com/tlswg/
 tls13-spec/issues/351 for the question of whether the 0-RTT handshake
 messages are hashed.]]

7.3.2 . Diffie-Hellman

 A conventional Diffie-Hellman computation is performed. The
 negotiated key (Z) is used as the shared secret, and is used in the
 key schedule as specified above. Leading bytes of Z that contain all
 zero bits are stripped before it is used as the input to HKDF.

7.3.3 . Elliptic Curve Diffie-Hellman

 For secp256r1, secp384r1 and secp521r1, ECDH calculations (including
 parameter and key generation as well as the shared secret
 calculation) are performed according to [IEEE1363] using the ECKAS-
 DH1 scheme with the identity map as key derivation function (KDF), so
 that the shared secret is the x-coordinate of the ECDH shared secret
 elliptic curve point represented as an octet string. Note that this
 octet string (Z in IEEE 1363 terminology) as output by FE2OSP, the
 Field Element to Octet String Conversion Primitive, has constant
 length for any given field; leading zeros found in this octet string
 MUST NOT be truncated.

 (Note that this use of the identity KDF is a technicality. The
 complete picture is that ECDH is employed with a non-trivial KDF
 because TLS does not directly use this secret for anything other than
 for computing other secrets.)

 ECDH functions are used as follows:

 - The public key to put into ECPoint.point structure is the result
 of applying the ECDH function to the secret key of appropriate
 length (into scalar input) and the standard public basepoint (into
 u-coordinate point input).

 - The ECDH shared secret is the result of applying ECDH function to
 the secret key (into scalar input) and the peer’s public key (into
 u-coordinate point input). The output is used raw, with no
 processing.

 For X25519 and X448, see [RFC7748].

7.3.4 . Exporters

 [RFC5705] defines keying material exporters for TLS in terms of the
 TLS PRF. This document replaces the PRF with HKDF, thus requiring a

Rescorla Expires September 22, 2016 [Page 78]

https://github.com/tlswg/tls13-spec/issues/351
https://github.com/tlswg/tls13-spec/issues/351
https://tools.ietf.org/pdf/rfc7748

Internet-Draft TLS March 2016

 new construction. The exporter interface remains the same, however
 the value is computed as:

 HKDF-Expand-Label(HKDF-Extract(0, exporter_secret),
 label, context_value, length)

 Note: the inner HKDF-Extract is strictly unnecessary, but it
 maintains the invariant that HKDF Extract and Expand calls are
 paired.

8. Mandatory Algorithms

8.1 . MTI Cipher Suites

 In the absence of an application profile standard specifying
 otherwise, a TLS-compliant application MUST implement the following
 cipher suites:

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 These cipher suites MUST support both digital signatures and key
 exchange with secp256r1 (NIST P-256) and SHOULD support key exchange
 with X25519 [RFC7748].

 A TLS-compliant application SHOULD implement the following cipher
 suites:

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

8.2 . MTI Extensions

 In the absence of an application profile standard specifying
 otherwise, a TLS-compliant application MUST implement the following
 TLS extensions:

 - Signature Algorithms ("signature_algorithms"; Section 6.3.2.1)

 - Negotiated Groups ("supported_groups"; Section 6.3.2.2)

 - Key Share ("key_share"; Section 6.3.2.3)

 - Pre-Shared Key ("pre_shared_key"; Section 6.3.2.4)

 - Server Name Indication ("server_name"; Section 3 of [RFC6066])

Rescorla Expires September 22, 2016 [Page 79]

https://tools.ietf.org/pdf/rfc7748
https://tools.ietf.org/pdf/rfc6066#section-3

Internet-Draft TLS March 2016

 All implementations MUST send and use these extensions when offering
 applicable cipher suites:

 - "signature_algorithms" is REQUIRED for certificate authenticated
 cipher suites

 - "supported_groups" and "key_share" are REQUIRED for DHE or ECDHE
 cipher suites

 - "pre_shared_key" is REQUIRED for PSK cipher suites

 When negotiating use of applicable cipher suites, endpoints MUST
 abort the connection with a "missing_extension" alert if the required
 extension was not provided. Any endpoint that receives any invalid
 combination of cipher suites and extensions MAY abort the connection
 with a "missing_extension" alert, regardless of negotiated
 parameters.

 Additionally, all implementations MUST support use of the
 "server_name" extension with applications capable of using it.
 Servers MAY require clients to send a valid "server_name" extension.
 Servers requiring this extension SHOULD respond to a ClientHello
 lacking a "server_name" extension with a fatal "missing_extension"
 alert.

 Some of these extensions exist only for the client to provide
 additional data to the server in a backwards-compatible way and thus
 have no meaning when sent from a server. The client-only extensions
 defined in this document are: "signature_algorithms" &
 "supported_groups". Servers MUST NOT send these extensions. Clients
 receiving any of these extensions MUST respond with a fatal
 "unsupported_extension" alert and close the connection.

9. Application Data Protocol

 Application data messages are carried by the record layer and are
 fragmented and encrypted based on the current connection state. The
 messages are treated as transparent data to the record layer.

10. Security Considerations

 Security issues are discussed throughout this memo, especially in
 Appendices B, C, and D.

Rescorla Expires September 22, 2016 [Page 80]

Internet-Draft TLS March 2016

11. IANA Considerations

 This document uses several registries that were originally created in
 [RFC4346]. IANA has updated these to reference this document. The
 registries and their allocation policies are below:

 - TLS Cipher Suite Registry: Values with the first byte in the range
 0-254 (decimal) are assigned via Specification Required [RFC2434].
 Values with the first byte 255 (decimal) are reserved for Private
 Use [RFC2434]. IANA [SHALL add/has added] a "Recommended" column
 to the cipher suite registry. All cipher suites listed in
 Appendix A.4 are marked as "Yes". All other cipher suites are
 marked as "No". IANA [SHALL add/has added] add a note to this
 column reading:

 Cipher suites marked as "Yes" are those allocated via Standards
 Track RFCs. Cipher suites marked as "No" are not; cipher
 suites marked "No" range from "good" to "bad" from a
 cryptographic standpoint.

 - TLS ContentType Registry: Future values are allocated via
 Standards Action [RFC2434].

 - TLS Alert Registry: Future values are allocated via Standards
 Action [RFC2434].

 - TLS HandshakeType Registry: Future values are allocated via
 Standards Action [RFC2434].

 This document also uses a registry originally created in [RFC4366].
 IANA has updated it to reference this document. The registry and its
 allocation policy is listed below:

 - TLS ExtensionType Registry: Values with the first byte in the
 range 0-254 (decimal) are assigned via Specification Required
 [RFC2434]. Values with the first byte 255 (decimal) are reserved
 for Private Use [RFC2434]. IANA [SHALL update/has updated] this
 registry to include the "key_share", "pre_shared_key", and
 "early_data" extensions as defined in this document.

 IANA [shall update/has updated] this registry to include a "TLS
 1.3" column with the following four values: "Client", indicating
 that the server shall not send them. "Clear", indicating that
 they shall be in the ServerHello. "Encrypted", indicating that
 they shall be in the EncryptedExtensions block, and "No"
 indicating that they are not used in TLS 1.3. This column [shall
 be/has been] initially populated with the values in this document.
 IANA [shall update/has updated] this registry to add a

Rescorla Expires September 22, 2016 [Page 81]

https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434

Internet-Draft TLS March 2016

 "Recommended" column. IANA [shall/has] initially populated this
 column with the values in the table below. This table has been
 generated by marking Standards Track RFCs as "Yes" and all others
 as "No".

