
Network Working Group E. Rescorla
Internet-Draft RTFM, Inc.
Obsoletes: 5077 , 5246 , 5746 (if July 11, 2016
 approved)
Updates: 4492 , 6066 , 6961 (if approved)
Intended status: Standards Track
Expires: January 12, 2017

 The Transport Layer Security (TLS) Protocol Version 1.3
 draft-ietf-tls-tls13-14

Abstract

 This document specifies version 1.3 of the Transport Layer Security
 (TLS) protocol. TLS allows client/server applications to communicate
 over the Internet in a way that is designed to prevent eavesdropping,
 tampering, and message forgery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 12, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4 .e of

Rescorla Expires January 12, 2017 [Page 1]

https://tools.ietf.org/pdf/rfc5077
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6961
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS July 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 1.1 . Conventions and Terminology 5
 1.2 . Major Differences from TLS 1.2 6
 2. Protocol Overview . 10
 2.1 . Incorrect DHE Share 14
 2.2 . Resumption and Pre-Shared Key (PSK) 15
 2.3 . Zero-RTT Data . 17
 3. Presentation Language . 18
 3.1 . Basic Block Size . 18
 3.2 . Miscellaneous . 19
 3.3 . Vectors . 19
 3.4 . Numbers . 20
 3.5 . Enumerateds . 20
 3.6 . Constructed Types . 21
 3.6.1 . Variants . 21
 3.7 . Constants . 23
 4. Handshake Protocol . 23
 4.1 . Key Exchange Messages 24
 4.1.1 . Client Hello . 25
 4.1.2 . Server Hello . 27
 4.1.3 . Hello Retry Request 29
 4.2 . Hello Extensions . 30
 4.2.1 . Cookie . 31
 4.2.2 . Signature Algorithms 32
 4.2.3 . Negotiated Groups 35
 4.2.4 . Key Share . 36
 4.2.5 . Pre-Shared Key Extension 39
 4.2.6 . Early Data Indication 40
 4.2.7 . OCSP Status Extensions 43
 4.2.8 . Encrypted Extensions 44
 4.2.9 . Certificate Request 44

Rescorla Expires January 12, 2017 [Page 2]

Internet-Draft TLS July 2016

 4.3 . Authentication Messages 46
 4.3.1 . Certificate . 47
 4.3.2 . Certificate Verify 51
 4.3.3 . Finished . 53
 4.4 . Post-Handshake Messages 54
 4.4.1 . New Session Ticket Message 54
 4.4.2 . Post-Handshake Authentication 56
 4.4.3 . Key and IV Update 57
 5. Record Protocol . 58
 5.1 . Record Layer . 58
 5.2 . Record Payload Protection 59
 5.3 . Per-Record Nonce . 61
 5.4 . Record Padding . 62
 5.5 . Limits on Key Usage 63
 6. Alert Protocol . 63
 6.1 . Closure Alerts . 65
 6.2 . Error Alerts . 66
 7. Cryptographic Computations 69
 7.1 . Key Schedule . 69
 7.2 . Updating Traffic Keys and IVs 72
 7.3 . Traffic Key Calculation 72
 7.3.1 . Diffie-Hellman 73
 7.3.2 . Elliptic Curve Diffie-Hellman 74
 7.3.3 . Exporters . 74
 8. Compliance Requirements 74
 8.1 . MTI Cipher Suites . 75
 8.2 . MTI Extensions . 75
 9. Security Considerations 76
 10. IANA Considerations . 76
 11. References . 79
 11.1 . Normative References 79
 11.2 . Informative References 82
 Appendix A . Protocol Data Structures and Constant Values 89
 A.1 . Record Layer . 89
 A.2 . Alert Messages . 89
 A.3 . Handshake Protocol 91
 A.3.1 . Key Exchange Messages 91
 A.3.2 . Server Parameters Messages 95
 A.3.3 . Authentication Messages 96
 A.3.4 . Ticket Establishment 96
 A.4 . Cipher Suites . 97
 A.4.1 . Unauthenticated Operation 102
 Appendix B . Implementation Notes 102
 B.1 . Random Number Generation and Seeding 102
 B.2 . Certificates and Authentication 103
 B.3 . Cipher Suite Support 103
 B.4 . Implementation Pitfalls 103
 B.5 . Client Tracking Prevention 105

Rescorla Expires January 12, 2017 [Page 3]

Internet-Draft TLS July 2016

 Appendix C . Backward Compatibility 105
 C.1 . Negotiating with an older server 106
 C.2 . Negotiating with an older client 106
 C.3 . Zero-RTT backwards compatibility 107
 C.4 . Backwards Compatibility Security Restrictions 107
 Appendix D . Overview of Security Properties 108
 D.1 . Handshake . 108
 D.2 . Record Layer . 110
 Appendix E . Working Group Information 112
 Appendix F . Contributors . 112
 Author’s Address . 116

1. Introduction

 DISCLAIMER: This is a WIP draft of TLS 1.3 and has not yet seen
 significant security analysis.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this
 draft is maintained in GitHub. Suggested changes should be submitted
 as pull requests at https://github.com/tlswg/tls13-spec .
 Instructions are on that page as well. Editorial changes can be
 managed in GitHub, but any substantive change should be discussed on
 the TLS mailing list.

 The primary goal of TLS is to provide a secure channel between two
 communicating peers. Specifically, the channel should provide the
 following properties.

 - Authentication: The server side of the channel is always
 authenticated; the client side is optionally authenticated.
 Authentication can happen via asymmetric cryptography (e.g., RSA
 [RSA], ECDSA [ECDSA]) or a pre-shared symmetric key.

 - Confidentiality: Data sent over the channel is not visible to
 attackers.

 - Integrity: Data sent over the channel cannot be modified by
 attackers.

 These properties should be true even in the face of an attacker who
 has complete control of the network, as described in [RFC3552]. See
 Appendix D for a more complete statement of the relevant security
 properties.

 TLS consists of two primary components:

 - A handshake protocol (Section 4) which authenticates the
 communicating parties, negotiates cryptographic modes and

Rescorla Expires January 12, 2017 [Page 4]

https://github.com/tlswg/tls13-spec
https://tools.ietf.org/pdf/rfc3552

Internet-Draft TLS July 2016

 parameters, and establishes shared keying material. The handshake
 protocol is designed to resist tampering; an active attacker
 should not be able to force the peers to negotiate different
 parameters than they would if the connection were not under
 attack.

 - A record protocol (Section 5) which uses the parameters
 established by the handshake protocol to protect traffic between
 the communicating peers. The record protocol divides traffic up
 into a series of records, each of which is independently protected
 using the traffic keys.

 TLS is application protocol independent; higher-level protocols can
 layer on top of TLS transparently. The TLS standard, however, does
 not specify how protocols add security with TLS; the decisions on how
 to initiate TLS handshaking and how to interpret the authentication
 certificates exchanged are left to the judgment of the designers and
 implementors of protocols that run on top of TLS.

 This document defines TLS version 1.3. While TLS 1.3 is not directly
 compatible with previous versions, all versions of TLS incorporate a
 versioning mechanism which allows clients and servers to
 interoperably negotiate a common version if one is supported.

1.1 . Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 The following terms are used:

 client: The endpoint initiating the TLS connection.

 connection: A transport-layer connection between two endpoints.

 endpoint: Either the client or server of the connection.

 handshake: An initial negotiation between client and server that
 establishes the parameters of their transactions.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving records.

Rescorla Expires January 12, 2017 [Page 5]

https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119

Internet-Draft TLS July 2016

 sender: An endpoint that is transmitting records.

 session: An association between a client and a server resulting from
 a handshake.

 server: The endpoint which did not initiate the TLS connection.

1.2 . Major Differences from TLS 1.2

 draft-14

 - Allow cookies to be longer (*)

 - Remove the "context" from EarlyDataIndication as it was undefined
 and nobody used it (*)

 - Remove 0-RTT EncryptedExtensions and replace the ticket_age
 extension with an obfuscated version. Also necessitates a change
 to NewSessionTicket (*).

 - Move the downgrade sentinel to the end of ServerHello.Random to
 accomodate tlsdate (*).

 - Define ecdsa_sha1 (*).

 - Allow resumption even after fatal alerts. This matches current
 practice.

 - Remove non-closure warning alerts. Require treating unknown
 alerts as fatal.

 - Make the rules for accepting 0-RTT less restrictive.

 - Clarify 0-RTT backward-compatibility rules.

 - Clarify how 0-RTT and PSK identities interact.

 - Add a section describing the data limits for each cipher.

 - Major editorial restructuring.

 - Replace the Security Analysis section with a WIP draft.

 (*) indicates changes to the wire protocol which may require
 implementations to update.

 draft-13

Rescorla Expires January 12, 2017 [Page 6]

https://tools.ietf.org/pdf/draft-14
https://tools.ietf.org/pdf/draft-13

Internet-Draft TLS July 2016

 - Allow server to send SupportedGroups.

 - Remove 0-RTT client authentication

 - Remove (EC)DHE 0-RTT.

 - Flesh out 0-RTT PSK mode and shrink EarlyDataIndication

 - Turn PSK-resumption response into an index to save room

 - Move CertificateStatus to an extension

 - Extra fields in NewSessionTicket.

 - Restructure key schedule and add a resumption_context value.

 - Require DH public keys and secrets to be zero-padded to the size
 of the group.

 - Remove the redundant length fields in KeyShareEntry.

 - Define a cookie field for HRR.

 draft-12

 - Provide a list of the PSK cipher suites.

 - Remove the ability for the ServerHello to have no extensions (this
 aligns the syntax with the text).

 - Clarify that the server can send application data after its first
 flight (0.5 RTT data)

 - Revise signature algorithm negotiation to group hash, signature
 algorithm, and curve together. This is backwards compatible.

 - Make ticket lifetime mandatory and limit it to a week.

 - Make the purpose strings lower-case. This matches how people are
 implementing for interop.

 - Define exporters.

 - Editorial cleanup

 draft-11

 - Port the CFRG curves & signatures work from RFC4492bis.

Rescorla Expires January 12, 2017 [Page 7]

https://tools.ietf.org/pdf/draft-12
https://tools.ietf.org/pdf/draft-11

Internet-Draft TLS July 2016

 - Remove sequence number and version from additional_data, which is
 now empty.

 - Reorder values in HkdfLabel.

 - Add support for version anti-downgrade mechanism.

 - Update IANA considerations section and relax some of the policies.

 - Unify authentication modes. Add post-handshake client
 authentication.

 - Remove early_handshake content type. Terminate 0-RTT data with an
 alert.

 - Reset sequence number upon key change (as proposed by Fournet et
 al.)

 draft-10

 - Remove ClientCertificateTypes field from CertificateRequest and
 add extensions.

 - Merge client and server key shares into a single extension.

 draft-09

 - Change to RSA-PSS signatures for handshake messages.

 - Remove support for DSA.

 - Update key schedule per suggestions by Hugo, Hoeteck, and Bjoern
 Tackmann.

 - Add support for per-record padding.

 - Switch to encrypted record ContentType.

 - Change HKDF labeling to include protocol version and value
 lengths.

 - Shift the final decision to abort a handshake due to incompatible
 certificates to the client rather than having servers abort early.

 - Deprecate SHA-1 with signatures.

 - Add MTI algorithms.

Rescorla Expires January 12, 2017 [Page 8]

https://tools.ietf.org/pdf/draft-10
https://tools.ietf.org/pdf/draft-09

Internet-Draft TLS July 2016

 draft-08

 - Remove support for weak and lesser used named curves.

 - Remove support for MD5 and SHA-224 hashes with signatures.

 - Update lists of available AEAD cipher suites and error alerts.

 - Reduce maximum permitted record expansion for AEAD from 2048 to
 256 octets.

 - Require digital signatures even when a previous configuration is
 used.

 - Merge EarlyDataIndication and KnownConfiguration.

 - Change code point for server_configuration to avoid collision with
 server_hello_done.

 - Relax certificate_list ordering requirement to match current
 practice.

 draft-07

 - Integration of semi-ephemeral DH proposal.

 - Add initial 0-RTT support.

 - Remove resumption and replace with PSK + tickets.

 - Move ClientKeyShare into an extension.

 - Move to HKDF.

 draft-06

 - Prohibit RC4 negotiation for backwards compatibility.

 - Freeze & deprecate record layer version field.

 - Update format of signatures with context.

 - Remove explicit IV.

 draft-05

 - Prohibit SSL negotiation for backwards compatibility.

Rescorla Expires January 12, 2017 [Page 9]

https://tools.ietf.org/pdf/draft-08
https://tools.ietf.org/pdf/draft-07
https://tools.ietf.org/pdf/draft-06
https://tools.ietf.org/pdf/draft-05

Internet-Draft TLS July 2016

 - Fix which MS is used for exporters.

 draft-04

 - Modify key computations to include session hash.

 - Remove ChangeCipherSpec.

 - Renumber the new handshake messages to be somewhat more consistent
 with existing convention and to remove a duplicate registration.

 - Remove renegotiation.

 - Remove point format negotiation.

 draft-03

 - Remove GMT time.

 - Merge in support for ECC from RFC 4492 but without explicit
 curves.

 - Remove the unnecessary length field from the AD input to AEAD
 ciphers.

 - Rename {Client,Server}KeyExchange to {Client,Server}KeyShare.

 - Add an explicit HelloRetryRequest to reject the client’s.

 draft-02

 - Increment version number.

 - Rework handshake to provide 1-RTT mode.

 - Remove custom DHE groups.

 - Remove support for compression.

 - Remove support for static RSA and DH key exchange.

 - Remove support for non-AEAD ciphers.

2. Protocol Overview

 The cryptographic parameters of the session state are produced by the
 TLS handshake protocol. When a TLS client and server first start
 communicating, they agree on a protocol version, select cryptographic

Rescorla Expires January 12, 2017 [Page 10]

https://tools.ietf.org/pdf/draft-04
https://tools.ietf.org/pdf/draft-03
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/draft-02

Internet-Draft TLS July 2016

 algorithms, optionally authenticate each other, and establish shared
 secret keying material. Once the handshake is complete, the peers
 use the established keys to protect application layer traffic.

 TLS supports three basic key exchange modes:

 - Diffie-Hellman (of both the finite field and elliptic curve
 varieties).

 - A pre-shared symmetric key (PSK)

 - A combination of a symmetric key and Diffie-Hellman

 Which mode is used depends on the negotiated cipher suite.
 Conceptually, the handshake establishes three secrets which are used
 to derive all the keys.

 Figure 1 below shows the basic full TLS handshake:

Rescorla Expires January 12, 2017 [Page 11]

Internet-Draft TLS July 2016

 Client Server

Key ^ ClientHello
Exch | + key_share*
 v + pre_shared_key* -------->
 ServerHello ^ Key
 + key_share* | Exch
 + pre_shared_key* v
 {EncryptedExtensions} ^ Server
 {CertificateRequest*} v Params
 {Certificate*} ^
 {CertificateVerify*} | Auth
 {Finished} v
 <-------- [Application Data*]
 ^ {Certificate*}
Auth | {CertificateVerify*}
 v {Finished} -------->
 [Application Data] <-------> [Application Data]

 + Indicates extensions sent in the
 previously noted message.