 +---+-------------+-----------+
 | Extension | Recommended | TLS 1.3 |
 +---+-------------+-----------+
server_name [RFC6066]	Yes	Encrypted
max_fragment_length [RFC6066]	Yes	Encrypted
client_certificate_url [RFC6066]	Yes	Encrypted
trusted_ca_keys [RFC6066]	Yes	Encrypted
truncated_hmac [RFC6066]	Yes	No
status_request [RFC6066]	Yes	No
user_mapping [RFC4681]	Yes	Encrypted
client_authz [RFC5878]	No	Encrypted
server_authz [RFC5878]	No	Encrypted
cert_type [RFC6091]	Yes	Encrypted
supported_groups [RFC-ietf-tls-	Yes	Client
negotiated-ff-dhe]		
ec_point_formats [RFC4492]	Yes	No
srp [RFC5054]	No	No
signature_algorithms [RFC5246]	Yes	Client
use_srtp [RFC5764]	Yes	Encrypted
heartbeat [RFC6520]	Yes	Encrypted
application_layer_protocol_negotiation	Yes	Encrypted
[RFC7301]		
status_request_v2 [RFC6961]	Yes	Encrypted
signed_certificate_timestamp [RFC6962]	No	Encrypted

Rescorla Expires September 22, 2016 [Page 82]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc4681
https://tools.ietf.org/pdf/rfc5878
https://tools.ietf.org/pdf/rfc5878
https://tools.ietf.org/pdf/rfc6091
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5054
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5764
https://tools.ietf.org/pdf/rfc6520
https://tools.ietf.org/pdf/rfc7301
https://tools.ietf.org/pdf/rfc6961
https://tools.ietf.org/pdf/rfc6962

Internet-Draft TLS March 2016

client_certificate_type [RFC7250]	Yes	Encrypted
server_certificate_type [RFC7250]	Yes	Encrypted
padding [RFC7685]	Yes	Client
encrypt_then_mac [RFC7366]	Yes	No
extended_master_secret [RFC7627]	Yes	No
SessionTicket TLS [RFC4507]	Yes	No
renegotiation_info [RFC5746]	Yes	No
key_share [[this document]]	Yes	Clear
pre_shared_key [[this document]]	Yes	Clear
early_data [[this document]]	Yes	Clear
 +---+-------------+-----------+

 In addition, this document defines two new registries to be
 maintained by IANA

 - TLS SignatureScheme Registry: Values with the first byte in the
 range 0-254 (decimal) are assigned via Specification Required
 [RFC2434]. Values with the first byte 255 (decimal) are reserved
 for Private Use [RFC2434]. This registry SHALL have a
 "Recommended" column. The registry [shall be/ has been] initially
 populated with the values described in Section 6.3.2.1 . The
 following values SHALL be marked as "Recommended":
 ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384, rsa_pss_sha256,
 rsa_pss_sha384, rsa_pss_sha512, ed25519.

 - TLS ConfigurationExtensionType Registry: Values with the first
 byte in the range 0-254 (decimal) are assigned via Specification
 Required [RFC2434]. Values with the first byte 255 (decimal) are
 reserved for Private Use [RFC2434]. This registry SHALL have a
 "Recommended" column. The registry [shall be/ has been] initially
 populated with the values described in Section 6.3.3.3 , with all
 values marked with "Recommended" value "Yes".

12. References

Rescorla Expires September 22, 2016 [Page 83]

https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7685
https://tools.ietf.org/pdf/rfc7366
https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc4507
https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434

Internet-Draft TLS March 2016

12.1 . Normative References

 [AES] National Institute of Standards and Technology,
 "Specification for the Advanced Encryption Standard
 (AES)", NIST FIPS 197, November 2001.

 [DH] Diffie, W. and M. Hellman, "New Directions in
 Cryptography", IEEE Transactions on Information Theory,
 V.IT-22 n.6 , June 1977.

 [I-D.ietf-tls-chacha20-poly1305]
 Langley, A., Chang, W., Mavrogiannopoulos, N.,
 Strombergson, J., and S. Josefsson, "ChaCha20-Poly1305
 Cipher Suites for Transport Layer Security (TLS)", draft-
 ietf-tls-chacha20-poly1305-04 (work in progress), December
 2015.

 [I-D.irtf-cfrg-curves]
 Langley, A. and M. Hamburg, "Elliptic Curves for
 Security", draft-irtf-cfrg-curves-11 (work in progress),
 October 2015.

 [I-D.irtf-cfrg-eddsa]
 Josefsson, S. and I. Liusvaara, "Edwards-curve Digital
 Signature Algorithm (EdDSA)", draft-irtf-cfrg-eddsa-04
 (work in progress), March 2016.

 [I-D.mattsson-tls-ecdhe-psk-aead]
 Mattsson, J. and D. Migault, "ECDHE_PSK with AES-GCM and
 AES-CCM Cipher Suites for Transport Layer Security (TLS)",
 draft-mattsson-tls-ecdhe-psk-aead-03 (work in progress),
 December 2015.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104 ,
 DOI 10.17487/RFC2104, February 1997,
 < http://www.rfc-editor.org/info/rfc2104 >.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997,
 < http://www.rfc-editor.org/info/rfc2119 >.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434 ,
 DOI 10.17487/RFC2434, October 1998,
 < http://www.rfc-editor.org/info/rfc2434 >.

Rescorla Expires September 22, 2016 [Page 84]

https://tools.ietf.org/pdf/draft-ietf-tls-chacha20-poly1305-04
https://tools.ietf.org/pdf/draft-ietf-tls-chacha20-poly1305-04
https://tools.ietf.org/pdf/draft-irtf-cfrg-curves-11
https://tools.ietf.org/pdf/draft-irtf-cfrg-eddsa-04
https://tools.ietf.org/pdf/draft-mattsson-tls-ecdhe-psk-aead-03
https://tools.ietf.org/pdf/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/pdf/rfc2434
http://www.rfc-editor.org/info/rfc2434

Internet-Draft TLS March 2016

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447 , DOI 10.17487/RFC3447, February
 2003, < http://www.rfc-editor.org/info/rfc3447 >.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280 , DOI 10.17487/RFC5280, May 2008,
 < http://www.rfc-editor.org/info/rfc5280 >.

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288 ,
 DOI 10.17487/RFC5288, August 2008,
 < http://www.rfc-editor.org/info/rfc5288 >.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289 ,
 DOI 10.17487/RFC5289, August 2008,
 < http://www.rfc-editor.org/info/rfc5289 >.

 [RFC5487] Badra, M., "Pre-Shared Key Cipher Suites for TLS with SHA-
 256/384 and AES Galois Counter Mode", RFC 5487 ,
 DOI 10.17487/RFC5487, March 2009,
 < http://www.rfc-editor.org/info/rfc5487 >.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705 , DOI 10.17487/RFC5705,
 March 2010, < http://www.rfc-editor.org/info/rfc5705 >.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869 ,
 DOI 10.17487/RFC5869, May 2010,
 < http://www.rfc-editor.org/info/rfc5869 >.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066 ,
 DOI 10.17487/RFC6066, January 2011,
 < http://www.rfc-editor.org/info/rfc6066 >.

 [RFC6209] Kim, W., Lee, J., Park, J., and D. Kwon, "Addition of the
 ARIA Cipher Suites to Transport Layer Security (TLS)",
 RFC 6209 , DOI 10.17487/RFC6209, April 2011,
 < http://www.rfc-editor.org/info/rfc6209 >.

Rescorla Expires September 22, 2016 [Page 85]

https://tools.ietf.org/pdf/rfc3447
http://www.rfc-editor.org/info/rfc3447
https://tools.ietf.org/pdf/rfc5280
http://www.rfc-editor.org/info/rfc5280
https://tools.ietf.org/pdf/rfc5288
http://www.rfc-editor.org/info/rfc5288
https://tools.ietf.org/pdf/rfc5289
http://www.rfc-editor.org/info/rfc5289
https://tools.ietf.org/pdf/rfc5487
http://www.rfc-editor.org/info/rfc5487
https://tools.ietf.org/pdf/rfc5705
http://www.rfc-editor.org/info/rfc5705
https://tools.ietf.org/pdf/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://tools.ietf.org/pdf/rfc6066
http://www.rfc-editor.org/info/rfc6066
https://tools.ietf.org/pdf/rfc6209
http://www.rfc-editor.org/info/rfc6209

Internet-Draft TLS March 2016

 [RFC6367] Kanno, S. and M. Kanda, "Addition of the Camellia Cipher
 Suites to Transport Layer Security (TLS)", RFC 6367 ,
 DOI 10.17487/RFC6367, September 2011,
 < http://www.rfc-editor.org/info/rfc6367 >.

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655 ,
 DOI 10.17487/RFC6655, July 2012,
 < http://www.rfc-editor.org/info/rfc6655 >.

 [RFC7251] McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
 TLS", RFC 7251 , DOI 10.17487/RFC7251, June 2014,
 < http://www.rfc-editor.org/info/rfc7251 >.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748 , DOI 10.17487/RFC7748, January
 2016, < http://www.rfc-editor.org/info/rfc7748 >.

 [SHS] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Secure Hash Standard", NIST FIPS
 PUB 180-4, March 2012.

 [X690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2002, 2002.

 [X962] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 1998.

12.2 . Informative References

 [DSS] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Digital Signature Standard,
 version 4", NIST FIPS PUB 186-4, 2013.

 [ECDSA] American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry: The
 Elliptic Curve Digital Signature Algorithm (ECDSA)",
 ANSI ANS X9.62-2005, November 2005.

 [FI06] "Bleichenbacher’s RSA signature forgery based on
 implementation error", August 2006, < https://www.ietf.org/
 mail-archive/web/openpgp/current/msg00999.html >.

Rescorla Expires September 22, 2016 [Page 86]

https://tools.ietf.org/pdf/rfc6367
http://www.rfc-editor.org/info/rfc6367
https://tools.ietf.org/pdf/rfc6655
http://www.rfc-editor.org/info/rfc6655
https://tools.ietf.org/pdf/rfc7251
http://www.rfc-editor.org/info/rfc7251
https://tools.ietf.org/pdf/rfc7748
http://www.rfc-editor.org/info/rfc7748
https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.html

Internet-Draft TLS March 2016

 [GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC",
 NIST Special Publication 800-38D, November 2007.

 [I-D.ietf-tls-negotiated-ff-dhe]
 Gillmor, D., "Negotiated Finite Field Diffie-Hellman
 Ephemeral Parameters for TLS", draft-ietf-tls-negotiated-
 ff-dhe-10 (work in progress), June 2015.

 [IEEE1363]
 IEEE, "Standard Specifications for Public Key
 Cryptography", IEEE 1363 , 2000.

 [PKCS6] RSA Laboratories, "PKCS #6: RSA Extended Certificate
 Syntax Standard, version 1.5", November 1993.

 [PKCS7] RSA Laboratories, "PKCS #7: RSA Cryptographic Message
 Syntax Standard, version 1.5", November 1993.

 [PSK-FINISHED]
 Cremers, C., Horvat, M., van der Merwe, T., and S. Scott,
 "Revision 10: possible attack if client authentication is
 allowed during PSK", 2015, < https://www.ietf.org/mail-
 archive/web/tls/current/msg18215.html >.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793 , DOI 10.17487/RFC0793, September 1981,
 < http://www.rfc-editor.org/info/rfc793 >.

 [RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
 RFC 1948 , DOI 10.17487/RFC1948, May 1996,
 < http://www.rfc-editor.org/info/rfc1948 >.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106 , RFC 4086 ,
 DOI 10.17487/RFC4086, June 2005,
 < http://www.rfc-editor.org/info/rfc4086 >.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279 , DOI 10.17487/RFC4279, December 2005,
 < http://www.rfc-editor.org/info/rfc4279 >.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302 ,
 DOI 10.17487/RFC4302, December 2005,
 < http://www.rfc-editor.org/info/rfc4302 >.

Rescorla Expires September 22, 2016 [Page 87]

https://tools.ietf.org/pdf/draft-ietf-tls-negotiated-ff-dhe-10
https://tools.ietf.org/pdf/draft-ietf-tls-negotiated-ff-dhe-10
https://www.ietf.org/mail-archive/web/tls/current/msg18215.html
https://www.ietf.org/mail-archive/web/tls/current/msg18215.html
https://tools.ietf.org/pdf/rfc793
http://www.rfc-editor.org/info/rfc793
https://tools.ietf.org/pdf/rfc1948
http://www.rfc-editor.org/info/rfc1948
https://tools.ietf.org/pdf/bcp106
https://tools.ietf.org/pdf/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://tools.ietf.org/pdf/rfc4279
http://www.rfc-editor.org/info/rfc4279
https://tools.ietf.org/pdf/rfc4302
http://www.rfc-editor.org/info/rfc4302

Internet-Draft TLS March 2016

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303 , DOI 10.17487/RFC4303, December 2005,
 < http://www.rfc-editor.org/info/rfc4303 >.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346 ,
 DOI 10.17487/RFC4346, April 2006,
 < http://www.rfc-editor.org/info/rfc4346 >.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366 , DOI 10.17487/RFC4366, April 2006,
 < http://www.rfc-editor.org/info/rfc4366 >.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492 ,
 DOI 10.17487/RFC4492, May 2006,
 < http://www.rfc-editor.org/info/rfc4492 >.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506 , DOI 10.17487/RFC4506, May
 2006, < http://www.rfc-editor.org/info/rfc4506 >.

 [RFC4507] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 4507 , DOI 10.17487/RFC4507, May
 2006, < http://www.rfc-editor.org/info/rfc4507 >.

 [RFC4681] Santesson, S., Medvinsky, A., and J. Ball, "TLS User
 Mapping Extension", RFC 4681 , DOI 10.17487/RFC4681,
 October 2006, < http://www.rfc-editor.org/info/rfc4681 >.

 [RFC5054] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
 "Using the Secure Remote Password (SRP) Protocol for TLS
 Authentication", RFC 5054 , DOI 10.17487/RFC5054, November
 2007, < http://www.rfc-editor.org/info/rfc5054 >.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077 , DOI 10.17487/RFC5077,
 January 2008, < http://www.rfc-editor.org/info/rfc5077 >.

 [RFC5081] Mavrogiannopoulos, N., "Using OpenPGP Keys for Transport
 Layer Security (TLS) Authentication", RFC 5081 ,
 DOI 10.17487/RFC5081, November 2007,
 < http://www.rfc-editor.org/info/rfc5081 >.

Rescorla Expires September 22, 2016 [Page 88]

https://tools.ietf.org/pdf/rfc4303
http://www.rfc-editor.org/info/rfc4303
https://tools.ietf.org/pdf/rfc4346
http://www.rfc-editor.org/info/rfc4346
https://tools.ietf.org/pdf/rfc4366
http://www.rfc-editor.org/info/rfc4366
https://tools.ietf.org/pdf/rfc4492
http://www.rfc-editor.org/info/rfc4492
https://tools.ietf.org/pdf/rfc4506
http://www.rfc-editor.org/info/rfc4506
https://tools.ietf.org/pdf/rfc4507
http://www.rfc-editor.org/info/rfc4507
https://tools.ietf.org/pdf/rfc4681
http://www.rfc-editor.org/info/rfc4681
https://tools.ietf.org/pdf/rfc5054
http://www.rfc-editor.org/info/rfc5054
https://tools.ietf.org/pdf/rfc5077
http://www.rfc-editor.org/info/rfc5077
https://tools.ietf.org/pdf/rfc5081
http://www.rfc-editor.org/info/rfc5081

Internet-Draft TLS March 2016

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116 , DOI 10.17487/RFC5116, January 2008,
 < http://www.rfc-editor.org/info/rfc5116 >.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246 ,
 DOI 10.17487/RFC5246, August 2008,
 < http://www.rfc-editor.org/info/rfc5246 >.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746 , DOI 10.17487/RFC5746, February 2010,
 < http://www.rfc-editor.org/info/rfc5746 >.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763 , DOI 10.17487/RFC5763, May
 2010, < http://www.rfc-editor.org/info/rfc5763 >.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764 ,
 DOI 10.17487/RFC5764, May 2010,
 < http://www.rfc-editor.org/info/rfc5764 >.

 [RFC5878] Brown, M. and R. Housley, "Transport Layer Security (TLS)
 Authorization Extensions", RFC 5878 , DOI 10.17487/RFC5878,
 May 2010, < http://www.rfc-editor.org/info/rfc5878 >.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929 , DOI 10.17487/RFC5929, July 2010,
 < http://www.rfc-editor.org/info/rfc5929 >.

 [RFC6091] Mavrogiannopoulos, N. and D. Gillmor, "Using OpenPGP Keys
 for Transport Layer Security (TLS) Authentication",
 RFC 6091 , DOI 10.17487/RFC6091, February 2011,
 < http://www.rfc-editor.org/info/rfc6091 >.

 [RFC6176] Turner, S. and T. Polk, "Prohibiting Secure Sockets Layer
 (SSL) Version 2.0", RFC 6176 , DOI 10.17487/RFC6176, March
 2011, < http://www.rfc-editor.org/info/rfc6176 >.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520 ,
 DOI 10.17487/RFC6520, February 2012,
 < http://www.rfc-editor.org/info/rfc6520 >.

Rescorla Expires September 22, 2016 [Page 89]

https://tools.ietf.org/pdf/rfc5116
http://www.rfc-editor.org/info/rfc5116
https://tools.ietf.org/pdf/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://tools.ietf.org/pdf/rfc5746
http://www.rfc-editor.org/info/rfc5746
https://tools.ietf.org/pdf/rfc5763
http://www.rfc-editor.org/info/rfc5763
https://tools.ietf.org/pdf/rfc5764
http://www.rfc-editor.org/info/rfc5764
https://tools.ietf.org/pdf/rfc5878
http://www.rfc-editor.org/info/rfc5878
https://tools.ietf.org/pdf/rfc5929
http://www.rfc-editor.org/info/rfc5929
https://tools.ietf.org/pdf/rfc6091
http://www.rfc-editor.org/info/rfc6091
https://tools.ietf.org/pdf/rfc6176
http://www.rfc-editor.org/info/rfc6176
https://tools.ietf.org/pdf/rfc6520
http://www.rfc-editor.org/info/rfc6520

Internet-Draft TLS March 2016

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961 ,
 DOI 10.17487/RFC6961, June 2013,
 < http://www.rfc-editor.org/info/rfc6961 >.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962 , DOI 10.17487/RFC6962, June 2013,
 < http://www.rfc-editor.org/info/rfc6962 >.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250 , DOI 10.17487/RFC7250,
 June 2014, < http://www.rfc-editor.org/info/rfc7250 >.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301 , DOI 10.17487/RFC7301,
 July 2014, < http://www.rfc-editor.org/info/rfc7301 >.