 * Indicates optional or situation-dependent
 messages that are not always sent.

 {} Indicates messages protected using keys
 derived from handshake_traffic_secret.

 [] Indicates messages protected using keys
 derived from traffic_secret_N

 Figure 1: Message flow for full TLS Handshake

 The handshake can be thought of as having three phases, indicated in
 the diagram above.

 - Key Exchange: Establish shared keying material and select the
 cryptographic parameters. Everything after this phase is
 encrypted.

 - Server Parameters: Establish other handshake parameters. (whether
 the client is authenticated, application layer protocol support,
 etc.)

 - Authentication: Authenticate the server (and optionally the
 client) and provide key confirmation and handshake integrity.

Rescorla Expires January 12, 2017 [Page 12]

Internet-Draft TLS July 2016

 In the Key Exchange phase, the client sends the ClientHello
 (Section 4.1.1) message, which contains a random nonce
 (ClientHello.random), its offered protocol version, cipher suite, and
 extensions, and in general either one or more Diffie-Hellman key
 shares (in the "key_share" extension Section 4.2.4), one or more pre-
 shared key labels (in the "pre_shared_key" extension Section 4.2.5),
 or both.

 The server processes the ClientHello and determines the appropriate
 cryptographic parameters for the connection. It then responds with
 its own ServerHello which indicates the negotiated connection
 parameters. [Section 4.1.2]. The combination of the ClientHello and
 the ServerHello determines the shared keys. If either a pure (EC)DHE
 or (EC)DHE-PSK cipher suite is in use, then the ServerHello will
 contain a "key_share" extension with the server’s ephemeral Diffie-
 Hellman share which MUST be in the same group as one of the client’s
 shares. If a pure PSK or an (EC)DHE-PSK cipher suite is negotiated,
 then the ServerHello will contain a "pre_shared_key" extension
 indicating which of the client’s offered PSKs was selected.

 The server then sends two messages to establish the Server
 Parameters:

 EncryptedExtensions. responses to any extensions which are not
 required in order to determine the cryptographic parameters.
 [Section 4.2.8]

 CertificateRequest. if certificate-based client authentication is
 desired, the desired parameters for that certificate. This
 message will be omitted if client authentication is not desired.

 Finally, the client and server exchange Authentication messages. TLS
 uses the same set of messages every time that authentication is
 needed. Specifically:

 Certificate. the certificate of the endpoint. This message is
 omitted if the server is not authenticating with a certificate
 (i.e., with PSK or (EC)DHE-PSK cipher suites). Note that if raw
 public keys [RFC7250] or the cached information extension
 [I-D.ietf-tls-cached-info] are in use, then this message will not
 contain a certificate but rather some other value corresponding to
 the server’s long-term key. [Section 4.3.1]

 CertificateVerify. a signature over the entire handshake using the
 public key in the Certificate message. This message is omitted if
 the server is not authenticating via a certificate (i.e., with PSK
 or (EC)DHE-PSK cipher suites). [Section 4.3.2]

Rescorla Expires January 12, 2017 [Page 13]

https://tools.ietf.org/pdf/rfc7250

Internet-Draft TLS July 2016

 Finished. a MAC (Message Authentication Code) over the entire
 handshake. This message provides key confirmation, binds the
 endpoint’s identity to the exchanged keys, and in PSK mode also
 authenticates the handshake. [Section 4.3.3]

 Upon receiving the server’s messages, the client responds with its
 Authentication messages, namely Certificate and CertificateVerify (if
 requested), and Finished.

 At this point, the handshake is complete, and the client and server
 may exchange application layer data. Application data MUST NOT be
 sent prior to sending the Finished message. Note that while the
 server may send application data prior to receiving the client’s
 Authentication messages, any data sent at that point is, of course,
 being sent to an unauthenticated peer.

2.1 . Incorrect DHE Share

 If the client has not provided a sufficient "key_share" extension
 (e.g. it includes only DHE or ECDHE groups unacceptable or
 unsupported by the server), the server corrects the mismatch with a
 HelloRetryRequest and the client will need to restart the handshake
 with an appropriate "key_share" extension, as shown in Figure 2. If
 no common cryptographic parameters can be negotiated, the server will
 send a "handshake_failure" or "insufficient_security" fatal alert
 (see Section 6).

Rescorla Expires January 12, 2017 [Page 14]

Internet-Draft TLS July 2016

 Client Server

 ClientHello
 + key_share -------->
 <-------- HelloRetryRequest

 ClientHello
 + key_share -------->
 ServerHello
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {Certificate*}
 {CertificateVerify*}
 {Finished}
 <-------- [Application Data*]
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 2: Message flow for a full handshake with mismatched
 parameters

 Note: The handshake transcript includes the initial ClientHello/
 HelloRetryRequest exchange; it is not reset with the new ClientHello.

 TLS also allows several optimized variants of the basic handshake, as
 described in the following sections.

2.2 . Resumption and Pre-Shared Key (PSK)

 Although TLS PSKs can be established out of band, PSKs can also be
 established in a previous session and then reused ("session
 resumption"). Once a handshake has completed, the server can send
 the client a PSK identity which corresponds to a key derived from the
 initial handshake (See Section 4.4.1). The client can then use that
 PSK identity in future handshakes to negotiate use of the PSK. If
 the server accepts it, then the security context of the new
 connection is tied to the original connection. In TLS 1.2 and below,
 this functionality was provided by "session IDs" and "session
 tickets" [RFC5077]. Both mechanisms are obsoleted in TLS 1.3.

 PSK cipher suites can either use PSK in combination with an (EC)DHE
 exchange in order to provide forward secrecy in combination with
 shared keys, or can use PSKs alone, at the cost of losing forward
 secrecy.

Rescorla Expires January 12, 2017 [Page 15]

https://tools.ietf.org/pdf/rfc5077

Internet-Draft TLS July 2016

 Figure 3 shows a pair of handshakes in which the first establishes a
 PSK and the second uses it:

 Client Server

 Initial Handshake:
 ClientHello
 + key_share -------->
 ServerHello
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {Certificate*}
 {CertificateVerify*}
 {Finished}
 <-------- [Application Data*]
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 <-------- [NewSessionTicket]
 [Application Data] <-------> [Application Data]

 Subsequent Handshake:
 ClientHello
 + pre_shared_key
 + key_share* -------->
 ServerHello
 + pre_shared_key
 + key_share*
 {EncryptedExtensions}
 {Finished}
 <-------- [Application Data*]
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 3: Message flow for resumption and PSK

 As the server is authenticating via a PSK, it does not send a
 Certificate or a CertificateVerify. When a client offers resumption
 via PSK it SHOULD also supply a "key_share" extension to the server
 as well to allow the server to decline resumption and fall back to a
 full handshake, if needed. A "key_share" extension MUST also be sent
 if the client is attempting to negotiate an (EC)DHE-PSK cipher suite.

Rescorla Expires January 12, 2017 [Page 16]

Internet-Draft TLS July 2016

2.3 . Zero-RTT Data

 When resuming via a PSK with an appropriate ticket (i.e., one with
 the "allow_early_data" flag), clients can also send data on their
 first flight ("early data"). This data is encrypted solely under
 keys derived using the first offered PSK as the static secret. As
 shown in Figure 4, the Zero-RTT data is just added to the 1-RTT
 handshake in the first flight. The rest of the handshake uses the
 same messages.

 Client Server

 ClientHello
 + early_data
 + pre_shared_key
 + key_share*
 (Finished)
 (Application Data*)
 (end_of_early_data) -------->
 ServerHello
 + early_data
 + pre_shared_key
 + key_share*
 {EncryptedExtensions}
 {CertificateRequest*}
 {Finished}
 <-------- [Application Data*]
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 * Indicates optional or situation-dependent
 messages that are not always sent.

 () Indicates messages protected using keys
 derived from early_traffic_secret.

 {} Indicates messages protected using keys
 derived from handshake_traffic_secret.

 [] Indicates messages protected using keys
 derived from traffic_secret_N

 Figure 4: Message flow for a zero round trip handshake

Rescorla Expires January 12, 2017 [Page 17]

Internet-Draft TLS July 2016

 [[OPEN ISSUE: Should it be possible to combine 0-RTT with the server
 authenticating via a signature https://github.com/tlswg/tls13-spec/
 issues/443]]

 IMPORTANT NOTE: The security properties for 0-RTT data (regardless of
 the cipher suite) are weaker than those for other kinds of TLS data.
 Specifically:

 1. This data is not forward secret, because it is encrypted solely
 with the PSK.

 2. There are no guarantees of non-replay between connections.
 Unless the server takes special measures outside those provided
 by TLS, the server has no guarantee that the same 0-RTT data was
 not transmitted on multiple 0-RTT connections (See
 Section 4.2.6.2 for more details). This is especially relevant
 if the data is authenticated either with TLS client
 authentication or inside the application layer protocol.
 However, 0-RTT data cannot be duplicated within a connection
 (i.e., the server will not process the same data twice for the
 same connection) and an attacker will not be able to make 0-RTT
 data appear to be 1-RTT data (because it is protected with
 different keys.)

 The remainder of this document provides a detailed description of
 TLS.

3. Presentation Language

 This document deals with the formatting of data in an external
 representation. The following very basic and somewhat casually
 defined presentation syntax will be used. The syntax draws from
 several sources in its structure. Although it resembles the
 programming language "C" in its syntax and XDR [RFC4506] in both its
 syntax and intent, it would be risky to draw too many parallels. The
 purpose of this presentation language is to document TLS only; it has
 no general application beyond that particular goal.

3.1 . Basic Block Size

 The representation of all data items is explicitly specified. The
 basic data block size is one byte (i.e., 8 bits). Multiple byte data
 items are concatenations of bytes, from left to right, from top to
 bottom. From the byte stream, a multi-byte item (a numeric in the
 example) is formed (using C notation) by:

 value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
 ... | byte[n-1];

Rescorla Expires January 12, 2017 [Page 18]

https://github.com/tlswg/tls13-spec/
https://tools.ietf.org/pdf/rfc4506

Internet-Draft TLS July 2016

 This byte ordering for multi-byte values is the commonplace network
 byte order or big-endian format.

3.2 . Miscellaneous

 Comments begin with "/*" and end with "*/".

 Optional components are denoted by enclosing them in "[[]]" double
 brackets.

 Single-byte entities containing uninterpreted data are of type
 opaque.

3.3 . Vectors

 A vector (single-dimensioned array) is a stream of homogeneous data
 elements. The size of the vector may be specified at documentation
 time or left unspecified until runtime. In either case, the length
 declares the number of bytes, not the number of elements, in the
 vector. The syntax for specifying a new type, T’, that is a fixed-
 length vector of type T is

 T T’[n];

 Here, T’ occupies n bytes in the data stream, where n is a multiple
 of the size of T. The length of the vector is not included in the
 encoded stream.

 In the following example, Datum is defined to be three consecutive
 bytes that the protocol does not interpret, while Data is three
 consecutive Datum, consuming a total of nine bytes.

 opaque Datum[3]; /* three uninterpreted bytes */
 Datum Data[9]; /* 3 consecutive 3 byte vectors */

 Variable-length vectors are defined by specifying a subrange of legal
 lengths, inclusively, using the notation <floor..ceiling>. When
 these are encoded, the actual length precedes the vector’s contents
 in the byte stream. The length will be in the form of a number
 consuming as many bytes as required to hold the vector’s specified
 maximum (ceiling) length. A variable-length vector with an actual
 length field of zero is referred to as an empty vector.

 T T’<floor..ceiling>;

 In the following example, mandatory is a vector that must contain
 between 300 and 400 bytes of type opaque. It can never be empty.
 The actual length field consumes two bytes, a uint16, which is

Rescorla Expires January 12, 2017 [Page 19]

Internet-Draft TLS July 2016

 sufficient to represent the value 400 (see Section 3.4). On the
 other hand, longer can represent up to 800 bytes of data, or 400
 uint16 elements, and it may be empty. Its encoding will include a
 two-byte actual length field prepended to the vector. The length of
 an encoded vector must be an even multiple of the length of a single
 element (for example, a 17-byte vector of uint16 would be illegal).

 opaque mandatory<300..400>;
 /* length field is 2 bytes, cannot be empty */
 uint16 longer<0..800>;
 /* zero to 400 16-bit unsigned integers */

3.4 . Numbers

 The basic numeric data type is an unsigned byte (uint8). All larger
 numeric data types are formed from fixed-length series of bytes
 concatenated as described in Section 3.1 and are also unsigned. The
 following numeric types are predefined.

 uint8 uint16[2];
 uint8 uint24[3];
 uint8 uint32[4];
 uint8 uint64[8];

 All values, here and elsewhere in the specification, are stored in
 network byte (big-endian) order; the uint32 represented by the hex
 bytes 01 02 03 04 is equivalent to the decimal value 16909060.

 Note that in some cases (e.g., DH parameters) it is necessary to
 represent integers as opaque vectors. In such cases, they are
 represented as unsigned integers (i.e., additional leading zero
 octets are not used even if the most significant bit is set).

3.5 . Enumerateds

 An additional sparse data type is available called enum. A field of
 type enum can only assume the values declared in the definition.
 Each definition is a different type. Only enumerateds of the same
 type may be assigned or compared. Every element of an enumerated
 must be assigned a value, as demonstrated in the following example.
 Since the elements of the enumerated are not ordered, they can be
 assigned any unique value, in any order.

 enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;

 An enumerated occupies as much space in the byte stream as would its
 maximal defined ordinal value. The following definition would cause
 one byte to be used to carry fields of type Color.

Rescorla Expires January 12, 2017 [Page 20]

Internet-Draft TLS July 2016

 enum { red(3), blue(5), white(7) } Color;

 One may optionally specify a value without its associated tag to
 force the width definition without defining a superfluous element.

 In the following example, Taste will consume two bytes in the data
 stream but can only assume the values 1, 2, or 4.

 enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

 The names of the elements of an enumeration are scoped within the
 defined type. In the first example, a fully qualified reference to
 the second element of the enumeration would be Color.blue. Such
 qualification is not required if the target of the assignment is well
 specified.

 Color color = Color.blue; /* overspecified, legal */
 Color color = blue; /* correct, type implicit */

 For enumerateds that are never converted to external representation,
 the numerical information may be omitted.

 enum { low, medium, high } Amount;

3.6 . Constructed Types

 Structure types may be constructed from primitive types for
 convenience. Each specification declares a new, unique type. The
 syntax for definition is much like that of C.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } [[T]];

 The fields within a structure may be qualified using the type’s name,
 with a syntax much like that available for enumerateds. For example,
 T.f2 refers to the second field of the previous declaration.
 Structure definitions may be embedded.

3.6.1 . Variants

 Defined structures may have variants based on some knowledge that is
 available within the environment. The selector must be an enumerated
 type that defines the possible variants the structure defines. There
 must be a case arm for every element of the enumeration declared in

Rescorla Expires January 12, 2017 [Page 21]

Internet-Draft TLS July 2016

 the select. Case arms have limited fall-through: if two case arms
 follow in immediate succession with no fields in between, then they
 both contain the same fields. Thus, in the example below, "orange"
 and "banana" both contain V2. Note that this is a new piece of
 syntax in TLS 1.2.