 [RFC7366] Gutmann, P., "Encrypt-then-MAC for Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7366 , DOI 10.17487/RFC7366, September 2014,
 < http://www.rfc-editor.org/info/rfc7366 >.

 [RFC7465] Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465 ,
 DOI 10.17487/RFC7465, February 2015,
 < http://www.rfc-editor.org/info/rfc7465 >.

 [RFC7568] Barnes, R., Thomson, M., Pironti, A., and A. Langley,
 "Deprecating Secure Sockets Layer Version 3.0", RFC 7568 ,
 DOI 10.17487/RFC7568, June 2015,
 < http://www.rfc-editor.org/info/rfc7568 >.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",
 RFC 7627 , DOI 10.17487/RFC7627, September 2015,
 < http://www.rfc-editor.org/info/rfc7627 >.

 [RFC7685] Langley, A., "A Transport Layer Security (TLS) ClientHello
 Padding Extension", RFC 7685 , DOI 10.17487/RFC7685,
 October 2015, < http://www.rfc-editor.org/info/rfc7685 >.

 [RSA] Rivest, R., Shamir, A., and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems", Communications of the ACM v. 21, n. 2, pp.
 120-126., February 1978.

Rescorla Expires September 22, 2016 [Page 90]

https://tools.ietf.org/pdf/rfc6961
http://www.rfc-editor.org/info/rfc6961
https://tools.ietf.org/pdf/rfc6962
http://www.rfc-editor.org/info/rfc6962
https://tools.ietf.org/pdf/rfc7250
http://www.rfc-editor.org/info/rfc7250
https://tools.ietf.org/pdf/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://tools.ietf.org/pdf/rfc7366
http://www.rfc-editor.org/info/rfc7366
https://tools.ietf.org/pdf/rfc7465
http://www.rfc-editor.org/info/rfc7465
https://tools.ietf.org/pdf/rfc7568
http://www.rfc-editor.org/info/rfc7568
https://tools.ietf.org/pdf/rfc7627
http://www.rfc-editor.org/info/rfc7627
https://tools.ietf.org/pdf/rfc7685
http://www.rfc-editor.org/info/rfc7685

Internet-Draft TLS March 2016

 [SLOTH] Bhargavan, K. and G. Leurent, "Transcript Collision
 Attacks: Breaking Authentication in TLS, IKE, and SSH",
 Network and Distributed System Security Symposium (NDSS
 2016) , 2016.

 [SSL2] Netscape Communications Corp., "The SSL Protocol",
 February 1995.

 [SSL3] Freier, A., Karlton, P., and P. Kocher, "The SSL 3.0
 Protocol", November 1996.

 [TIMING] Boneh, D. and D. Brumley, "Remote timing attacks are
 practical", USENIX Security Symposium, 2003.

 [X501] "Information Technology - Open Systems Interconnection -
 The Directory: Models", ITU-T X.501, 1993.

12.3 . URIs

 [1] mailto:tls@ietf.org

Rescorla Expires September 22, 2016 [Page 91]

Internet-Draft TLS March 2016

Appendix A . Protocol Data Structures and Constant Values

 This section describes protocol types and constants. Values listed
 as _RESERVED were used in previous versions of TLS and are listed
 here for completeness. TLS 1.3 implementations MUST NOT send them
 but might receive them from older TLS implementations.

A.1 . Record Layer

 struct {
 uint8 major;
 uint8 minor;
 } ProtocolVersion;

 enum {
 invalid_RESERVED(0),
 change_cipher_spec_RESERVED(20),
 alert(21),
 handshake(22),
 application_data(23)
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 struct {
 ContentType opaque_type = application_data(23); /* see fragment.type */
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 aead-ciphered struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } fragment;
 } TLSCiphertext;

A.2 . Alert Messages

Rescorla Expires September 22, 2016 [Page 92]

Internet-Draft TLS March 2016

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 end_of_early_data(1),
 unexpected_message(10), /* fatal */
 bad_record_mac(20), /* fatal */
 decryption_failed_RESERVED(21), /* fatal */
 record_overflow(22), /* fatal */
 decompression_failure_RESERVED(30), /* fatal */
 handshake_failure(40), /* fatal */
 no_certificate_RESERVED(41), /* fatal */
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47), /* fatal */
 unknown_ca(48), /* fatal */
 access_denied(49), /* fatal */
 decode_error(50), /* fatal */
 decrypt_error(51), /* fatal */
 export_restriction_RESERVED(60), /* fatal */
 protocol_version(70), /* fatal */
 insufficient_security(71), /* fatal */
 internal_error(80), /* fatal */
 inappropriate_fallback(86), /* fatal */
 user_canceled(90),
 no_renegotiation_RESERVED(100), /* fatal */
 missing_extension(109), /* fatal */
 unsupported_extension(110), /* fatal */
 certificate_unobtainable(111),
 unrecognized_name(112),
 bad_certificate_status_response(113), /* fatal */
 bad_certificate_hash_value(114), /* fatal */
 unknown_psk_identity(115),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

Rescorla Expires September 22, 2016 [Page 93]

Internet-Draft TLS March 2016

A.3 . Handshake Protocol

 enum {
 hello_request_RESERVED(0),
 client_hello(1),
 server_hello(2),
 session_ticket(4),
 hello_retry_request(6),
 encrypted_extensions(8),
 certificate(11),
 server_key_exchange_RESERVED(12),
 certificate_request(13),
 server_hello_done_RESERVED(14),
 certificate_verify(15),
 client_key_exchange_RESERVED(16),
 server_configuration(17),
 finished(20),
 key_update(24),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_retry_request: HelloRetryRequest;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case server_configuration: ServerConfiguration;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 } body;
 } Handshake;

A.3.1 . Key Exchange Messages

 struct {
 opaque random_bytes[32];
 } Random;

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {

Rescorla Expires September 22, 2016 [Page 94]

Internet-Draft TLS March 2016

 ProtocolVersion client_version = { 3, 4 }; /* TLS v1.3 */
 Random random;
 opaque legacy_session_id<0..32>;
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<0..2^16-1>;
 } ClientHello;

 struct {
 ProtocolVersion server_version;
 Random random;
 CipherSuite cipher_suite;
 Extension extensions<0..2^16-1>;
 } ServerHello;

 struct {
 ProtocolVersion server_version;
 CipherSuite cipher_suite;
 NamedGroup selected_group;
 Extension extensions<0..2^16-1>;
 } HelloRetryRequest;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 supported_groups(10),
 signature_algorithms(13),
 key_share(40),
 pre_shared_key(41),
 early_data(42),
 (65535)
 } ExtensionType;

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

 struct {
 select (role) {
 case client:
 KeyShareEntry client_shares<4..2^16-1>;

 case server:
 KeyShareEntry server_share;

Rescorla Expires September 22, 2016 [Page 95]

Internet-Draft TLS March 2016

 }
 } KeyShare;

 opaque dh_Y<1..2^16-1>;

 opaque point <1..2^8-1>;

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<2..2^16-1>;

 case server:
 psk_identity identity;
 }
 } PreSharedKeyExtension;

 struct {
 select (Role) {
 case client:
 opaque configuration_id<1..2^16-1>;
 CipherSuite cipher_suite;
 Extension extensions<0..2^16-1>;
 opaque context<0..255>;

 case server:
 struct {};
 }
 } EarlyDataIndication;

A.3.1.1 . Signature Algorithm Extension

Rescorla Expires September 22, 2016 [Page 96]

Internet-Draft TLS March 2016

 enum {
 // RSASSA-PKCS-v1_5 algorithms.
 rsa_pkcs1_sha1 (0x0201),
 rsa_pkcs1_sha256 (0x0401),
 rsa_pkcs1_sha384 (0x0501),
 rsa_pkcs1_sha512 (0x0601),

 // DSA algorithms (deprecated).
 dsa_sha1 (0x0202),
 dsa_sha256 (0x0402),
 dsa_sha384 (0x0502),
 dsa_sha512 (0x0602),

 // ECDSA algorithms.
 ecdsa_secp256r1_sha256 (0x0403),
 ecdsa_secp384r1_sha384 (0x0503),
 ecdsa_secp521r1_sha512 (0x0603),

 // RSASSA-PSS algorithms.
 rsa_pss_sha256 (0x0700),
 rsa_pss_sha384 (0x0701),
 rsa_pss_sha512 (0x0702),

 // EdDSA algorithms.
 ed25519 (0x0703),
 ed448 (0x0704),

 // Reserved Code Points.
 obsolete_RESERVED (0x0000..0x0200),
 obsolete_RESERVED (0x0203..0x0400),
 obsolete_RESERVED (0x0404..0x0500),
 obsolete_RESERVED (0x0504..0x0600),
 obsolete_RESERVED (0x0604..0x06FF),
 private_use (0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 SignatureScheme supported_signature_algorithms<2..2^16-2>;

A.3.1.2 . Named Group Extension

Rescorla Expires September 22, 2016 [Page 97]

Internet-Draft TLS March 2016

 enum {
 // Elliptic Curve Groups (ECDHE).
 obsolete_RESERVED (1..22),
 secp256r1 (23), secp384r1 (24), secp521r1 (25),
 obsolete_RESERVED (26..28),
 x25519 (29), x448 (30),

 // Finite Field Groups (DHE).
 ffdhe2048 (256), ffdhe3072 (257), ffdhe4096 (258),
 ffdhe6144 (259), ffdhe8192 (260),

 // Reserved Code Points.
 ffdhe_private_use (0x01FC..0x01FF),
 ecdhe_private_use (0xFE00..0xFEFF),
 obsolete_RESERVED (0xFF01..0xFF02),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<1..2^16-1>;
 } NamedGroupList;

 Values within "obsolete_RESERVED" ranges were used in previous
 versions of TLS and MUST NOT be offered or negotiated by TLS 1.3
 implementations. The obsolete curves have various known/theoretical
 weaknesses or have had very little usage, in some cases only due to
 unintentional server configuration issues. They are no longer
 considered appropriate for general use and should be assumed to be
 potentially unsafe. The set of curves specified here is sufficient
 for interoperability with all currently deployed and properly
 configured TLS implementations.

A.3.1.3 . Deprecated Extensions

 The following extensions are no longer applicable to TLS 1.3,
 although TLS 1.3 clients MAY send them if they are willing to
 negotiate them with prior versions of TLS. TLS 1.3 servers MUST
 ignore these extensions if they are negotiating TLS 1.3:
 truncated_hmac [RFC6066], srp [RFC5054], encrypt_then_mac [RFC7366],
 extended_master_secret [RFC7627], SessionTicket [RFC5077], and
 renegotiation_info [RFC5746].

A.3.2 . Server Parameters Messages

Rescorla Expires September 22, 2016 [Page 98]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc5054
https://tools.ietf.org/pdf/rfc7366
https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc5077
https://tools.ietf.org/pdf/rfc5746

Internet-Draft TLS March 2016

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } CertificateExtension;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 SignatureScheme
 supported_signature_algorithms<2..2^16-2>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 CertificateExtension certificate_extensions<0..2^16-1>;
 } CertificateRequest;

 enum { (65535) } ConfigurationExtensionType;

 enum { client_authentication(1), early_data(2),
 client_authentication_and_data(3), (255) } EarlyDataType;

 struct {
 ConfigurationExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } ConfigurationExtension;

 struct {
 opaque configuration_id<1..2^16-1>;
 uint32 expiration_date;
 KeyShareEntry static_key_share;
 EarlyDataType early_data_type;
 ConfigurationExtension extensions<0..2^16-1>;
 } ServerConfiguration;

A.3.3 . Authentication Messages

Rescorla Expires September 22, 2016 [Page 99]

Internet-Draft TLS March 2016

 opaque ASN1Cert<1..2^24-1>;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 ASN1Cert certificate_list<0..2^24-1>;
 } Certificate;

 struct {
 digitally-signed struct {
 opaque hashed_data[hash_length];
 };
 } CertificateVerify;

 struct {
 opaque verify_data[verify_data_length];
 } Finished;

A.3.4 . Ticket Establishment

 struct {
 uint32 ticket_lifetime;
 opaque ticket<0..2^16-1>;
 } NewSessionTicket;

A.4 . Cipher Suites

 A cipher suite defines a cipher specification supported in TLS and
 negotiated via hello messages in the TLS handshake. Cipher suite
 names follow a general naming convention composed of a series of
 component algorithm names separated by underscores:

 CipherSuite TLS_KEA_AUTH_WITH_CIPHER_HASH = VALUE;

Rescorla Expires September 22, 2016 [Page 100]

Internet-Draft TLS March 2016

 +-----------+---+
 | Component | Contents |
 +-----------+---+
TLS	The string "TLS"
KEA	The key exchange algorithm (e.g. ECDHE, DHE)
AUTH	The authentication algorithm (e.g. certificates, PSK)
WITH	The string "WITH"
CIPHER	The symmetric cipher used for record protection
HASH	The hash algorithm used with HKDF
VALUE	The two byte ID assigned for this cipher suite
 +-----------+---+

 The "CIPHER" component commonly has sub-components used to designate
 the cipher name, bits, and mode, if applicable. For example,
 "AES_256_GCM" represents 256-bit AES in the GCM mode of operation.
 Cipher suite names that lack a "HASH" value that are defined for use
 with TLS 1.2 or later use the SHA-256 hash algorithm by default.

 The primary key exchange algorithm used in TLS is Ephemeral Diffie-
 Hellman [DH]. The finite field based version is denoted "DHE" and
 the elliptic curve based version is denoted "ECDHE". Prior versions
 of TLS supported non-ephemeral key exchanges, however these are not
 supported by TLS 1.3.

 See the definitions of each cipher suite in its specification
 document for the full details of each combination of algorithms that
 is specified.

 The following is a list of standards track server-authenticated (and
 optionally client-authenticated) cipher suites which are currently
 available in TLS 1.3:

Rescorla Expires September 22, 2016 [Page 101]

Internet-Draft TLS March 2016

 +-------------------------------+----------+------------------------+
 | Cipher Suite Name | Value | Specification |
 +-------------------------------+----------+------------------------+
TLS_DHE_RSA_WITH_AES_128_GCM_	{0x00,0x	[RFC5288]
SHA256	9E}	
TLS_DHE_RSA_WITH_AES_256_GCM_	{0x00,0x	[RFC5288]
SHA384	9F}	
TLS_ECDHE_ECDSA_WITH_AES_128_	{0xC0,0x	[RFC5289]
GCM_SHA256	2B}	
TLS_ECDHE_ECDSA_WITH_AES_256_	{0xC0,0x	[RFC5289]
GCM_SHA384	2C}	
TLS_ECDHE_RSA_WITH_AES_128_GC	{0xC0,0x	[RFC5289]
M_SHA256	2F}	
TLS_ECDHE_RSA_WITH_AES_256_GC	{0xC0,0x	[RFC5289]
M_SHA384	30}	
TLS_DHE_RSA_WITH_AES_128_CCM	{0xC0,0x	[RFC6655]
	9E}	
TLS_DHE_RSA_WITH_AES_256_CCM	{0xC0,0x	[RFC6655]
	9F}	
TLS_DHE_RSA_WITH_AES_128_CCM_	{0xC0,0x	[RFC6655]
8	A2}	
TLS_DHE_RSA_WITH_AES_256_CCM_	{0xC0,0x	[RFC6655]
8	A3}	
TLS_ECDHE_RSA_WITH_CHACHA20_P	{0xCC,0x	[I-D.ietf-tls-chacha20
OLY1305_SHA256	A8}	-poly1305]
TLS_ECDHE_ECDSA_WITH_CHACHA20	{0xCC,0x	[I-D.ietf-tls-chacha20
_POLY1305_SHA256	A9}	-poly1305]
TLS_DHE_RSA_WITH_CHACHA20_POL	{0xCC,0x	[I-D.ietf-tls-chacha20
Y1305_SHA256	AA}	-poly1305]
 +-------------------------------+----------+------------------------+

 Note: The values listed for ChaCha/Poly are preliminary but are being
 or will be used for interop testing and therefore are likely to be
 assigned.

Rescorla Expires September 22, 2016 [Page 102]

https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655

Internet-Draft TLS March 2016

 Note: ECDHE AES GCM was not yet standards track prior to the
 publication of this specification. This document promotes the above-
 listed ciphers to standards track.