 The body of the variant structure may be given a label for reference.
 The mechanism by which the variant is selected at runtime is not
 prescribed by the presentation language.

 struct {
 T1 f1;
 T2 f2;

 Tn fn;
 select (E) {
 case e1: Te1;
 case e2: Te2;
 case e3: case e4: Te3;

 case en: Ten;
 } [[fv]];
 } [[Tv]];

 For example:

 enum { apple, orange, banana } VariantTag;

 struct {
 uint16 number;
 opaque string<0..10>; /* variable length */
 } V1;

 struct {
 uint32 number;
 opaque string[10]; /* fixed length */
 } V2;

 struct {
 select (VariantTag) { /* value of selector is implicit */
 case apple:
 V1; /* VariantBody, tag = apple */
 case orange:
 case banana:
 V2; /* VariantBody, tag = orange or banana */
 } variant_body; /* optional label on variant */
 } VariantRecord;

Rescorla Expires January 12, 2017 [Page 22]

Internet-Draft TLS July 2016

3.7 . Constants

 Typed constants can be defined for purposes of specification by
 declaring a symbol of the desired type and assigning values to it.

 Under-specified types (opaque, variable-length vectors, and
 structures that contain opaque) cannot be assigned values. No fields
 of a multi-element structure or vector may be elided.

 For example:

 struct {
 uint8 f1;
 uint8 f2;
 } Example1;

 Example1 ex1 = {1, 4}; /* assigns f1 = 1, f2 = 4 */

4. Handshake Protocol

 The handshake protocol is used to negotiate the secure attributes of
 a session. Handshake messages are supplied to the TLS record layer,
 where they are encapsulated within one or more TLSPlaintext or
 TLSCiphertext structures, which are processed and transmitted as
 specified by the current active session state.

Rescorla Expires January 12, 2017 [Page 23]

Internet-Draft TLS July 2016

 enum {
 client_hello(1),
 server_hello(2),
 new_session_ticket(4),
 hello_retry_request(6),
 encrypted_extensions(8),
 certificate(11),
 certificate_request(13),
 certificate_verify(15),
 finished(20),
 key_update(24),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_retry_request: HelloRetryRequest;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 } body;
 } Handshake;

 Protocol messages MUST be sent in the order defined below (and shown
 in the diagrams in Section 2). Sending handshake messages in an
 unexpected order results in an "unexpected_message" fatal error.
 Unneeded handshake messages are omitted, however.

 New handshake message types are assigned by IANA as described in
 Section 10 .

4.1 . Key Exchange Messages

 The key exchange messages are used to exchange security capabilities
 between the client and server and to establish the traffic keys used
 to protect the handshake and data.

Rescorla Expires January 12, 2017 [Page 24]

Internet-Draft TLS July 2016

4.1.1 . Client Hello

 When this message will be sent:

 When a client first connects to a server, it is required to send
 the ClientHello as its first message. The client will also send a
 ClientHello when the server has responded to its ClientHello with
 a ServerHello that selects cryptographic parameters that don’t
 match the client’s "key_share" extension. In that case, the
 client MUST send the same ClientHello (without modification)
 except:

 - Including a new KeyShareEntry as the lowest priority share (i.e.,
 appended to the list of shares in the "key_share" extension).

 - Removing the EarlyDataIndication Section 4.2.6 extension if one
 was present. Early data is not permitted after HelloRetryRequest.

 If a server receives a ClientHello at any other time, it MUST send a
 fatal "unexpected_message" alert and close the connection.

 Structure of this message:

 struct {
 uint8 major;
 uint8 minor;
 } ProtocolVersion;

 struct {
 opaque random_bytes[32];
 } Random;

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion client_version = { 3, 4 }; /* TLS v1.3 */
 Random random;
 opaque legacy_session_id<0..32>;
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<0..2^16-1>;
 } ClientHello;

 TLS allows extensions to follow the compression_methods field in an
 extensions block. The presence of extensions can be detected by
 determining whether there are bytes following the compression_methods
 at the end of the ClientHello. Note that this method of detecting
 optional data differs from the normal TLS method of having a

Rescorla Expires January 12, 2017 [Page 25]

Internet-Draft TLS July 2016

 variable-length field, but it is used for compatibility with TLS
 before extensions were defined. As of TLS 1.3, all clients and
 servers will send at least one extension (at least "key_share" or
 "pre_shared_key").

 client_version The latest (highest valued) version of the TLS
 protocol offered by the client. This SHOULD be the same as the
 latest version supported. For this version of the specification,
 the version will be { 3, 4 }. (See Appendix C for details about
 backward compatibility.)

 random 32 bytes generated by a secure random number generator. See
 Appendix B for additional information.

 legacy_session_id Versions of TLS before TLS 1.3 supported a session
 resumption feature which has been merged with Pre-Shared Keys in
 this version (see Section 2.2). This field MUST be ignored by a
 server negotiating TLS 1.3 and SHOULD be set as a zero length
 vector (i.e., a single zero byte length field) by clients which do
 not have a cached session ID set by a pre-TLS 1.3 server.

 cipher_suites This is a list of the cryptographic options supported
 by the client, with the client’s first preference first. Each
 cipher suite defines a key exchange algorithm, a record protection
 algorithm (including secret key length) and a hash to be used with
 HKDF. The server will select a cipher suite or, if no acceptable
 choices are presented, return a "handshake_failure" alert and
 close the connection. If the list contains cipher suites the
 server does not recognize, support, or wish to use, the server
 MUST ignore those cipher suites, and process the remaining ones as
 usual. Values are defined in Appendix A.4 .

 legacy_compression_methods Versions of TLS before 1.3 supported
 compression with the list of supported compression methods being
 sent in this field. For every TLS 1.3 ClientHello, this vector
 MUST contain exactly one byte set to zero, which corresponds to
 the "null" compression method in prior versions of TLS. If a TLS
 1.3 ClientHello is received with any other value in this field,
 the server MUST generate a fatal "illegal_parameter" alert. Note
 that TLS 1.3 servers might receive TLS 1.2 or prior ClientHellos
 which contain other compression methods and MUST follow the
 procedures for the appropriate prior version of TLS.

 extensions Clients request extended functionality from servers by
 sending data in the extensions field. The actual "Extension"
 format is defined in Section 4.2 .

Rescorla Expires January 12, 2017 [Page 26]

Internet-Draft TLS July 2016

 In the event that a client requests additional functionality using
 extensions, and this functionality is not supplied by the server, the
 client MAY abort the handshake. Note that TLS 1.3 ClientHello
 messages MUST always contain extensions, and a TLS 1.3 server MUST
 respond to any TLS 1.3 ClientHello without extensions with a fatal
 "decode_error" alert. TLS 1.3 servers may receive TLS 1.2
 ClientHello messages without extensions. If negotiating TLS 1.2, a
 server MUST check that the amount of data in the message precisely
 matches one of these formats; if not, then it MUST send a fatal
 "decode_error" alert.

 After sending the ClientHello message, the client waits for a
 ServerHello or HelloRetryRequest message.

4.1.2 . Server Hello

 When this message will be sent:

 The server will send this message in response to a ClientHello
 message when it was able to find an acceptable set of algorithms
 and the client’s "key_share" extension was acceptable. If the
 client proposed groups are not acceptable by the server, it will
 respond with a "handshake_failure" fatal alert.

 Structure of this message:

 struct {
 ProtocolVersion server_version;
 Random random;
 CipherSuite cipher_suite;
 Extension extensions<0..2^16-1>;
 } ServerHello;

 server_version This field contains the version of TLS negotiated for
 this session. Servers MUST select the lower of the highest
 supported server version and the version offered by the client in
 the ClientHello. In particular, servers MUST accept ClientHello
 messages with versions higher than those supported and negotiate
 the highest mutually supported version. For this version of the
 specification, the version is { 3, 4 }. (See Appendix C for
 details about backward compatibility.)

 random This structure is generated by the server and MUST be
 generated independently of the ClientHello.random.

 cipher_suite The single cipher suite selected by the server from the
 list in ClientHello.cipher_suites. For resumed sessions, this

Rescorla Expires January 12, 2017 [Page 27]

Internet-Draft TLS July 2016

 field is the value from the state of the session being resumed.
 [[TODO: interaction with PSK.]]

 extensions A list of extensions. Note that only extensions offered
 by the client can appear in the server’s list. In TLS 1.3, as
 opposed to previous versions of TLS, the server’s extensions are
 split between the ServerHello and the EncryptedExtensions
 Section 4.2.8 message. The ServerHello MUST only include
 extensions which are required to establish the cryptographic
 context. Currently the only such extensions are "key_share",
 "pre_shared_key", and "early_data". Clients MUST check the
 ServerHello for the presence of any forbidden extensions and if
 any are found MUST terminate the handshake with a
 "illegal_parameter" alert. In prior versions of TLS, the
 extensions field could be omitted entirely if not needed, similar
 to ClientHello. As of TLS 1.3, all clients and servers will send
 at least one extension (at least "key_share" or "pre_shared_key").

 TLS 1.3 has a downgrade protection mechanism embedded in the server’s
 random value. TLS 1.3 server implementations which respond to a
 ClientHello with a client_version indicating TLS 1.2 or below MUST
 set the last eight bytes of their Random value to the bytes:

 44 4F 57 4E 47 52 44 01

 TLS 1.2 server implementations which respond to a ClientHello with a
 client_version indicating TLS 1.1 or below SHOULD set the last eight
 bytes of their Random value to the bytes:

 44 4F 57 4E 47 52 44 00

 TLS 1.3 clients receiving a TLS 1.2 or below ServerHello MUST check
 that the last eight octets are not equal to either of these values.
 TLS 1.2 clients SHOULD also perform this check if the ServerHello
 indicates TLS 1.1 or below. If a match is found, the client MUST
 abort the handshake with a fatal "illegal_parameter" alert. This
 mechanism provides limited protection against downgrade attacks over
 and above that provided by the Finished exchange: because the
 ServerKeyExchange includes a signature over both random values, it is
 not possible for an active attacker to modify the randoms without
 detection as long as ephemeral ciphers are used. It does not provide
 downgrade protection when static RSA is used.

 Note: This is an update to TLS 1.2 so in practice many TLS 1.2
 clients and servers will not behave as specified above.

Rescorla Expires January 12, 2017 [Page 28]

Internet-Draft TLS July 2016

4.1.3 . Hello Retry Request

 When this message will be sent:

 Servers send this message in response to a ClientHello message if
 they were able to find an acceptable set of algorithms and groups
 that are mutually supported, but the client’s KeyShare did not
 contain an acceptable offer. If it cannot find such a match, it
 will respond with a fatal "handshake_failure" alert.

 Structure of this message:

 struct {
 ProtocolVersion server_version;
 CipherSuite cipher_suite;
 NamedGroup selected_group;
 Extension extensions<0..2^16-1>;
 } HelloRetryRequest;

 selected_group The mutually supported group the server intends to
 negotiate and is requesting a retried ClientHello/KeyShare for.

 The server_version, cipher_suite, and extensions fields have the same
 meanings as their corresponding values in the ServerHello. [[NOTE:
 cipher_suite may disappear. https://github.com/tlswg/tls13-spec/
 issues/528]] The server SHOULD send only the extensions necessary for
 the client to generate a correct ClientHello pair (currently no such
 extensions exist). As with ServerHello, a HelloRetryRequest MUST NOT
 contain any extensions that were not first offered by the client in
 its ClientHello.

 Upon receipt of a HelloRetryRequest, the client MUST first verify
 that the selected_group field corresponds to a group which was
 provided in the "supported_groups" extension in the original
 ClientHello. It MUST then verify that the selected_group field does
 not correspond to a group which was provided in the "key_share"
 extension in the original ClientHello. If either of these checks
 fails, then the client MUST abort the handshake with a fatal
 "handshake_failure" alert. Clients SHOULD also abort with
 "handshake_failure" in response to any second HelloRetryRequest which
 was sent in the same connection (i.e., where the ClientHello was
 itself in response to a HelloRetryRequest).

 Otherwise, the client MUST send a ClientHello with an updated
 KeyShare extension to the server. The client MUST append a new
 KeyShareEntry for the group indicated in the selected_group field to
 the groups in its original KeyShare.

Rescorla Expires January 12, 2017 [Page 29]

https://github.com/tlswg/tls13-spec/

Internet-Draft TLS July 2016

 Upon re-sending the ClientHello and receiving the server’s
 ServerHello/KeyShare, the client MUST verify that the selected
 CipherSuite and NamedGroup match that supplied in the
 HelloRetryRequest. If either of these values differ, the client MUST
 abort the connection with a fatal "handshake_failure" alert.

4.2 . Hello Extensions

 The extension format is:

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 supported_groups(10),
 signature_algorithms(13),
 key_share(40),
 pre_shared_key(41),
 early_data(42),
 cookie(44),
 (65535)
 } ExtensionType;

 Here:

 - "extension_type" identifies the particular extension type.

 - "extension_data" contains information specific to the particular
 extension type.

 The initial set of extensions is defined in [RFC6066]. The list of
 extension types is maintained by IANA as described in Section 10 .

 An extension type MUST NOT appear in the ServerHello or
 HelloRetryRequest unless the same extension type appeared in the
 corresponding ClientHello. If a client receives an extension type in
 ServerHello or HelloRetryRequest that it did not request in the
 associated ClientHello, it MUST abort the handshake with an
 "unsupported_extension" fatal alert.

 Nonetheless, "server-oriented" extensions may be provided within this
 framework. Such an extension (say, of type x) would require the
 client to first send an extension of type x in a ClientHello with
 empty extension_data to indicate that it supports the extension type.
 In this case, the client is offering the capability to understand the
 extension type, and the server is taking the client up on its offer.

Rescorla Expires January 12, 2017 [Page 30]

https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS July 2016

 When multiple extensions of different types are present in the
 ClientHello or ServerHello messages, the extensions MAY appear in any
 order. There MUST NOT be more than one extension of the same type.

 Finally, note that extensions can be sent both when starting a new
 session and when in resumption-PSK mode. A client that requests
 session resumption does not in general know whether the server will
 accept this request, and therefore it SHOULD send the same extensions
 as it would send normally.

 In general, the specification of each extension type needs to
 describe the effect of the extension both during full handshake and
 session resumption. Most current TLS extensions are relevant only
 when a session is initiated: when an older session is resumed, the
 server does not process these extensions in ClientHello, and does not
 include them in ServerHello. However, some extensions may specify
 different behavior during session resumption. [[TODO: update this
 and the previous paragraph to cover PSK-based resumption.]]

 There are subtle (and not so subtle) interactions that may occur in
 this protocol between new features and existing features which may
 result in a significant reduction in overall security. The following
 considerations should be taken into account when designing new
 extensions:

 - Some cases where a server does not agree to an extension are error
 conditions, and some are simply refusals to support particular
 features. In general, error alerts should be used for the former,
 and a field in the server extension response for the latter.

 - Extensions should, as far as possible, be designed to prevent any
 attack that forces use (or non-use) of a particular feature by
 manipulation of handshake messages. This principle should be
 followed regardless of whether the feature is believed to cause a
 security problem. Often the fact that the extension fields are
 included in the inputs to the Finished message hashes will be
 sufficient, but extreme care is needed when the extension changes
 the meaning of messages sent in the handshake phase. Designers
 and implementors should be aware of the fact that until the
 handshake has been authenticated, active attackers can modify
 messages and insert, remove, or replace extensions.