 The following is a list of standards track ephemeral pre-shared key
 cipher suites which are currently available in TLS 1.3:

Rescorla Expires September 22, 2016 [Page 103]

Internet-Draft TLS March 2016

 +------------------------------+----------+-------------------------+
 | Cipher Suite Name | Value | Specification |
 +------------------------------+----------+-------------------------+
TLS_DHE_PSK_WITH_AES_128_GCM	{0x00,0x	[RFC5487]
_SHA256	AA}	
TLS_DHE_PSK_WITH_AES_256_GCM	{0x00,0x	[RFC5487]
_SHA384	AB}	
TLS_DHE_PSK_WITH_AES_128_CCM	{0xC0,0x	[RFC6655]
	A6}	
TLS_DHE_PSK_WITH_AES_256_CCM	{0xC0,0x	[RFC6655]
	A7}	
TLS_PSK_DHE_WITH_AES_128_CCM	{0xC0,0x	[RFC6655]
_8	AA}	
TLS_PSK_DHE_WITH_AES_256_CCM	{0xC0,0x	[RFC6655]
_8	AB}	
TLS_ECDHE_PSK_WITH_AES_128_G	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_SHA256	01}	-psk-aead]
TLS_ECDHE_PSK_WITH_AES_256_G	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_SHA384	02}	-psk-aead]
TLS_ECDHE_PSK_WITH_AES_128_C	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_8_SHA256	03}	-psk-aead]
TLS_ECDHE_PSK_WITH_AES_128_C	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_SHA256	04}	-psk-aead]
TLS_ECDHE_PSK_WITH_AES_256_C	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_SHA384	05}	-psk-aead]
TLS_ECDHE_PSK_WITH_CHACHA20_	{0xCC,0x	[I-D.ietf-tls-chacha20-
POLY1305_SHA256	AC}	poly1305]
TLS_DHE_PSK_WITH_CHACHA20_PO	{0xCC,0x	[I-D.ietf-tls-chacha20-
LY1305_SHA256	AD}	poly1305]
 +------------------------------+----------+-------------------------+

 Note: The values listed for ECDHE and ChaCha/Poly are preliminary but
 are being or will be used for interop testing and therefore are
 likely to be assigned.

Rescorla Expires September 22, 2016 [Page 104]

https://tools.ietf.org/pdf/rfc5487
https://tools.ietf.org/pdf/rfc5487
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655

Internet-Draft TLS March 2016

 Note: [RFC6655] is inconsistent with respect to the ordering of
 components within PSK AES CCM cipher suite names. The names above
 are as defined.

 All cipher suites in this section are specified for use with both TLS
 1.2 and TLS 1.3, as well as the corresponding versions of DTLS. (see
 Appendix C)

 New cipher suite values are assigned by IANA as described in
 Section 11 .

A.4.1 . Unauthenticated Operation

 Previous versions of TLS offered explicitly unauthenticated cipher
 suites based on anonymous Diffie-Hellman. These cipher suites have
 been deprecated in TLS 1.3. However, it is still possible to
 negotiate cipher suites that do not provide verifiable server
 authentication by several methods, including:

 - Raw public keys [RFC7250].

 - Using a public key contained in a certificate but without
 validation of the certificate chain or any of its contents.

 Either technique used alone is are vulnerable to man-in-the-middle
 attacks and therefore unsafe for general use. However, it is also
 possible to bind such connections to an external authentication
 mechanism via out-of-band validation of the server’s public key,
 trust on first use, or channel bindings [RFC5929]. [[NOTE: TLS 1.3
 needs a new channel binding definition that has not yet been
 defined.]] If no such mechanism is used, then the connection has no
 protection against active man-in-the-middle attack; applications MUST
 NOT use TLS in such a way absent explicit configuration or a specific
 application profile.

A.5 . The Security Parameters

 These security parameters are determined by the TLS Handshake
 Protocol and provided as parameters to the TLS record layer in order
 to initialize a connection state. SecurityParameters includes:

Rescorla Expires September 22, 2016 [Page 105]

https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc5929

Internet-Draft TLS March 2016

 enum { server, client } ConnectionEnd;

 enum { tls_kdf_sha256, tls_kdf_sha384 } KDFAlgorithm;

 enum { aes_gcm } RecordProtAlgorithm;

 /* The algorithms specified in KDFAlgorithm and
 RecordProtAlgorithm may be added to. */

 struct {
 ConnectionEnd entity;
 KDFAlgorithm kdf_algorithm;
 RecordProtAlgorithm record_prot_algorithm;
 uint8 enc_key_length;
 uint8 iv_length;
 opaque hs_master_secret[48];
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

A.6 . Changes to RFC 4492

 RFC 4492 [RFC4492] adds Elliptic Curve cipher suites to TLS. This
 document changes some of the structures used in that document. This
 section details the required changes for implementors of both RFC
 4492 and TLS 1.2. Implementors of TLS 1.2 who are not implementing
 RFC 4492 do not need to read this section.

 This document adds an "algorithm" field to the digitally-signed
 element in order to identify the signature and digest algorithms used
 to create a signature. This change applies to digital signatures
 formed using ECDSA as well, thus allowing ECDSA signatures to be used
 with digest algorithms other than SHA-1, provided such use is
 compatible with the certificate and any restrictions imposed by
 future revisions of [RFC5280].

 As described in Section 6.3.4.1.1 , the restrictions on the signature
 algorithms used to sign certificates are no longer tied to the cipher
 suite. Thus, the restrictions on the algorithm used to sign
 certificates specified in Sections 2 and 3 of RFC 4492 are also
 relaxed. As in this document, the restrictions on the keys in the
 end-entity certificate remain.

Rescorla Expires September 22, 2016 [Page 106]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS March 2016

Appendix B . Implementation Notes

 The TLS protocol cannot prevent many common security mistakes. This
 section provides several recommendations to assist implementors.

B.1 . Random Number Generation and Seeding

 TLS requires a cryptographically secure pseudorandom number generator
 (PRNG). Care must be taken in designing and seeding PRNGs. PRNGs
 based on secure hash operations, most notably SHA-256, are
 acceptable, but cannot provide more security than the size of the
 random number generator state.

 To estimate the amount of seed material being produced, add the
 number of bits of unpredictable information in each seed byte. For
 example, keystroke timing values taken from a PC compatible 18.2 Hz
 timer provide 1 or 2 secure bits each, even though the total size of
 the counter value is 16 bits or more. Seeding a 128-bit PRNG would
 thus require approximately 100 such timer values.

 [RFC4086] provides guidance on the generation of random values.

B.2 . Certificates and Authentication

 Implementations are responsible for verifying the integrity of
 certificates and should generally support certificate revocation
 messages. Certificates should always be verified to ensure proper
 signing by a trusted Certificate Authority (CA). The selection and
 addition of trusted CAs should be done very carefully. Users should
 be able to view information about the certificate and root CA.

B.3 . Cipher Suite Support

 TLS supports a range of key sizes and security levels, including some
 that provide no or minimal security. A proper implementation will
 probably not support many cipher suites. Applications SHOULD also
 enforce minimum and maximum key sizes. For example, certification
 paths containing keys or signatures weaker than 2048-bit RSA or
 224-bit ECDSA are not appropriate for secure applications. See also
 Appendix C.3 .

B.4 . Implementation Pitfalls

 Implementation experience has shown that certain parts of earlier TLS
 specifications are not easy to understand, and have been a source of
 interoperability and security problems. Many of these areas have
 been clarified in this document, but this appendix contains a short

Rescorla Expires September 22, 2016 [Page 107]

Internet-Draft TLS March 2016

 list of the most important things that require special attention from
 implementors.

 TLS protocol issues:

 - Do you correctly handle handshake messages that are fragmented to
 multiple TLS records (see Section 5.2.1)? Including corner cases
 like a ClientHello that is split to several small fragments? Do
 you fragment handshake messages that exceed the maximum fragment
 size? In particular, the certificate and certificate request
 handshake messages can be large enough to require fragmentation.

 - Do you ignore the TLS record layer version number in all TLS
 records? (see Appendix C)

 - Have you ensured that all support for SSL, RC4, EXPORT ciphers,
 and MD5 (via the "signature_algorithm" extension) is completely
 removed from all possible configurations that support TLS 1.3 or
 later, and that attempts to use these obsolete capabilities fail
 correctly? (see Appendix C)

 - Do you handle TLS extensions in ClientHello correctly, including
 omitting the extensions field completely?

 - When the server has requested a client certificate, but no
 suitable certificate is available, do you correctly send an empty
 Certificate message, instead of omitting the whole message (see
 Section 6.3.4.1.2)?

 - When processing the plaintext fragment produced by AEAD-Decrypt
 and scanning from the end for the ContentType, do you avoid
 scanning past the start of the cleartext in the event that the
 peer has sent a malformed plaintext of all-zeros?

 Cryptographic details:

 - What countermeasures do you use to prevent timing attacks against
 RSA signing operations [TIMING]?

 - When verifying RSA signatures, do you accept both NULL and missing
 parameters (see Section 4.8)? Do you verify that the RSA padding
 doesn’t have additional data after the hash value? [FI06]

 - When using Diffie-Hellman key exchange, do you correctly strip
 leading zero bytes from the negotiated key (see Section 7.3.2)?

 - Does your TLS client check that the Diffie-Hellman parameters sent
 by the server are acceptable (see Appendix D.1.1.1)?

Rescorla Expires September 22, 2016 [Page 108]

Internet-Draft TLS March 2016

 - Do you use a strong and, most importantly, properly seeded random
 number generator (see Appendix B.1) Diffie-Hellman private values,
 the ECDSA "k" parameter, and other security-critical values?

Appendix C . Backward Compatibility

 The TLS protocol provides a built-in mechanism for version
 negotiation between endpoints potentially supporting different
 versions of TLS.

 TLS 1.x and SSL 3.0 use compatible ClientHello messages. Servers can
 also handle clients trying to use future versions of TLS as long as
 the ClientHello format remains compatible and the client supports the
 highest protocol version available in the server.

 Prior versions of TLS used the record layer version number for
 various purposes. (TLSPlaintext.record_version &
 TLSCiphertext.record_version) As of TLS 1.3, this field is deprecated
 and its value MUST be ignored by all implementations. Version
 negotiation is performed using only the handshake versions.
 (ClientHello.client_version & ServerHello.server_version) In order to
 maximize interoperability with older endpoints, implementations that
 negotiate the use of TLS 1.0-1.2 SHOULD set the record layer version
 number to the negotiated version for the ServerHello and all records
 thereafter.

 For maximum compatibility with previously non-standard behavior and
 misconfigured deployments, all implementations SHOULD support
 validation of certification paths based on the expectations in this
 document, even when handling prior TLS versions’ handshakes. (see
 Section 6.3.4.1.1)

 TLS 1.2 and prior supported an "Extended Master Secret" [RFC7627]
 extension which digested large parts of the handshake transcript into
 the master secret. Because TLS 1.3 always hashes in the transcript
 up to the server CertificateVerify, implementations which support
 both TLS 1.3 and earlier versions SHOULD indicate the use of the
 Extended Master Secret extension in their APIs whenever TLS 1.3 is
 used.

C.1 . Negotiating with an older server

 A TLS 1.3 client who wishes to negotiate with such older servers will
 send a normal TLS 1.3 ClientHello containing { 3, 4 } (TLS 1.3) in
 ClientHello.client_version. If the server does not support this
 version it will respond with a ServerHello containing an older
 version number. If the client agrees to use this version, the
 negotiation will proceed as appropriate for the negotiated protocol.

Rescorla Expires September 22, 2016 [Page 109]

https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS March 2016

 A client resuming a session SHOULD initiate the connection using the
 version that was previously negotiated.

 If the version chosen by the server is not supported by the client
 (or not acceptable), the client MUST send a "protocol_version" alert
 message and close the connection.

 If a TLS server receives a ClientHello containing a version number
 greater than the highest version supported by the server, it MUST
 reply according to the highest version supported by the server.

 Some legacy server implementations are known to not implement the TLS
 specification properly and might abort connections upon encountering
 TLS extensions or versions which it is not aware of.
 Interoperability with buggy servers is a complex topic beyond the
 scope of this document. Multiple connection attempts may be required
 in order to negotiate a backwards compatible connection, however this
 practice is vulnerable to downgrade attacks and is NOT RECOMMENDED.

C.2 . Negotiating with an older client

 A TLS server can also receive a ClientHello containing a version
 number smaller than the highest supported version. If the server
 wishes to negotiate with old clients, it will proceed as appropriate
 for the highest version supported by the server that is not greater
 than ClientHello.client_version. For example, if the server supports
 TLS 1.0, 1.1, and 1.2, and client_version is TLS 1.0, the server will
 proceed with a TLS 1.0 ServerHello. If the server only supports
 versions greater than client_version, it MUST send a
 "protocol_version" alert message and close the connection.

 Note that earlier versions of TLS did not clearly specify the record
 layer version number value in all cases
 (TLSPlaintext.record_version). Servers will receive various TLS 1.x
 versions in this field, however its value MUST always be ignored.

C.3 . Backwards Compatibility Security Restrictions

 If an implementation negotiates use of TLS 1.2, then negotiation of
 cipher suites also supported by TLS 1.3 SHOULD be preferred, if
 available.

 The security of RC4 cipher suites is considered insufficient for the
 reasons cited in [RFC7465]. Implementations MUST NOT offer or
 negotiate RC4 cipher suites for any version of TLS for any reason.

Rescorla Expires September 22, 2016 [Page 110]

https://tools.ietf.org/pdf/rfc7465

Internet-Draft TLS March 2016

 Old versions of TLS permitted the use of very low strength ciphers.
 Ciphers with a strength less than 112 bits MUST NOT be offered or
 negotiated for any version of TLS for any reason.

 The security of SSL 2.0 [SSL2] is considered insufficient for the
 reasons enumerated in [RFC6176], and MUST NOT be negotiated for any
 reason.

 Implementations MUST NOT send an SSL version 2.0 compatible CLIENT-
 HELLO. Implementations MUST NOT negotiate TLS 1.3 or later using an
 SSL version 2.0 compatible CLIENT-HELLO. Implementations are NOT
 RECOMMENDED to accept an SSL version 2.0 compatible CLIENT-HELLO in
 order to negotiate older versions of TLS.

 Implementations MUST NOT send or accept any records with a version
 less than { 3, 0 }.

 The security of SSL 3.0 [SSL3] is considered insufficient for the
 reasons enumerated in [RFC7568], and MUST NOT be negotiated for any
 reason.

 Implementations MUST NOT send a ClientHello.client_version or
 ServerHello.server_version set to { 3, 0 } or less. Any endpoint
 receiving a Hello message with ClientHello.client_version or
 ServerHello.server_version set to { 3, 0 } MUST respond with a
 "protocol_version" alert message and close the connection.

 Implementations MUST NOT use the Truncated HMAC extension, defined in
 Section 7 of [RFC6066] , as it is not applicable to AEAD ciphers and
 has been shown to be insecure in some scenarios.

Appendix D . Security Analysis

 [[TODO: The entire security analysis needs a rewrite.]]

 The TLS protocol is designed to establish a secure connection between
 a client and a server communicating over an insecure channel. This
 document makes several traditional assumptions, including that
 attackers have substantial computational resources and cannot obtain
 secret information from sources outside the protocol. Attackers are
 assumed to have the ability to capture, modify, delete, replay, and
 otherwise tamper with messages sent over the communication channel.
 This appendix outlines how TLS has been designed to resist a variety
 of attacks.

Rescorla Expires September 22, 2016 [Page 111]

https://tools.ietf.org/pdf/rfc6176
https://tools.ietf.org/pdf/rfc7568
https://tools.ietf.org/pdf/rfc6066#section-7

Internet-Draft TLS March 2016

D.1 . Handshake Protocol

 The TLS Handshake Protocol is responsible for selecting a cipher spec
 and generating a master secret, which together comprise the primary
 cryptographic parameters associated with a secure session. The TLS
 Handshake Protocol can also optionally authenticate parties who have
 certificates signed by a trusted certificate authority.

D.1.1 . Authentication and Key Exchange

 TLS supports three authentication modes: authentication of both
 parties, server authentication with an unauthenticated client, and
 total anonymity. Whenever the server is authenticated, the channel
 is secure against man-in-the-middle attacks, but completely anonymous
 sessions are inherently vulnerable to such attacks. Anonymous
 servers cannot authenticate clients. If the server is authenticated,
 its certificate message must provide a valid certificate chain
 leading to an acceptable certificate authority. Similarly,
 authenticated clients must supply an acceptable certificate to the
 server. Each party is responsible for verifying that the other’s
 certificate is valid and has not expired or been revoked.

 [[TODO: Rewrite this because the master_secret is not used this way
 any more after Hugo’s changes.]] The general goal of the key exchange
 process is to create a master_secret known to the communicating
 parties and not to attackers (see Section 7.1). The master_secret is
 required to generate the Finished messages and record protection keys
 (see Section 6.3.4.3 and Section 7.3). By sending a correct Finished
 message, parties thus prove that they know the correct master_secret.

D.1.1.1 . Diffie-Hellman Key Exchange with Authentication

 When Diffie-Hellman key exchange is used, the client and server use
 the "key_share" extension to send temporary Diffie-Hellman
 parameters. The signature in the certificate verify message (if
 present) covers the entire handshake up to that point and thus
 attests the certificate holder’s desire to use the the ephemeral DHE
 keys.