4.2.1 . Cookie

 struct {
 opaque cookie<0..2^16-1>;
 } Cookie;

Rescorla Expires January 12, 2017 [Page 31]

Internet-Draft TLS July 2016

 Cookies serve two primary purposes:

 - Allowing the server to force the client to demonstrate
 reachability at their apparent network address (thus providing a
 measure of DoS protection). This is primarily useful for non-
 connection-oriented transports (see [RFC6347] for an example of
 this).

 - Allowing the server to offload state to the client, thus allowing
 it to send a HelloRetryRequest without storing any state. The
 server does this by pickling that post-ClientHello hash state into
 the cookie (protected with some suitable integrity algorithm).

 When sending a HelloRetryRequest, the server MAY provide a "cookie"
 extension to the client (this is an exception to the usual rule that
 the only extensions that may be sent are those that appear in the
 ClientHello). When sending the new ClientHello, the client MUST echo
 the value of the extension. Clients MUST NOT use cookies in
 subsequent connections.

4.2.2 . Signature Algorithms

 The client uses the "signature_algorithms" extension to indicate to
 the server which signature algorithms may be used in digital
 signatures.

 Clients which offer one or more cipher suites which use certificate
 authentication (i.e., any non-PSK cipher suite) MUST send the
 "signature_algorithms" extension. If this extension is not provided
 and no alternative cipher suite is available, the server MUST close
 the connection with a fatal "missing_extension" alert. (see
 Section 8.2)

 The "extension_data" field of this extension contains a
 "supported_signature_algorithms" value:

Rescorla Expires January 12, 2017 [Page 32]

https://tools.ietf.org/pdf/rfc6347

Internet-Draft TLS July 2016

 enum {
 /* RSASSA-PKCS1-v1_5 algorithms */
 rsa_pkcs1_sha1 (0x0201),
 rsa_pkcs1_sha256 (0x0401),
 rsa_pkcs1_sha384 (0x0501),
 rsa_pkcs1_sha512 (0x0601),

 /* ECDSA algorithms */
 ecdsa_secp256r1_sha256 (0x0403),
 ecdsa_secp384r1_sha384 (0x0503),
 ecdsa_secp521r1_sha512 (0x0603),

 /* RSASSA-PSS algorithms */
 rsa_pss_sha256 (0x0700),
 rsa_pss_sha384 (0x0701),
 rsa_pss_sha512 (0x0702),

 /* EdDSA algorithms */
 ed25519 (0x0703),
 ed448 (0x0704),

 /* Reserved Code Points */
 private_use (0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 SignatureScheme supported_signature_algorithms<2..2^16-2>;

 Note: This enum is named "SignatureScheme" because there is already a
 "SignatureAlgorithm" type in TLS 1.2, which this replaces. We use
 the term "signature algorithm" throughout the text.

 Each SignatureScheme value lists a single signature algorithm that
 the client is willing to verify. The values are indicated in
 descending order of preference. Note that a signature algorithm
 takes as input an arbitrary-length message, rather than a digest.
 Algorithms which traditionally act on a digest should be defined in
 TLS to first hash the input with a specified hash function and then
 proceed as usual. The code point groups listed above have the
 following meanings:

 RSASSA-PKCS1-v1_5 algorithms Indicates a signature algorithm using
 RSASSA-PKCS1-v1_5 [RFC3447] with the corresponding hash algorithm
 as defined in [SHS]. These values refer solely to signatures
 which appear in certificates (see Section 4.3.1.1) and are not
 defined for use in signed TLS handshake messages.

Rescorla Expires January 12, 2017 [Page 33]

https://tools.ietf.org/pdf/rfc3447

Internet-Draft TLS July 2016

 ECDSA algorithms Indicates a signature algorithm using ECDSA
 [ECDSA], the corresponding curve as defined in ANSI X9.62 [X962]
 and FIPS 186-4 [DSS], and the corresponding hash algorithm as
 defined in [SHS]. The signature is represented as a DER-encoded
 [X690] ECDSA-Sig-Value structure.

 RSASSA-PSS algorithms Indicates a signature algorithm using RSASSA-
 PSS [RFC3447] with MGF1. The digest used in the mask generation
 function and the digest being signed are both the corresponding
 hash algorithm as defined in [SHS]. When used in signed TLS
 handshake messages, the length of the salt MUST be equal to the
 length of the digest output.

 EdDSA algorithms Indicates a signature algorithm using EdDSA as
 defined in [I-D.irtf-cfrg-eddsa] or its successors. Note that
 these correspond to the "PureEdDSA" algorithms and not the
 "prehash" variants.

 The semantics of this extension are somewhat complicated because the
 cipher suite adds additional constraints on signature algorithms.
 Section 4.3.1.1 describes the appropriate rules.

 rsa_pkcs1_sha1, dsa_sha1, and ecdsa_sha1 SHOULD NOT be offered.
 Clients offering these values for backwards compatibility MUST list
 them as the lowest priority (listed after all other algorithms in the
 supported_signature_algorithms vector). TLS 1.3 servers MUST NOT
 offer a SHA-1 signed certificate unless no valid certificate chain
 can be produced without it (see Section 4.3.1.1).

 The signatures on certificates that are self-signed or certificates
 that are trust anchors are not validated since they begin a
 certification path (see [RFC5280], Section 3.2). A certificate that
 begins a certification path MAY use a signature algorithm that is not
 advertised as being supported in the "signature_algorithms"
 extension.

 Note that TLS 1.2 defines this extension differently. TLS 1.3
 implementations willing to negotiate TLS 1.2 MUST behave in
 accordance with the requirements of [RFC5246] when negotiating that
 version. In particular:

 - TLS 1.2 ClientHellos may omit this extension.

 - In TLS 1.2, the extension contained hash/signature pairs. The
 pairs are encoded in two octets, so SignatureScheme values have
 been allocated to align with TLS 1.2’s encoding. Some legacy
 pairs are left unallocated. These algorithms are deprecated as of
 TLS 1.3. They MUST NOT be offered or negotiated by any

Rescorla Expires January 12, 2017 [Page 34]

https://tools.ietf.org/pdf/rfc3447
https://tools.ietf.org/pdf/rfc5280#section-3.2
https://tools.ietf.org/pdf/rfc5246

Internet-Draft TLS July 2016

 implementation. In particular, MD5 [SLOTH] and SHA-224 MUST NOT
 be used.

 - ecdsa_secp256r1_sha256, etc., align with TLS 1.2’s ECDSA hash/
 signature pairs. However, the old semantics did not constrain the
 signing curve.

4.2.3 . Negotiated Groups

 When sent by the client, the "supported_groups" extension indicates
 the named groups which the client supports for key exchange, ordered
 from most preferred to least preferred.

 Note: In versions of TLS prior to TLS 1.3, this extension was named
 "elliptic_curves" and only contained elliptic curve groups. See
 [RFC4492] and [I-D.ietf-tls-negotiated-ff-dhe]. This extension was
 also used to negotiate ECDSA curves. Signature algorithms are now
 negotiated independently (see Section 4.2.2).

 Clients which offer one or more (EC)DHE cipher suites MUST send at
 least one supported NamedGroup value and servers MUST NOT negotiate
 any of these cipher suites unless a supported value was provided. If
 this extension is not provided and no alternative cipher suite is
 available, the server MUST close the connection with a fatal
 "missing_extension" alert. (see Section 8.2) If the extension is
 provided, but no compatible group is offered, the server MUST NOT
 negotiate a cipher suite of the relevant type. For instance, if a
 client supplies only ECDHE groups, the server MUST NOT negotiate
 finite field Diffie-Hellman. If no acceptable group can be selected
 across all cipher suites, then the server MUST generate a fatal
 "handshake_failure" alert.

 The "extension_data" field of this extension contains a
 "NamedGroupList" value:

Rescorla Expires January 12, 2017 [Page 35]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2016

 enum {
 /* Elliptic Curve Groups (ECDHE) */
 secp256r1 (23), secp384r1 (24), secp521r1 (25),
 x25519 (29), x448 (30),

 /* Finite Field Groups (DHE) */
 ffdhe2048 (256), ffdhe3072 (257), ffdhe4096 (258),
 ffdhe6144 (259), ffdhe8192 (260),

 /* Reserved Code Points */
 ffdhe_private_use (0x01FC..0x01FF),
 ecdhe_private_use (0xFE00..0xFEFF),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<1..2^16-1>;
 } NamedGroupList;

 Elliptic Curve Groups (ECDHE) Indicates support of the corresponding
 named curve. Note that some curves are also recommended in ANSI
 X9.62 [X962] and FIPS 186-4 [DSS]. Others are recommended in
 [RFC7748]. Values 0xFE00 through 0xFEFF are reserved for private
 use.

 Finite Field Groups (DHE) Indicates support of the corresponding
 finite field group, defined in [I-D.ietf-tls-negotiated-ff-dhe].
 Values 0x01FC through 0x01FF are reserved for private use.

 Items in named_group_list are ordered according to the client’s
 preferences (most preferred choice first).

 As of TLS 1.3, servers are permitted to send the "supported_groups"
 extension to the client. If the server has a group it prefers to the
 ones in the "key_share" extension but is still willing to accept the
 ClientHello, it SHOULD send "supported_groups" to update the client’s
 view of its preferences. Clients MUST NOT act upon any information
 found in "supported_groups" prior to successful completion of the
 handshake, but MAY use the information learned from a successfully
 completed handshake to change what groups they offer to a server in
 subsequent connections.

4.2.4 . Key Share

 The "key_share" extension contains the endpoint’s cryptographic
 parameters for non-PSK key establishment methods (currently DHE or
 ECDHE).

Rescorla Expires January 12, 2017 [Page 36]

https://tools.ietf.org/pdf/rfc7748

Internet-Draft TLS July 2016

 Clients which offer one or more (EC)DHE cipher suites MUST send this
 extension and SHOULD send at least one supported KeyShareEntry value.
 Servers MUST NOT negotiate any of these cipher suites unless a
 supported value was provided. If this extension is not provided in a
 ServerHello or ClientHello, and the peer is offering (EC)DHE cipher
 suites, then the endpoint MUST close the connection with a fatal
 "missing_extension" alert. (see Section 8.2) Clients MAY send an
 empty client_shares vector in order to request group selection from
 the server at the cost of an additional round trip. (see
 Section 4.1.3)

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

 group The named group for the key being exchanged. Finite Field
 Diffie-Hellman [DH] parameters are described in Section 4.2.4.1 ;
 Elliptic Curve Diffie-Hellman parameters are described in
 Section 4.2.4.2 .

 key_exchange Key exchange information. The contents of this field
 are determined by the specified group and its corresponding
 definition. Endpoints MUST NOT send empty or otherwise invalid
 key_exchange values for any reason.

 The "extension_data" field of this extension contains a "KeyShare"
 value:

 struct {
 select (role) {
 case client:
 KeyShareEntry client_shares<0..2^16-1>;

 case server:
 KeyShareEntry server_share;
 }
 } KeyShare;

 client_shares A list of offered KeyShareEntry values in descending
 order of client preference. This vector MAY be empty if the
 client is requesting a HelloRetryRequest. The ordering of values
 here SHOULD match that of the ordering of offered support in the
 "supported_groups" extension.

 server_share A single KeyShareEntry value for the negotiated cipher
 suite.

Rescorla Expires January 12, 2017 [Page 37]

Internet-Draft TLS July 2016

 Clients offer an arbitrary number of KeyShareEntry values, each
 representing a single set of key exchange parameters. For instance,
 a client might offer shares for several elliptic curves or multiple
 FFDHE groups. The key_exchange values for each KeyShareEntry MUST by
 generated independently. Clients MUST NOT offer multiple
 KeyShareEntry values for the same group. Clients and MUST NOT offer
 any KeyShareEntry values for groups not listed in the client’s
 "supported_groups" extension.

 Servers offer exactly one KeyShareEntry value, which corresponds to
 the key exchange used for the negotiated cipher suite. Servers MUST
 NOT offer a KeyShareEntry value for a group not offered by the client
 in its corresponding KeyShare or "supported_groups" extension.

 Implementations MAY check for violations of these rules and and MAY
 abort the connection with a fatal "illegal_parameter" alert if one is
 violated.

 If the server selects an (EC)DHE cipher suite and no mutually
 supported group is available between the two endpoints’ KeyShare
 offers, yet there is a mutually supported group that can be found via
 the "supported_groups" extension, then the server MUST reply with a
 HelloRetryRequest. If there is no mutually supported group at all,
 the server MUST NOT negotiate an (EC)DHE cipher suite.

 [[TODO: Recommendation about what the client offers. Presumably
 which integer DH groups and which curves.]]

4.2.4.1 . Diffie-Hellman Parameters

 Diffie-Hellman [DH] parameters for both clients and servers are
 encoded in the opaque key_exchange field of a KeyShareEntry in a
 KeyShare structure. The opaque value contains the Diffie-Hellman
 public value (Y = g^X mod p), encoded as a big-endian integer, padded
 with zeros to the size of p in bytes.

 Note: For a given Diffie-Hellman group, the padding results in all
 public keys having the same length.

 Peers SHOULD validate each other’s public key Y by ensuring that 1 <
 Y < p-1. This check ensures that the remote peer is properly behaved
 and isn’t forcing the local system into a small subgroup.

4.2.4.2 . ECDHE Parameters

 ECDHE parameters for both clients and servers are encoded in the the
 opaque key_exchange field of a KeyShareEntry in a KeyShare structure.

Rescorla Expires January 12, 2017 [Page 38]

Internet-Draft TLS July 2016

 For secp256r1, secp384r1 and secp521r1, the contents are the byte
 string representation of an elliptic curve public value following the
 conversion routine in Section 4.3.6 of ANSI X9.62 [X962].

 Although X9.62 supports multiple point formats, any given curve MUST
 specify only a single point format. All curves currently specified
 in this document MUST only be used with the uncompressed point format
 (the format for all ECDH functions is considered uncompressed).

 For x25519 and x448, the contents are the byte string inputs and
 outputs of the corresponding functions defined in [RFC7748], 32 bytes
 for x25519 and 56 bytes for x448.

 Note: Versions of TLS prior to 1.3 permitted point negotiation; TLS
 1.3 removes this feature in favor of a single point format for each
 curve.

4.2.5 . Pre-Shared Key Extension

 The "pre_shared_key" extension is used to indicate the identity of
 the pre-shared key to be used with a given handshake in association
 with a PSK or (EC)DHE-PSK cipher suite (see [RFC4279] for
 background).

 Clients which offer one or more PSK cipher suites MUST send at least
 one supported psk_identity value and servers MUST NOT negotiate any
 of these cipher suites unless a supported value was provided. If
 this extension is not provided and no alternative cipher suite is
 available, the server MUST close the connection with a fatal
 "missing_extension" alert. (see Section 8.2)

 The "extension_data" field of this extension contains a
 "PreSharedKeyExtension" value:

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<2..2^16-1>;

 case server:
 uint16 selected_identity;
 }
 } PreSharedKeyExtension;

 identities A list of the identities (labels for keys) that the
 client is willing to negotiate with the server. If sent alongside

Rescorla Expires January 12, 2017 [Page 39]

https://tools.ietf.org/pdf/rfc7748
https://tools.ietf.org/pdf/rfc4279

Internet-Draft TLS July 2016

 the "early_data" extension (see Section 4.2.6), the first identity
 is the one used for 0-RTT data.

 selected_identity The server’s chosen identity expressed as a
 (0-based) index into the identies in the client’s list.

 If no suitable identity is provided, the server MUST NOT negotiate a
 PSK cipher suite and MAY respond with an "unknown_psk_identity" alert
 message. Sending this alert is OPTIONAL; servers MAY instead choose
 to send a "decrypt_error" alert to merely indicate an invalid PSK
 identity or instead negotiate use of a non-PSK cipher suite, if
 available.

 If the server selects a PSK cipher suite, it MUST send a
 "pre_shared_key" extension with the identity that it selected. The
 client MUST verify that the server’s selected_identity is within the
 range supplied by the client. If the server supplies an "early_data"
 extension, the client MUST verify that the server selected the first
 offered identity. If any other value is returned, the client MUST
 generate a fatal "unknown_psk_identity" alert and close the
 connection.

 Note that although 0-RTT data is encrypted with the first PSK
 identity, the server MAY fall back to 1-RTT and select a different
 PSK identity if multiple identities are offered.

4.2.6 . Early Data Indication

 When PSK resumption is used, the client can send application data in
 its first flight of messages. If the client opts to do so, it MUST
 supply an "early_data" extension as well as the "pre_shared_key"
 extension.

 The "extension_data" field of this extension contains an
 "EarlyDataIndication" value:

 struct {
 select (Role) {
 case client:
 uint32 obfuscated_ticket_age;

 case server:
 struct {};
 }
 } EarlyDataIndication;

 obfuscated_ticket_age The time since the client learned about the
 server configuration that it is using, in milliseconds. This

Rescorla Expires January 12, 2017 [Page 40]

Internet-Draft TLS July 2016

 value is added modulo 2^32 to with the "ticket_age_add" value that
 was included with the ticket, see Section 4.4.1 . This addition
 prevents passive observers from correlating sessions unless
 tickets are reused. Note: because ticket lifetimes are restricted
 to a week, 32 bits is enough to represent any plausible age, even
 in milliseconds.

 A server MUST validate that the ticket_age is within a small
 tolerance of the time since the ticket was issued (see
 Section 4.2.6.2).

 The parameters for the 0-RTT data (symmetric cipher suite, ALPN,
 etc.) are the same as those which were negotiated in the connection
 which established the PSK. The PSK used to encrypt the early data
 MUST be the first PSK listed in the client’s "pre_shared_key"
 extension.

 0-RTT messages sent in the first flight have the same content types
 as their corresponding messages sent in other flights (handshake,
 application_data, and alert respectively) but are protected under
 different keys. After all the 0-RTT application data messages (if
 any) have been sent, an "end_of_early_data" alert of type "warning"
 is sent to indicate the end of the flight. 0-RTT MUST always be
 followed by an "end_of_early_data" alert.

 A server which receives an "early_data" extension can behave in one
 of two ways:

 - Ignore the extension and return no response. This indicates that
 the server has ignored any early data and an ordinary 1-RTT
 handshake is required.

 - Return an empty extension, indicating that it intends to process
 the early data. It is not possible for the server to accept only
 a subset of the early data messages.

 In order to accept early data, the server server MUST have accepted a
 PSK cipher suite and selected the the first key offered in the
 client’s "pre_shared_key" extension. In addition, it MUST verify
 that the following values are consistent with those negotiated in the
 connection during which the ticket was established.

 - The TLS version number, symmetric ciphersuite, and the hash for
 HKDF.

 - The selected ALPN [RFC7443] value, if any.

 - The server_name [RFC6066] value provided by the client, if any.

Rescorla Expires January 12, 2017 [Page 41]

https://tools.ietf.org/pdf/rfc7443
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS July 2016

 Future extensions MUST define their interaction with 0-RTT.

 If any of these checks fail, the server MUST NOT respond with the
 extension and must discard all the remaining first flight data (thus
 falling back to 1-RTT). If the client attempts a 0-RTT handshake but
 the server rejects it, it will generally not have the 0-RTT record
 protection keys and must instead trial decrypt each record with the
 1-RTT handshake keys until it finds one that decrypts properly, and
 then pick up the handshake from that point.

 If the server chooses to accept the "early_data" extension, then it
 MUST comply with the same error handling requirements specified for
 all records when processing early data records. Specifically,
 decryption failure of any 0-RTT record following an accepted
 "early_data" extension MUST produce a fatal "bad_record_mac" alert as
 per Section 5.2 .

 If the server rejects the "early_data" extension, the client
 application MAY opt to retransmit the data once the handshake has
 been completed. TLS stacks SHOULD not do this automatically and
 client applications MUST take care that the negotiated parameters are
 consistent with those it expected. For example, if the ALPN value
 has changed, it is likely unsafe to retransmit the original
 application layer data.

4.2.6.1 . Processing Order

 Clients are permitted to "stream" 0-RTT data until they receive the
 server’s Finished, only then sending the "end_of_early_data" alert.
 In order to avoid deadlock, when accepting "early_data", servers MUST
 process the client’s Finished and then immediately send the
 ServerHello, rather than waiting for the client’s "end_of_early_data"
 alert.

4.2.6.2 . Replay Properties

 As noted in Section 2.3 , TLS provides a limited mechanism for replay
 protection for data sent by the client in the first flight.

 The "obfuscated_ticket_age" parameter in the client’s "early_data"
 extension SHOULD be used by servers to limit the time over which the
 first flight might be replayed. A server can store the time at which
 it sends a session ticket to the client, or encode the time in the
 ticket. Then, each time it receives an "early_data" extension, it
 can subtract the base value and check to see if the value used by the
 client matches its expectations.

Rescorla Expires January 12, 2017 [Page 42]

Internet-Draft TLS July 2016

 The ticket age (the value with "ticket_age_add" subtracted) provided
 by the client will be shorter than the actual time elapsed on the
 server by a single round trip time. This difference is comprised of
 the delay in sending the NewSessionTicket message to the client, plus
 the time taken to send the ClientHello to the server. For this
 reason, a server SHOULD measure the round trip time prior to sending
 the NewSessionTicket message and account for that in the value it
 saves.

 To properly validate the ticket age, a server needs to save at least
 two items:

 - The time that the server generated the session ticket and the
 estimated round trip time can be added together to form a baseline
 time.

 - The "ticket_age_add" parameter from the NewSessionTicket is needed
 to recover the ticket age from the "obfuscated_ticket_age"
 parameter.

 There are several potential sources of error that make an exact
 measurement of time difficult. Variations in client and server
 clocks are likely to be minimal, outside of gross time corrections.
 Network propagation delays are most likely causes of a mismatch in
 legitimate values for elapsed time. Both the NewSessionTicket and
 ClientHello messages might be retransmitted and therefore delayed,
 which might be hidden by TCP.

 A small allowance for errors in clocks and variations in measurements
 is advisable. However, any allowance also increases the opportunity
 for replay. In this case, it is better to reject early data than to
 risk greater exposure to replay attacks.

4.2.7 . OCSP Status Extensions

 [RFC6066] and [RFC6961] provide extensions to negotiate the server
 sending OCSP responses to the client. In TLS 1.2 and below, the
 server sends an empty extension to indicate negotiation of this
 extension and the OCSP information is carried in a CertificateStatus
 message. In TLS 1.3, the server’s OCSP information is carried in an
 extension in EncryptedExtensions. Specifically: The body of the
 "status_request" or "status_request_v2" extension from the server
 MUST be a CertificateStatus structure as defined in [RFC6066] and
 [RFC6961] respectively.

 Note: This means that the certificate status appears prior to the
 certificates it applies to. This is slightly anomalous but matches

Rescorla Expires January 12, 2017 [Page 43]

https://tools.ietf.org/pdf/rfc6961
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6961

Internet-Draft TLS July 2016

 the existing behavior for SignedCertificateTimestamps [RFC6962], and
 is more easily extensible in the handshake state machine.

4.2.8 . Encrypted Extensions

 When this message will be sent:

 In all handshakes, the server MUST send the EncryptedExtensions
 message immediately after the ServerHello message. This is the
 first message that is encrypted under keys derived from
 handshake_traffic_secret.

 Meaning of this message:

 The EncryptedExtensions message contains any extensions which
 should be protected, i.e., any which are not needed to establish
 the cryptographic context.

 The same extension types MUST NOT appear in both the ServerHello and
 EncryptedExtensions. If the same extension appears in both
 locations, the client MUST rely only on the value in the
 EncryptedExtensions block. All server-sent extensions other than
 those explicitly listed in Section 4.1.2 or designated in the IANA
 registry MUST only appear in EncryptedExtensions. Extensions which
 are designated to appear in ServerHello MUST NOT appear in
 EncryptedExtensions. Clients MUST check EncryptedExtensions for the
 presence of any forbidden extensions and if any are found MUST
 terminate the handshake with an "illegal_parameter" alert.

 Structure of this message:

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 extensions A list of extensions.

4.2.9 . Certificate Request

 When this message will be sent:

 A non-anonymous server can optionally request a certificate from
 the client, if appropriate for the selected cipher suite. This
 message, if sent, will follow EncryptedExtensions.

 Structure of this message:

Rescorla Expires January 12, 2017 [Page 44]

https://tools.ietf.org/pdf/rfc6962

Internet-Draft TLS July 2016

 opaque DistinguishedName<1..2^16-1>;

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } CertificateExtension;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 SignatureScheme
 supported_signature_algorithms<2..2^16-2>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 CertificateExtension certificate_extensions<0..2^16-1>;
 } CertificateRequest;

 certificate_request_context An opaque string which identifies the
 certificate request and which will be echoed in the client’s
 Certificate message. The certificate_request_context MUST be
 unique within the scope of this connection (thus preventing replay
 of client CertificateVerify messages).

 supported_signature_algorithms A list of the signature algorithms
 that the server is able to verify, listed in descending order of
 preference. Any certificates provided by the client MUST be
 signed using a signature algorithm found in
 supported_signature_algorithms.

 certificate_authorities A list of the distinguished names [X501] of
 acceptable certificate_authorities, represented in DER-encoded
 [X690] format. These distinguished names may specify a desired
 distinguished name for a root CA or for a subordinate CA; thus,
 this message can be used to describe known roots as well as a
 desired authorization space. If the certificate_authorities list
 is empty, then the client MAY send any certificate that meets the
 rest of the selection criteria in the CertificateRequest, unless
 there is some external arrangement to the contrary.

 certificate_extensions A list of certificate extension OIDs
 [RFC5280] with their allowed values, represented in DER-encoded
 [X690] format. Some certificate extension OIDs allow multiple
 values (e.g. Extended Key Usage). If the server has included a
 non-empty certificate_extensions list, the client certificate MUST
 contain all of the specified extension OIDs that the client
 recognizes. For each extension OID recognized by the client, all
 of the specified values MUST be present in the client certificate
 (but the certificate MAY have other values as well). However, the
 client MUST ignore and skip any unrecognized certificate extension
 OIDs. If the client has ignored some of the required certificate

Rescorla Expires January 12, 2017 [Page 45]

https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS July 2016

 extension OIDs, and supplied a certificate that does not satisfy
 the request, the server MAY at its discretion either continue the
 session without client authentication, or terminate the session
 with a fatal unsupported_certificate alert. PKIX RFCs define a
 variety of certificate extension OIDs and their corresponding
 value types. Depending on the type, matching certificate
 extension values are not necessarily bitwise-equal. It is
 expected that TLS implementations will rely on their PKI libraries
 to perform certificate selection using certificate extension OIDs.
 This document defines matching rules for two standard certificate
 extensions defined in [RFC5280]:

 o The Key Usage extension in a certificate matches the request
 when all key usage bits asserted in the request are also
 asserted in the Key Usage certificate extension.

 o The Extended Key Usage extension in a certificate matches the
 request when all key purpose OIDs present in the request are
 also found in the Extended Key Usage certificate extension.
 The special anyExtendedKeyUsage OID MUST NOT be used in the
 request.

 Separate specifications may define matching rules for other
 certificate extensions.

 Note: It is a fatal "handshake_failure" alert for an anonymous server
 to request client authentication.

4.3 . Authentication Messages

 As discussed in Section 2 , TLS uses a common set of messages for
 authentication, key confirmation, and handshake integrity:
 Certificate, CertificateVerify, and Finished. These messages are
 always sent as the last messages in their handshake flight. The
 Certificate and CertificateVerify messages are only sent under
 certain circumstances, as defined below. The Finished message is
 always sent as part of the Authentication block.

 The computations for the Authentication messages all uniformly take
 the following inputs:

 - The certificate and signing key to be used.

 - A Handshake Context based on the hash of the handshake messages

 - A base key to be used to compute a MAC key.

 Based on these inputs, the messages then contain:

Rescorla Expires January 12, 2017 [Page 46]

https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS July 2016

 Certificate The certificate to be used for authentication and any
 supporting certificates in the chain. Note that certificate-based
 client authentication is not available in the 0-RTT case.

 CertificateVerify A signature over the value Hash(Handshake Context
 + Certificate) + Hash(resumption_context) See Section 4.4.1 for
 the definition of resumption_context.

 Finished A MAC over the value Hash(Handshake Context + Certificate +
 CertificateVerify) + Hash(resumption_context) using a MAC key
 derived from the base key.

 Because the CertificateVerify signs the Handshake Context +
 Certificate and the Finished MACs the Handshake Context + Certificate
 + CertificateVerify, this is mostly equivalent to keeping a running
 hash of the handshake messages (exactly so in the pure 1-RTT cases).
 Note, however, that subsequent post-handshake authentications do not
 include each other, just the messages through the end of the main
 handshake.

 The following table defines the Handshake Context and MAC Base Key
 for each scenario:

 +------------+--------------------------------+---------------------+
 | Mode | Handshake Context | Base Key |
 +------------+--------------------------------+---------------------+
0-RTT	ClientHello	early_traffic_secre
		t
1-RTT	ClientHello ... later of Encry	handshake_traffic_s
(Server)	ptedExtensions/CertificateRequ	ecret
	est	
1-RTT	ClientHello ... ServerFinished	handshake_traffic_s
(Client)		ecret
Post-	ClientHello ... ClientFinished	traffic_secret_0
Handshake	+ CertificateRequest	
 +------------+--------------------------------+---------------------+

 Note: The Handshake Context for the last three rows does not include
 any 0-RTT handshake messages, regardless of whether 0-RTT is used.

4.3.1 . Certificate

 When this message will be sent:

Rescorla Expires January 12, 2017 [Page 47]

Internet-Draft TLS July 2016

 The server MUST send a Certificate message whenever the agreed-
 upon key exchange method uses certificates for authentication
 (this includes all key exchange methods defined in this document
 except PSK).

 The client MUST send a Certificate message if and only if server
 has requested client authentication via a CertificateRequest
 message (Section 4.2.9). If the server requests client
 authentication but no suitable certificate is available, the
 client MUST send a Certificate message containing no certificates
 (i.e., with the "certificate_list" field having length 0).