 Peers SHOULD validate each other’s public key Y (dh_Ys offered by the
 server or DH_Yc offered by the client) by ensuring that 1 < Y < p-1.
 This simple check ensures that the remote peer is properly behaved
 and isn’t forcing the local system into a small subgroup.

 Additionally, using a fresh key for each handshake provides Perfect
 Forward Secrecy. Implementations SHOULD generate a new X for each
 handshake when using DHE cipher suites.

Rescorla Expires September 22, 2016 [Page 112]

Internet-Draft TLS March 2016

D.1.2 . Version Rollback Attacks

 Because TLS includes substantial improvements over SSL Version 2.0,
 attackers may try to make TLS-capable clients and servers fall back
 to Version 2.0. This attack can occur if (and only if) two TLS-
 capable parties use an SSL 2.0 handshake. (See also Appendix C.3 .)

 Although the solution using non-random PKCS #1 block type 2 message
 padding is inelegant, it provides a reasonably secure way for Version
 3.0 servers to detect the attack. This solution is not secure
 against attackers who can brute-force the key and substitute a new
 ENCRYPTED-KEY-DATA message containing the same key (but with normal
 padding) before the application-specified wait threshold has expired.
 Altering the padding of the least-significant 8 bytes of the PKCS
 padding does not impact security for the size of the signed hashes
 and RSA key lengths used in the protocol, since this is essentially
 equivalent to increasing the input block size by 8 bytes.

D.1.3 . Detecting Attacks Against the Handshake Protocol

 An attacker might try to influence the handshake exchange to make the
 parties select different encryption algorithms than they would
 normally choose.

 For this attack, an attacker must actively change one or more
 handshake messages. If this occurs, the client and server will
 compute different values for the handshake message hashes. As a
 result, the parties will not accept each others’ Finished messages.
 Without the static secret, the attacker cannot repair the Finished
 messages, so the attack will be discovered.

D.2 . Protecting Application Data

 The shared secrets are hashed with the handshake transcript to
 produce unique record protection secrets for each connection.

 Outgoing data is protected using an AEAD algorithm before
 transmission. The authentication data includes the sequence number,
 message type, message length, and the message contents. The message
 type field is necessary to ensure that messages intended for one TLS
 record layer client are not redirected to another. The sequence
 number ensures that attempts to delete or reorder messages will be
 detected. Since sequence numbers are 64 bits long, they should never
 overflow. Messages from one party cannot be inserted into the
 other’s output, since they use independent keys.

Rescorla Expires September 22, 2016 [Page 113]

Internet-Draft TLS March 2016

D.3 . Denial of Service

 TLS is susceptible to a number of denial-of-service (DoS) attacks.
 In particular, an attacker who initiates a large number of TCP
 connections can cause a server to consume large amounts of CPU doing
 asymmetric crypto operations. However, because TLS is generally used
 over TCP, it is difficult for the attacker to hide their point of
 origin if proper TCP SYN randomization is used [RFC1948] by the TCP
 stack.

 Because TLS runs over TCP, it is also susceptible to a number of DoS
 attacks on individual connections. In particular, attackers can
 forge RSTs, thereby terminating connections, or forge partial TLS
 records, thereby causing the connection to stall. These attacks
 cannot in general be defended against by a TCP-using protocol.
 Implementors or users who are concerned with this class of attack
 should use IPsec AH [RFC4302] or ESP [RFC4303].

D.4 . Final Notes

 For TLS to be able to provide a secure connection, both the client
 and server systems, keys, and applications must be secure. In
 addition, the implementation must be free of security errors.

 The system is only as strong as the weakest key exchange and
 authentication algorithm supported, and only trustworthy
 cryptographic functions should be used. Short public keys and
 anonymous servers should be used with great caution. Implementations
 and users must be careful when deciding which certificates and
 certificate authorities are acceptable; a dishonest certificate
 authority can do tremendous damage.

Appendix E . Working Group Information

 The discussion list for the IETF TLS working group is located at the
 e-mail address tls@ietf.org [1]. Information on the group and
 information on how to subscribe to the list is at
 https://www1.ietf.org/mailman/listinfo/tls

 Archives of the list can be found at: https://www.ietf.org/mail-
 archive/web/tls/current/index.html

Appendix F . Contributors

 - Martin Abadi
 University of California, Santa Cruz
 abadi@cs.ucsc.edu

Rescorla Expires September 22, 2016 [Page 114]

https://tools.ietf.org/pdf/rfc1948
https://tools.ietf.org/pdf/rfc4302
https://tools.ietf.org/pdf/rfc4303
https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html

Internet-Draft TLS March 2016

 - Christopher Allen (co-editor of TLS 1.0)
 Alacrity Ventures
 ChristopherA@AlacrityManagement.com

 - Steven M. Bellovin
 Columbia University
 smb@cs.columbia.edu

 - David Benjamin
 Google
 davidben@google.com

 - Benjamin Beurdouche

 - Karthikeyan Bhargavan (co-author of [RFC7627])
 INRIA
 karthikeyan.bhargavan@inria.fr

 - Simon Blake-Wilson (co-author of [RFC4492])
 BCI
 sblakewilson@bcisse.com

 - Nelson Bolyard (co-author of [RFC4492])
 Sun Microsystems, Inc.
 nelson@bolyard.com

 - Ran Canetti
 IBM
 canetti@watson.ibm.com

 - Pete Chown
 Skygate Technology Ltd
 pc@skygate.co.uk

 - Antoine Delignat-Lavaud (co-author of [RFC7627])
 INRIA
 antoine.delignat-lavaud@inria.fr

 - Tim Dierks (co-editor of TLS 1.0, 1.1, and 1.2)
 Independent
 tim@dierks.org

 - Taher Elgamal
 Securify
 taher@securify.com

 - Pasi Eronen
 Nokia

Rescorla Expires September 22, 2016 [Page 115]

https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS March 2016

 pasi.eronen@nokia.com

 - Cedric Fournet
 Microsoft
 fournet@microsoft.com

 - Anil Gangolli
 anil@busybuddha.org

 - David M. Garrett

 - Vipul Gupta (co-author of [RFC4492])
 Sun Microsystems Laboratories
 vipul.gupta@sun.com

 - Chris Hawk (co-author of [RFC4492])
 Corriente Networks LLC
 chris@corriente.net

 - Kipp Hickman

 - Alfred Hoenes

 - David Hopwood
 Independent Consultant
 david.hopwood@blueyonder.co.uk

 - Subodh Iyengar
 Facebook
 subodh@fb.com

 - Daniel Kahn Gillmor
 ACLU
 dkg@fifthhorseman.net

 - Phil Karlton (co-author of SSL 3.0)

 - Paul Kocher (co-author of SSL 3.0)
 Cryptography Research
 paul@cryptography.com

 - Hugo Krawczyk
 IBM
 hugo@ee.technion.ac.il

 - Adam Langley (co-author of [RFC7627])
 Google
 agl@google.com

Rescorla Expires September 22, 2016 [Page 116]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS March 2016

 - Ilari Liusvaara
 Independent
 ilariliusvaara@welho.com

 - Jan Mikkelsen
 Transactionware
 janm@transactionware.com

 - Bodo Moeller (co-author of [RFC4492])
 Google
 bodo@openssl.org

 - Erik Nygren
 Akamai Technologies
 erik+ietf@nygren.org

 - Magnus Nystrom
 RSA Security
 magnus@rsasecurity.com

 - Alfredo Pironti (co-author of [RFC7627])
 INRIA
 alfredo.pironti@inria.fr

 - Andrei Popov
 Microsoft
 andrei.popov@microsoft.com

 - Marsh Ray (co-author of [RFC7627])
 Microsoft
 maray@microsoft.com

 - Robert Relyea
 Netscape Communications
 relyea@netscape.com

 - Jim Roskind
 Netscape Communications
 jar@netscape.com

 - Michael Sabin

 - Dan Simon
 Microsoft, Inc.
 dansimon@microsoft.com

 - Nick Sullivan
 CloudFlare Inc.

Rescorla Expires September 22, 2016 [Page 117]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS March 2016

 nick@cloudflare.com

 - Bjoern Tackmann
 University of California, San Diego
 btackmann@eng.ucsd.edu

 - Martin Thomson
 Mozilla
 mt@mozilla.com

 - Tom Weinstein

 - Hoeteck Wee
 Ecole Normale Superieure, Paris
 hoeteck@alum.mit.edu

 - Tim Wright
 Vodafone
 timothy.wright@vodafone.com

Author’s Address

 Eric Rescorla
 RTFM, Inc.

 EMail: ekr@rtfm.com

Rescorla Expires September 22, 2016 [Page 118]