 Meaning of this message:

 This message conveys the endpoint’s certificate chain to the peer.

 The certificate MUST be appropriate for the negotiated cipher
 suite’s authentication algorithm and any negotiated extensions.

 Structure of this message:

 opaque ASN1Cert<1..2^24-1>;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 ASN1Cert certificate_list<0..2^24-1>;
 } Certificate;

 certificate_request_context If this message is in response to a
 CertificateRequest, the value of certificate_request_context in
 that message. Otherwise, in the case of server authentication
 this field SHALL be zero length.

 certificate_list This is a sequence (chain) of certificates. The
 sender’s certificate MUST come first in the list. Each following
 certificate SHOULD directly certify one preceding it. Because
 certificate validation requires that trust anchors be distributed
 independently, a certificate that specifies a trust anchor MAY be
 omitted from the chain, provided that supported peers are known to
 possess any omitted certificates.

 Note: Prior to TLS 1.3, "certificate_list" ordering required each
 certificate to certify the one immediately preceding it, however some
 implementations allowed some flexibility. Servers sometimes send
 both a current and deprecated intermediate for transitional purposes,
 and others are simply configured incorrectly, but these cases can
 nonetheless be validated properly. For maximum compatibility, all
 implementations SHOULD be prepared to handle potentially extraneous

Rescorla Expires January 12, 2017 [Page 48]

Internet-Draft TLS July 2016

 certificates and arbitrary orderings from any TLS version, with the
 exception of the end-entity certificate which MUST be first.

 The server’s certificate list MUST always be non-empty. A client
 will send an empty certificate list if it does not have an
 appropriate certificate to send in response to the server’s
 authentication request.

4.3.1.1 . Server Certificate Selection

 The following rules apply to the certificates sent by the server:

 - The certificate type MUST be X.509v3 [RFC5280], unless explicitly
 negotiated otherwise (e.g., [RFC5081]).

 - The server’s end-entity certificate’s public key (and associated
 restrictions) MUST be compatible with the selected authentication
 algorithm (currently RSA or ECDSA).

 - The certificate MUST allow the key to be used for signing (i.e.,
 the digitalSignature bit MUST be set if the Key Usage extension is
 present) with a signature scheme indicated in the client’s
 "signature_algorithms" extension.

 - The "server_name" and "trusted_ca_keys" extensions [RFC6066] are
 used to guide certificate selection. As servers MAY require the
 presence of the "server_name" extension, clients SHOULD send this
 extension, when applicable.

 All certificates provided by the server MUST be signed by a signature
 algorithm that appears in the "signature_algorithms" extension
 provided by the client, if they are able to provide such a chain (see
 Section 4.2.2). Certificates that are self-signed or certificates
 that are expected to be trust anchors are not validated as part of
 the chain and therefore MAY be signed with any algorithm.

 If the server cannot produce a certificate chain that is signed only
 via the indicated supported algorithms, then it SHOULD continue the
 handshake by sending the client a certificate chain of its choice
 that may include algorithms that are not known to be supported by the
 client. This fallback chain MAY use the deprecated SHA-1 hash
 algorithm only if the "signature_algorithms" extension provided by
 the client permits it. If the client cannot construct an acceptable
 chain using the provided certificates and decides to abort the
 handshake, then it MUST send an "unsupported_certificate" alert
 message and close the connection.

Rescorla Expires January 12, 2017 [Page 49]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc5081
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS July 2016

 If the server has multiple certificates, it chooses one of them based
 on the above-mentioned criteria (in addition to other criteria, such
 as transport layer endpoint, local configuration and preferences).

 As cipher suites that specify new key exchange methods are specified
 for the TLS protocol, they will imply the certificate format and the
 required encoded keying information.

4.3.1.2 . Client Certificate Selection

 The following rules apply to certificates sent by the client:

 In particular:

 - The certificate type MUST be X.509v3 [RFC5280], unless explicitly
 negotiated otherwise (e.g., [RFC5081]).

 - If the certificate_authorities list in the certificate request
 message was non-empty, one of the certificates in the certificate
 chain SHOULD be issued by one of the listed CAs.

 - The certificates MUST be signed using an acceptable signature
 algorithm, as described in Section 4.2.9 . Note that this relaxes
 the constraints on certificate-signing algorithms found in prior
 versions of TLS.

 - If the certificate_extensions list in the certificate request
 message was non-empty, the end-entity certificate MUST match the
 extension OIDs recognized by the client, as described in
 Section 4.2.9 .

 Note that, as with the server certificate, there are certificates
 that use algorithm combinations that cannot be currently used with
 TLS.

4.3.1.3 . Receiving a Certificate Message

 In general, detailed certificate validation procedures are out of
 scope for TLS (see [RFC5280]). This section provides TLS-specific
 requirements.

 If the server supplies an empty Certificate message, the client MUST
 terminate the handshake with a fatal "decode_error" alert.

 If the client does not send any certificates, the server MAY at its
 discretion either continue the handshake without client
 authentication, or respond with a fatal "handshake_failure" alert.
 Also, if some aspect of the certificate chain was unacceptable (e.g.,

Rescorla Expires January 12, 2017 [Page 50]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc5081
https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS July 2016

 it was not signed by a known, trusted CA), the server MAY at its
 discretion either continue the handshake (considering the client
 unauthenticated) or send a fatal alert.

 Any endpoint receiving any certificate signed using any signature
 algorithm using an MD5 hash MUST send a "bad_certificate" alert
 message and close the connection. SHA-1 is deprecated and therefore
 NOT RECOMMENDED. All endpoints are RECOMMENDED to transition to
 SHA-256 or better as soon as possible to maintain interoperability
 with implementations currently in the process of phasing out SHA-1
 support.

 Note that a certificate containing a key for one signature algorithm
 MAY be signed using a different signature algorithm (for instance, an
 RSA key signed with an ECDSA key).

 Endpoints that reject certification paths due to use of a deprecated
 hash MUST send a fatal "bad_certificate" alert message before closing
 the connection.

4.3.2 . Certificate Verify

 When this message will be sent:

 This message is used to provide explicit proof that an endpoint
 possesses the private key corresponding to its certificate and
 also provides integrity for the handshake up to this point.
 Servers MUST send this message when using a cipher suite which is
 authenticated via a certificate. Clients MUST send this message
 whenever authenticating via a Certificate (i.e., when the
 Certificate message is non-empty). When sent, this message MUST
 appear immediately after the Certificate Message and immediately
 prior to the Finished message.

 Structure of this message:

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 The algorithm field specifies the signature algorithm used (see
 Section 4.2.2 for the definition of this field). The signature is a
 digital signature using that algorithm that covers the hash output
 described in Section 4.3 namely:

 Hash(Handshake Context + Certificate) + Hash(resumption_context)

Rescorla Expires January 12, 2017 [Page 51]

Internet-Draft TLS July 2016

 In TLS 1.3, the digital signature process takes as input:

 - A signing key

 - A context string

 - The actual content to be signed

 The digital signature is then computed using the signing key over the
 concatenation of:

 - 64 bytes of octet 32

 - The context string

 - A single 0 byte which servers as the separator

 - The content to be signed

 This structure is intended to prevent an attack on previous versions
 of previous versions of TLS in which the ServerKeyExchange format
 meant that attackers could obtain a signature of a message with a
 chosen, 32-byte prefix. The initial 64 byte pad clears that prefix.

 The context string for a server signature is "TLS 1.3, server
 CertificateVerify" and for a client signature is "TLS 1.3, client
 CertificateVerify".

 For example, if Hash(Handshake Context + Certificate) was 32 bytes of
 01 and Hash(resumption_context) was 32 bytes of 02 (these lengths
 would make sense for SHA-256, the input to the final signing process
 for a server CertificateVerify would be:

 20
 20
 544c5320312e332c207365727665722043657274696669636174655665726966
 79
 00
 01
 02

 If sent by a server, the signature algorithm MUST be one offered in
 the client’s "signature_algorithms" extension unless no valid
 certificate chain can be produced without unsupported algorithms (see
 Section 4.2.2). Note that there is a possibility for inconsistencies
 here. For instance, the client might offer an ECDHE_ECDSA cipher
 suite but omit any ECDSA and EdDSA values from its
 "signature_algorithms" extension. In order to negotiate correctly,

Rescorla Expires January 12, 2017 [Page 52]

Internet-Draft TLS July 2016

 the server MUST check any candidate cipher suites against the
 "signature_algorithms" extension before selecting them. This is
 somewhat inelegant but is a compromise designed to minimize changes
 to the original cipher suite design.

 If sent by a client, the signature algorithm used in the signature
 MUST be one of those present in the supported_signature_algorithms
 field of the CertificateRequest message.

 In addition, the signature algorithm MUST be compatible with the key
 in the sender’s end-entity certificate. RSA signatures MUST use an
 RSASSA-PSS algorithm, regardless of whether RSASSA-PKCS1-v1_5
 algorithms appear in "signature_algorithms". SHA-1 MUST NOT be used
 in any signatures in CertificateVerify. All SHA-1 signature
 algorithms in this specification are defined solely for use in legacy
 certificates, and are not valid for CertificateVerify signatures.

 Note: When used with non-certificate-based handshakes (e.g., PSK),
 the client’s signature does not cover the server’s certificate
 directly, although it does cover the server’s Finished message, which
 transitively includes the server’s certificate when the PSK derives
 from a certificate-authenticated handshake. [PSK-FINISHED] describes
 a concrete attack on this mode if the Finished is omitted from the
 signature. It is unsafe to use certificate-based client
 authentication when the client might potentially share the same PSK/
 key-id pair with two different endpoints. In order to ensure this,
 implementations MUST NOT mix certificate-based client authentication
 with pure PSK modes (i.e., those where the PSK was not derived from a
 previous non-PSK handshake).

4.3.3 . Finished

 When this message will be sent:

 The Finished message is the final message in the authentication
 block. It is essential for providing authentication of the
 handshake and of the computed keys.

 Meaning of this message:

 Recipients of Finished messages MUST verify that the contents are
 correct. Once a side has sent its Finished message and received
 and validated the Finished message from its peer, it may begin to
 send and receive application data over the connection.

 The key used to compute the finished message is computed from the
 Base key defined in Section 4.3 using HKDF (see Section 7.1).
 Specifically:

Rescorla Expires January 12, 2017 [Page 53]

Internet-Draft TLS July 2016

 client_finished_key =
 HKDF-Expand-Label(BaseKey, "client finished", "", Hash.Length)

 server_finished_key =
 HKDF-Expand-Label(BaseKey, "server finished", "", Hash.Length)

 Structure of this message:

 struct {
 opaque verify_data[Hash.length];
 } Finished;

 The verify_data value is computed as follows:

 verify_data =
 HMAC(finished_key, Hash(
 Handshake Context +
 Certificate* +
 CertificateVerify*
) +
 Hash(resumption_context)
)

 * Only included if present.

 Where HMAC [RFC2104] uses the Hash algorithm for the handshake. As
 noted above, the HMAC input can generally be implemented by a running
 hash, i.e., just the handshake hash at this point.

 In previous versions of TLS, the verify_data was always 12 octets
 long. In the current version of TLS, it is the size of the HMAC
 output for the Hash used for the handshake.

 Note: Alerts and any other record types are not handshake messages
 and are not included in the hash computations.

4.4 . Post-Handshake Messages

 TLS also allows other messages to be sent after the main handshake.
 These messages use a handshake content type and are encrypted under
 the application traffic key.

4.4.1 . New Session Ticket Message

 At any time after the server has received the client Finished
 message, it MAY send a NewSessionTicket message. This message
 creates a pre-shared key (PSK) binding between the ticket value and
 the following two values derived from the resumption master secret:

Rescorla Expires January 12, 2017 [Page 54]

https://tools.ietf.org/pdf/rfc2104

Internet-Draft TLS July 2016

 resumption_psk = HKDF-Expand-Label(
 resumption_secret,
 "resumption psk", "", Hash.Length)

 resumption_context = HKDF-Expand-Label(
 resumption_secret,
 "resumption context", "", Hash.Length)

 The client MAY use this PSK for future handshakes by including the
 ticket value in the "pre_shared_key" extension in its ClientHello
 (Section 4.2.5) and supplying a suitable PSK cipher suite. Servers
 may send multiple tickets on a single connection, for instance after
 post-handshake authentication. For handshakes that do not use a
 resumption_psk, the resumption_context is a string of Hash.Length
 zeroes.

 enum { (65535) } TicketExtensionType;

 struct {
 TicketExtensionType extension_type;
 opaque extension_data<1..2^16-1>;
 } TicketExtension;

 enum {
 allow_early_data(1),
 allow_dhe_resumption(2),
 allow_psk_resumption(4)
 } TicketFlags;

 struct {
 uint32 ticket_lifetime;
 uint32 flags;
 uint32 ticket_age_add;
 TicketExtension extensions<2..2^16-2>;
 opaque ticket<0..2^16-1>;
 } NewSessionTicket;

 flags A 32-bit value indicating the ways in which this ticket may be
 used (as a bitwise OR of the flags values).

 ticket_lifetime Indicates the lifetime in seconds as a 32-bit
 unsigned integer in network byte order from the time of ticket
 issuance. Servers MUST NOT use any value more than 604800 seconds
 (7 days). The value of zero indicates that the ticket should be
 discarded immediately. Clients MUST NOT cache session tickets for
 longer than 7 days, regardless of the ticket_lifetime. It MAY
 delete the ticket earlier based on local policy. A server MAY

Rescorla Expires January 12, 2017 [Page 55]

Internet-Draft TLS July 2016

 treat a ticket as valid for a shorter period of time than what is
 stated in the ticket_lifetime.

 ticket_age_add A randomly generated 32-bit value that is used to
 obscure the age of the ticket that the client includes in the
 "early_data" extension. The actual ticket age is added to this
 value modulo 2^32 to obtain the value that is transmitted by the
 client.

 ticket_extensions A placeholder for extensions in the ticket.
 Clients MUST ignore unrecognized extensions.

 ticket The value of the ticket to be used as the PSK identifier.
 The ticket itself is an opaque label. It MAY either be a database
 lookup key or a self-encrypted and self-authenticated value.
 Section 4 of [RFC5077] describes a recommended ticket construction
 mechanism.

 The meanings of the flags are as follows:

 allow_early_data When resuming with this ticket, the client MAY send
 data in its first flight (early data) encrypted under a key
 derived from this PSK.

 allow_dhe_resumption This ticket MAY be used with (EC)DHE-PSK cipher
 suite.

 allow_psk_resumption This ticket MAY be used with a pure PSK cipher
 suite.

 In all cases, the PSK or (EC)DHE-PSK cipher suites that the client
 offers/uses MUST have the same symmetric parameters (cipher/hash) as
 the cipher suite negotiated for this connection. If no flags are set
 that the client recognizes, it MUST ignore the ticket.

4.4.2 . Post-Handshake Authentication

 The server is permitted to request client authentication at any time
 after the handshake has completed by sending a CertificateRequest
 message. The client SHOULD respond with the appropriate
 Authentication messages. If the client chooses to authenticate, it
 MUST send Certificate, CertificateVerify, and Finished. If it
 declines, it MUST send a Certificate message containing no
 certificates followed by Finished.

 Note: Because client authentication may require prompting the user,
 servers MUST be prepared for some delay, including receiving an
 arbitrary number of other messages between sending the

Rescorla Expires January 12, 2017 [Page 56]

https://tools.ietf.org/pdf/rfc5077#section-4

Internet-Draft TLS July 2016

 CertificateRequest and receiving a response. In addition, clients
 which receive multiple CertificateRequests in close succession MAY
 respond to them in a different order than they were received (the
 certificate_request_context value allows the server to disambiguate
 the responses).

4.4.3 . Key and IV Update

 struct {} KeyUpdate;

 The KeyUpdate handshake message is used to indicate that the sender
 is updating its sending cryptographic keys. This message can be sent
 by the server after sending its first flight and the client after
 sending its second flight. Implementations that receive a KeyUpdate
 message prior to receiving a Finished message as part of the 1-RTT
 handshake MUST generate a fatal "unexpected_message" alert. After
 sending a KeyUpdate message, the sender SHALL send all its traffic
 using the next generation of keys, computed as described in
 Section 7.2 . Upon receiving a KeyUpdate, the receiver MUST update
 their receiving keys and if they have not already updated their
 sending state up to or past the then current receiving generation
 MUST send their own KeyUpdate prior to sending any other messages.
 This mechanism allows either side to force an update to the entire
 connection. Note that implementations may receive an arbitrary
 number of messages between sending a KeyUpdate and receiving the
 peer’s KeyUpdate because those messages may already be in flight.

 Note that if implementations independently send their own KeyUpdates
 and they cross in flight, this only results in an update of one
 generation; when each side receives the other side’s update it just
 updates its receive keys and notes that the generations match and
 thus no send update is needed.

 Note that the side which sends its KeyUpdate first needs to retain
 its receive traffic keys (though not the traffic secret) for the
 previous generation of keys until it receives the KeyUpdate from the
 other side.

 Both sender and receiver MUST encrypt their KeyUpdate messages with
 the old keys. Additionally, both sides MUST enforce that a KeyUpdate
 with the old key is received before accepting any messages encrypted
 with the new key. Failure to do so may allow message truncation
 attacks.

Rescorla Expires January 12, 2017 [Page 57]

Internet-Draft TLS July 2016

5. Record Protocol

 The TLS record protocol takes messages to be transmitted, fragments
 the data into manageable blocks, protects the records, and transmits
 the result. Received data is decrypted and verified, reassembled,
 and then delivered to higher-level clients.

 TLS records are typed, which allows multiple higher level protocols
 to be multiplexed over the same record layer. This document
 specifies three content types: handshake, application data, and
 alert. Implementations MUST NOT send record types not defined in
 this document unless negotiated by some extension. If a TLS
 implementation receives an unexpected record type, it MUST send an
 "unexpected_message" alert. New record content type values are
 assigned by IANA in the TLS Content Type Registry as described in
 Section 10 .

 Application data messages are carried by the record layer and are
 fragmented and encrypted as described below. The messages are
 treated as transparent data to the record layer.

5.1 . Record Layer

 The TLS record layer receives uninterpreted data from higher layers
 in non-empty blocks of arbitrary size.

 The record layer fragments information blocks into TLSPlaintext
 records carrying data in chunks of 2^14 bytes or less. Message
 boundaries are not preserved in the record layer (i.e., multiple
 messages of the same ContentType MAY be coalesced into a single
 TLSPlaintext record, or a single message MAY be fragmented across
 several records). Alert messages (Section 6) MUST NOT be fragmented
 across records.

 enum {
 alert(21),
 handshake(22),
 application_data(23)
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

Rescorla Expires January 12, 2017 [Page 58]

Internet-Draft TLS July 2016

 type The higher-level protocol used to process the enclosed
 fragment.

 record_version The protocol version the current record is compatible
 with. This value MUST be set to { 3, 1 } for all records. This
 field is deprecated and MUST be ignored for all purposes.

 length The length (in bytes) of the following TLSPlaintext.fragment.
 The length MUST NOT exceed 2^14.

 fragment The data being transmitted. This value transparent and
 treated as an independent block to be dealt with by the higher-
 level protocol specified by the type field.

 This document describes TLS Version 1.3, which uses the version { 3,
 4 }. The version value 3.4 is historical, deriving from the use of {
 3, 1 } for TLS 1.0 and { 3, 0 } for SSL 3.0. In order to maximize
 backwards compatibility, the record layer version identifies as
 simply TLS 1.0. Endpoints supporting other versions negotiate the
 version to use by following the procedure and requirements in
 Appendix C .

 Implementations MUST NOT send zero-length fragments of Handshake or
 Alert types, even if those fragments contain padding. Zero-length
 fragments of Application data MAY be sent as they are potentially
 useful as a traffic analysis countermeasure.

 When record protection has not yet been engaged, TLSPlaintext
 structures are written directly onto the wire. Once record
 protection has started, TLSPlaintext records are protected and sent
 as described in the following section.

5.2 . Record Payload Protection

 The record protection functions translate a TLSPlaintext structure
 into a TLSCiphertext. The deprotection functions reverse the
 process. In TLS 1.3 as opposed to previous versions of TLS, all
 ciphers are modeled as "Authenticated Encryption with Additional
 Data" (AEAD) [RFC5116]. AEAD functions provide a unified encryption
 and authentication operation which turns plaintext into authenticated
 ciphertext and back again. Each encrypted record consists of a
 plaintext header followed by an encrypted body, which itself contains
 a type and optional padding.

Rescorla Expires January 12, 2017 [Page 59]

https://tools.ietf.org/pdf/rfc5116

Internet-Draft TLS July 2016

 struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } TLSInnerPlaintext;

 struct {
 ContentType opaque_type = application_data(23); /* see fragment.type */
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 opaque encrypted_record[length];
 } TLSCiphertext;

 content The cleartext of TLSPlaintext.fragment.

 type The content type of the record.

 zeros An arbitrary-length run of zero-valued bytes may appear in the
 cleartext after the type field. This provides an opportunity for
 senders to pad any TLS record by a chosen amount as long as the
 total stays within record size limits. See Section 5.4 for more
 details.

 opaque_type The outer opaque_type field of a TLSCiphertext record is
 always set to the value 23 (application_data) for outward
 compatibility with middleboxes accustomed to parsing previous
 versions of TLS. The actual content type of the record is found
 in fragment.type after decryption.

 record_version The record_version field is identical to
 TLSPlaintext.record_version and is always { 3, 1 }. Note that the
 handshake protocol including the ClientHello and ServerHello
 messages authenticates the protocol version, so this value is
 redundant.

 length The length (in bytes) of the following
 TLSCiphertext.fragment, which is the sum of the lengths of the
 content and the padding, plus one for the inner content type. The
 length MUST NOT exceed 2^14 + 256. An endpoint that receives a
 record that exceeds this length MUST generate a fatal
 "record_overflow" alert.

 encrypted_record The AEAD encrypted form of the serialized
 TLSInnerPlaintext structure.

 AEAD ciphers take as input a single key, a nonce, a plaintext, and
 "additional data" to be included in the authentication check, as
 described in Section 2.1 of [RFC5116] . The key is either the

Rescorla Expires January 12, 2017 [Page 60]

https://tools.ietf.org/pdf/rfc5116#section-2.1

Internet-Draft TLS July 2016

 client_write_key or the server_write_key, the nonce is derived from
 the sequence number (see Section 5.3) and the client_write_iv or
 server_write_iv, and the additional data input is empty (zero
 length). Derivation of traffic keys is defined in Section 7.3 .

 The plaintext is the concatenation of TLSPlaintext.fragment,
 TLSPlaintext.type, and any padding bytes (zeros).

 The AEAD output consists of the ciphertext output by the AEAD
 encryption operation. The length of the plaintext is greater than
 TLSPlaintext.length due to the inclusion of TLSPlaintext.type and
 however much padding is supplied by the sender. The length of the
 AEAD output will generally be larger than the plaintext, but by an
 amount that varies with the AEAD cipher. Since the ciphers might
 incorporate padding, the amount of overhead could vary with different
 lengths of plaintext. Symbolically,

 AEADEncrypted =
 AEAD-Encrypt(write_key, nonce, plaintext of fragment)

 In order to decrypt and verify, the cipher takes as input the key,
 nonce, and the AEADEncrypted value. The output is either the
 plaintext or an error indicating that the decryption failed. There
 is no separate integrity check. That is:

 plaintext of fragment =
 AEAD-Decrypt(write_key, nonce, AEADEncrypted)

 If the decryption fails, a fatal "bad_record_mac" alert MUST be
 generated.

 An AEAD cipher MUST NOT produce an expansion of greater than 255
 bytes. An endpoint that receives a record from its peer with
 TLSCipherText.length larger than 2^14 + 256 octets MUST generate a
 fatal "record_overflow" alert. This limit is derived from the
 maximum TLSPlaintext length of 2^14 octets + 1 octet for ContentType
 + the maximum AEAD expansion of 255 octets.

5.3 . Per-Record Nonce

 A 64-bit sequence number is maintained separately for reading and
 writing records. Each sequence number is set to zero at the
 beginning of a connection and whenever the key is changed.

 The sequence number is incremented after reading or writing each
 record. The first record transmitted under a particular set of
 traffic keys record key MUST use sequence number 0.

Rescorla Expires January 12, 2017 [Page 61]

Internet-Draft TLS July 2016

 Sequence numbers do not wrap. If a TLS implementation would need to
 wrap a sequence number, it MUST either rekey (Section 4.4.3) or
 terminate the connection.

 The length of the per-record nonce (iv_length) is set to max(8 bytes,
 N_MIN) for the AEAD algorithm (see [RFC5116] Section 4). An AEAD
 algorithm where N_MAX is less than 8 bytes MUST NOT be used with TLS.
 The per-record nonce for the AEAD construction is formed as follows:

 1. The 64-bit record sequence number is padded to the left with
 zeroes to iv_length.

 2. The padded sequence number is XORed with the static
 client_write_iv or server_write_iv, depending on the role.

 The resulting quantity (of length iv_length) is used as the per-
 record nonce.

 Note: This is a different construction from that in TLS 1.2, which
 specified a partially explicit nonce.

5.4 . Record Padding

 All encrypted TLS records can be padded to inflate the size of the
 TLSCipherText. This allows the sender to hide the size of the
 traffic from an observer.

 When generating a TLSCiphertext record, implementations MAY choose to
 pad. An unpadded record is just a record with a padding length of
 zero. Padding is a string of zero-valued bytes appended to the
 ContentType field before encryption. Implementations MUST set the
 padding octets to all zeros before encrypting.

 Application Data records may contain a zero-length fragment.content
 if the sender desires. This permits generation of plausibly-sized
 cover traffic in contexts where the presence or absence of activity
 may be sensitive. Implementations MUST NOT send Handshake or Alert
 records that have a zero-length fragment.content.

 The padding sent is automatically verified by the record protection
 mechanism: Upon successful decryption of a TLSCiphertext.fragment,
 the receiving implementation scans the field from the end toward the
 beginning until it finds a non-zero octet. This non-zero octet is
 the content type of the message. This padding scheme was selected
 because it allows padding of any encrypted TLS record by an arbitrary
 size (from zero up to TLS record size limits) without introducing new
 content types. The design also enforces all-zero padding octets,
 which allows for quick detection of padding errors.

Rescorla Expires January 12, 2017 [Page 62]

https://tools.ietf.org/pdf/rfc5116#section-4

Internet-Draft TLS July 2016

 Implementations MUST limit their scanning to the cleartext returned
 from the AEAD decryption. If a receiving implementation does not
 find a non-zero octet in the cleartext, it should treat the record as
 having an unexpected ContentType, sending an "unexpected_message"
 alert.

 The presence of padding does not change the overall record size
 limitations - the full fragment plaintext may not exceed 2^14 octets.

 Selecting a padding policy that suggests when and how much to pad is
 a complex topic, and is beyond the scope of this specification. If
 the application layer protocol atop TLS has its own padding padding,
 it may be preferable to pad application_data TLS records within the
 application layer. Padding for encrypted handshake and alert TLS
 records must still be handled at the TLS layer, though. Later
 documents may define padding selection algorithms, or define a
 padding policy request mechanism through TLS extensions or some other
 means.

5.5 . Limits on Key Usage

 There are cryptographic limits on the amount of plaintext which can
 be safely encrypted under a given set of keys. [AEAD-LIMITS]
 provides an analysis of these limits under the assumption that the
 underlying primitive (AES or ChaCha20) has no weaknesses.
 Implementations SHOULD do a key update Section 4.4.3 prior to
 reaching these limits.

 For AES-GCM, up to 2^24.5 full-size records may be encrypted on a
 given connection while keeping a safety margin of approximately 2^-57
 for Authenticated Encryption (AE) security. For ChaCha20/Poly1305,
 the record sequence number will wrap before the safety limit is
 reached.

6. Alert Protocol

 One of the content types supported by the TLS record layer is the
 alert type. Like other messages, alert messages are encrypted as
 specified by the current connection state.

 Alert messages convey the severity of the message (warning or fatal)
 and a description of the alert. Warning-level messages are used to
 indicate orderly closure of the connection (see Section 6.1). Upon
 receiving a warning-level alert, the TLS implementation SHOULD
 indicate end-of-data to the application and, if appropriate for the
 alert type, send a closure alert in response.

Rescorla Expires January 12, 2017 [Page 63]

Internet-Draft TLS July 2016

 Fatal-level messages are used to indicate abortive closure of the
 connection (See Section 6.2). Upon receiving a fatal-level alert,
 the TLS implementation SHOULD indicate an error to the application
 and MUST NOT allow any further data to be sent or received on the
 connection. Servers and clients MUST forget keys and secrets
 associated with a failed connection. Stateful implementations of
 session tickets (as in many clients) SHOULD discard tickets
 associated with failed connections.

 All the alerts listed in Section 6.2 MUST be sent as fatal and MUST
 be treated as fatal regardless of the AlertLevel in the message.
 Unknown alert types MUST be treated as fatal.

Rescorla Expires January 12, 2017 [Page 64]

Internet-Draft TLS July 2016

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 end_of_early_data(1),
 unexpected_message(10),
 bad_record_mac(20),
 record_overflow(22),
 handshake_failure(40),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 inappropriate_fallback(86),
 user_canceled(90),
 missing_extension(109),
 unsupported_extension(110),
 certificate_unobtainable(111),
 unrecognized_name(112),
 bad_certificate_status_response(113),
 bad_certificate_hash_value(114),
 unknown_psk_identity(115),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

6.1 . Closure Alerts

 The client and the server must share knowledge that the connection is
 ending in order to avoid a truncation attack. Failure to properly
 close a connection does not prohibit a session from being resumed.

 close_notify This alert notifies the recipient that the sender will
 not send any more messages on this connection. Any data received
 after a closure MUST be ignored.

Rescorla Expires January 12, 2017 [Page 65]

Internet-Draft TLS July 2016

 end_of_early_data This alert is sent by the client to indicate that
 all 0-RTT application_data messages have been transmitted (or none
 will be sent at all) and that this is the end of the flight. This
 alert MUST be at the warning level. Servers MUST NOT send this
 alert and clients receiving it MUST terminate the connection with
 an "unexpected_message" alert.

 user_canceled This alert notifies the recipient that the sender is
 canceling the handshake for some reason unrelated to a protocol
 failure. If a user cancels an operation after the handshake is
 complete, just closing the connection by sending a "close_notify"
 is more appropriate. This alert SHOULD be followed by a
 "close_notify". This alert is generally a warning.

 Either party MAY initiate a close by sending a "close_notify" alert.
 Any data received after a closure alert is ignored. If a transport-
 level close is received prior to a "close_notify", the receiver
 cannot know that all the data that was sent has been received.

 Each party MUST send a "close_notify" alert before closing the write
 side of the connection, unless some other fatal alert has been
 transmitted. The other party MUST respond with a "close_notify"
 alert of its own and close down the connection immediately,
 discarding any pending writes. The initiator of the close need not
 wait for the responding "close_notify" alert before closing the read
 side of the connection.

 If the application protocol using TLS provides that any data may be
 carried over the underlying transport after the TLS connection is
 closed, the TLS implementation must receive the responding
 "close_notify" alert before indicating to the application layer that
 the TLS connection has ended. If the application protocol will not
 transfer any additional data, but will only close the underlying
 transport connection, then the implementation MAY choose to close the
 transport without waiting for the responding "close_notify". No part
 of this standard should be taken to dictate the manner in which a
 usage profile for TLS manages its data transport, including when
 connections are opened or closed.

 Note: It is assumed that closing a connection reliably delivers
 pending data before destroying the transport.

6.2 . Error Alerts

 Error handling in the TLS Handshake Protocol is very simple. When an
 error is detected, the detecting party sends a message to its peer.
 Upon transmission or receipt of a fatal alert message, both parties
 immediately close the connection. Whenever an implementation

Rescorla Expires January 12, 2017 [Page 66]

Internet-Draft TLS July 2016

 encounters a condition which is defined as a fatal alert, it MUST
 send the appropriate alert prior to closing the connection. All
 alerts defined in this section below, as well as all unknown alerts
 are universally considered fatal as of TLS 1.3 (see Section 6).

 The following error alerts are defined:

 unexpected_message An inappropriate message was received. This
 alert should never be observed in communication between proper
 implementations.

 bad_record_mac This alert is returned if a record is received which
 cannot be deprotected. Because AEAD algorithms combine decryption
 and verification, this alert is used for all deprotection
 failures. This alert should never be observed in communication
 between proper implementations, except when messages were
 corrupted in the network.

 record_overflow A TLSCiphertext record was received that had a
 length more than 2^14 + 256 bytes, or a record decrypted to a
 TLSPlaintext record with more than 2^14 bytes. This alert should
 never be observed in communication between proper implementations,
 except when messages were corrupted in the network.

 handshake_failure Reception of a "handshake_failure" alert message
 indicates that the sender was unable to negotiate an acceptable
 set of security parameters given the options available.

 bad_certificate A certificate was corrupt, contained signatures that
 did not verify correctly, etc.

 unsupported_certificate A certificate was of an unsupported type.

 certificate_revoked A certificate was revoked by its signer.

 certificate_expired A certificate has expired or is not currently
 valid.

 certificate_unknown Some other (unspecified) issue arose in
 processing the certificate, rendering it unacceptable.

 illegal_parameter A field in the handshake was out of range or
 inconsistent with other fields.

 unknown_ca A valid certificate chain or partial chain was received,
 but the certificate was not accepted because the CA certificate
 could not be located or couldn’t be matched with a known, trusted
 CA.

Rescorla Expires January 12, 2017 [Page 67]

Internet-Draft TLS July 2016

 access_denied A valid certificate or PSK was received, but when
 access control was applied, the sender decided not to proceed with
 negotiation.

 decode_error A message could not be decoded because some field was
 out of the specified range or the length of the message was
 incorrect. This alert should never be observed in communication
 between proper implementations, except when messages were
 corrupted in the network.

 decrypt_error A handshake cryptographic operation failed, including
 being unable to correctly verify a signature or validate a
 Finished message.

 protocol_version The protocol version the peer has attempted to
 negotiate is recognized but not supported. (see Appendix C)

 insufficient_security Returned instead of "handshake_failure" when a
 negotiation has failed specifically because the server requires
 ciphers more secure than those supported by the client.

 internal_error An internal error unrelated to the peer or the
 correctness of the protocol (such as a memory allocation failure)
 makes it impossible to continue.

 inappropriate_fallback Sent by a server in response to an invalid
 connection retry attempt from a client. (see [RFC7507])

 missing_extension Sent by endpoints that receive a hello message not
 containing an extension that is mandatory to send for the offered
 TLS version. [[TODO: IANA Considerations.]]

 unsupported_extension Sent by endpoints receiving any hello message
 containing an extension known to be prohibited for inclusion in
 the given hello message, including any extensions in a ServerHello
 not first offered in the corresponding ClientHello.

 certificate_unobtainable Sent by servers when unable to obtain a
 certificate from a URL provided by the client via the
 "client_certificate_url" extension [RFC6066].

 unrecognized_name Sent by servers when no server exists identified
 by the name provided by the client via the "server_name" extension
 [RFC6066].

 bad_certificate_status_response Sent by clients when an invalid or
 unacceptable OCSP response is provided by the server via the
 "status_request" extension [RFC6066]. This alert is always fatal.

Rescorla Expires January 12, 2017 [Page 68]

https://tools.ietf.org/pdf/rfc7507
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS July 2016

 bad_certificate_hash_value Sent by servers when a retrieved object
 does not have the correct hash provided by the client via the
 "client_certificate_url" extension [RFC6066].

 unknown_psk_identity Sent by servers when a PSK cipher suite is
 selected but no acceptable PSK identity is provided by the client.
 Sending this alert is OPTIONAL; servers MAY instead choose to send
 a "decrypt_error" alert to merely indicate an invalid PSK
 identity.

 New Alert values are assigned by IANA as described in Section 10 .

7. Cryptographic Computations

 In order to begin connection protection, the TLS Record Protocol
 requires specification of a suite of algorithms, a master secret, and
 the client and server random values. The authentication, key
 exchange, and record protection algorithms are determined by the
 cipher_suite selected by the server and revealed in the ServerHello
 message. The random values are exchanged in the hello messages. All
 that remains is to calculate the key schedule.

7.1 . Key Schedule

 The TLS handshake establishes one or more input secrets which are
 combined to create the actual working keying material, as detailed
 below. The key derivation process makes use of the HKDF-Extract and
 HKDF-Expand functions as defined for HKDF [RFC5869], as well as the
 functions defined below:

 HKDF-Expand-Label(Secret, Label, HashValue, Length) =
 HKDF-Expand(Secret, HkdfLabel, Length)

 Where HkdfLabel is specified as:

 struct HkdfLabel
 {
 uint16 length = Length;
 opaque label<9..255> = "TLS 1.3, " + Label;
 opaque hash_value<0..255> = HashValue;
 };

 Derive-Secret(Secret, Label, Messages) =
 HKDF-Expand-Label(Secret, Label,
 Hash(Messages) +
 Hash(resumption_context), Hash.Length)

Rescorla Expires January 12, 2017 [Page 69]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc5869

Internet-Draft TLS July 2016

 The Hash function and the HKDF hash are the cipher suite hash
 function. Hash.Length is its output length.

 Given a set of n InputSecrets, the final "master secret" is computed
 by iteratively invoking HKDF-Extract with InputSecret_1,
 InputSecret_2, etc. The initial secret is simply a string of zeroes
 as long as the size of the Hash that is the basis for the HKDF.
 Concretely, for the present version of TLS 1.3, secrets are added in
 the following order:

 - PSK

 - (EC)DHE shared secret

 This produces a full key derivation schedule shown in the diagram
 below. In this diagram, the following formatting conventions apply:

 - HKDF-Extract is drawn as taking the Salt argument from the top and
 the IKM argument from the left.

 - Derive-Secret’s Secret argument is indicated by the arrow coming
 in from the left. For instance, the Early Secret is the Secret
 for generating the early_traffic-secret.

Rescorla Expires January 12, 2017 [Page 70]

Internet-Draft TLS July 2016

 0
 |
 v
 PSK -> HKDF-Extract
 |
 v
 Early Secret ---> Derive-Secret(., "early traffic secret",
 | ClientHello)
 | = early_traffic_secret
 v
(EC)DHE -> HKDF-Extract
 |
 v
 Handshake
 Secret -----> Derive-Secret(., "handshake traffic secret",
 | ClientHello + ServerHello)
 | = handshake_traffic_secret
 v
 0 -> HKDF-Extract
 |
 v
 Master Secret
 |
 +---------> Derive-Secret(., "application traffic secret",
 | ClientHello...Server Finished)
 | = traffic_secret_0
 |
 +---------> Derive-Secret(., "exporter master secret",
 | ClientHello...Client Finished)
 | = exporter_secret
 |
 +---------> Derive-Secret(., "resumption master secret",
 ClientHello...Client Finished)
 = resumption_secret

 The general pattern here is that the secrets shown down the left side
 of the diagram are just raw entropy without context, whereas the
 secrets down the right side include handshake context and therefore
 can be used to derive working keys without additional context. Note
 that the different calls to Derive-Secret may take different Messages
 arguments, even with the same secret. In a 0-RTT exchange, Derive-
 Secret is called with four distinct transcripts; in a 1-RTT only
 exchange with three distinct transcripts.

 If a given secret is not available, then the 0-value consisting of a
 string of Hash.length zeroes is used. Note that this does not mean
 skipping rounds, so if PSK is not in use Early Secret will still be
 HKDF-Extract(0, 0).

Rescorla Expires January 12, 2017 [Page 71]

Internet-Draft TLS July 2016

7.2 . Updating Traffic Keys and IVs

 Once the handshake is complete, it is possible for either side to
 update its sending traffic keys using the KeyUpdate handshake message
 defined in Section 4.4.3 . The next generation of traffic keys is
 computed by generating traffic_secret_N+1 from traffic_secret_N as
 described in this section then re-deriving the traffic keys as
 described in Section 7.3 .

 The next-generation traffic_secret is computed as:

 traffic_secret_N+1 = HKDF-Expand-Label(
 traffic_secret_N,
 "application traffic secret", "", Hash.Length)

 Once traffic_secret_N+1 and its associated traffic keys have been
 computed, implementations SHOULD delete traffic_secret_N. Once the
 directional keys are no longer needed, they SHOULD be deleted as
 well.

7.3 . Traffic Key Calculation

 The traffic keying material is generated from the following input
 values:

 - A secret value

 - A phase value indicating the phase of the protocol the keys are
 being generated for

 - A purpose value indicating the specific value being generated

 - The length of the key

 The keying material is computed using:

 key = HKDF-Expand-Label(Secret,
 phase + ", " + purpose,
 "",
 key_length)

 The following table describes the inputs to the key calculation for
 each class of traffic keys:

Rescorla Expires January 12, 2017 [Page 72]

Internet-Draft TLS July 2016

 +-------------+--------------------------+--------------------------+
 | Record Type | Secret | Phase |
 +-------------+--------------------------+--------------------------+
0-RTT	early_traffic_secret	"early handshake key
Handshake		expansion"
0-RTT	early_traffic_secret	"early application data
Application		key expansion"
Handshake	handshake_traffic_secret	"handshake key
		expansion"
Application	traffic_secret_N	"application data key
Data		expansion"
 +-------------+--------------------------+--------------------------+

 The following table indicates the purpose values for each type of
 key:

 +------------------+--------------------+
 | Key Type | Purpose |
 +------------------+--------------------+
 | client_write_key | "client write key" |
 | | |
 | server_write_key | "server write key" |
 | | |
 | client_write_iv | "client write iv" |
 | | |
 | server_write_iv | "server write iv" |
 +------------------+--------------------+

 All the traffic keying material is recomputed whenever the underlying
 Secret changes (e.g., when changing from the handshake to application
 data keys or upon a key update).

7.3.1 . Diffie-Hellman

 A conventional Diffie-Hellman computation is performed. The
 negotiated key (Z) is converted to byte string by encoding in big-
 endian, padded with zeros up to the size of the prime. This byte
 string is used as the shared secret, and is used in the key schedule
 as specified above.

 Note that this construction differs from previous versions of TLS
 which remove leading zeros.

Rescorla Expires January 12, 2017 [Page 73]

Internet-Draft TLS July 2016

7.3.2 . Elliptic Curve Diffie-Hellman

 For secp256r1, secp384r1 and secp521r1, ECDH calculations (including
 parameter and key generation as well as the shared secret
 calculation) are performed according to [IEEE1363] using the ECKAS-
 DH1 scheme with the identity map as key derivation function (KDF), so
 that the shared secret is the x-coordinate of the ECDH shared secret
 elliptic curve point represented as an octet string. Note that this
 octet string (Z in IEEE 1363 terminology) as output by FE2OSP, the
 Field Element to Octet String Conversion Primitive, has constant
 length for any given field; leading zeros found in this octet string
 MUST NOT be truncated.

 (Note that this use of the identity KDF is a technicality. The
 complete picture is that ECDH is employed with a non-trivial KDF
 because TLS does not directly use this secret for anything other than
 for computing other secrets.)

 ECDH functions are used as follows:

 - The public key to put into the KeyShareEntry.key_exchange
 structure is the result of applying the ECDH function to the
 secret key of appropriate length (into scalar input) and the
 standard public basepoint (into u-coordinate point input).

 - The ECDH shared secret is the result of applying ECDH function to
 the secret key (into scalar input) and the peer’s public key (into
 u-coordinate point input). The output is used raw, with no
 processing.

 For X25519 and X448, see [RFC7748].

7.3.3 . Exporters

 [RFC5705] defines keying material exporters for TLS in terms of the
 TLS PRF. This document replaces the PRF with HKDF, thus requiring a
 new construction. The exporter interface remains the same, however
 the value is computed as:

 HKDF-Expand-Label(exporter_secret,
 label, context_value, key_length)

8. Compliance Requirements

Rescorla Expires January 12, 2017 [Page 74]

https://tools.ietf.org/pdf/rfc7748

Internet-Draft TLS July 2016

8.1 . MTI Cipher Suites

 In the absence of an application profile standard specifying
 otherwise, a TLS-compliant application MUST implement the following
 cipher suites:

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 These cipher suites MUST support both digital signatures and key
 exchange with secp256r1 (NIST P-256) and SHOULD support key exchange
 with X25519 [RFC7748].

 A TLS-compliant application SHOULD implement the following cipher
 suites:

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

8.2 . MTI Extensions

 In the absence of an application profile standard specifying
 otherwise, a TLS-compliant application MUST implement the following
 TLS extensions:

 - Signature Algorithms ("signature_algorithms"; Section 4.2.2)

 - Negotiated Groups ("supported_groups"; Section 4.2.3)

 - Key Share ("key_share"; Section 4.2.4)

 - Pre-Shared Key ("pre_shared_key"; Section 4.2.5)

 - Server Name Indication ("server_name"; Section 3 of [RFC6066])

 - Cookie ("cookie"; Section 4.2.1)

 All implementations MUST send and use these extensions when offering
 applicable cipher suites:

 - "signature_algorithms" is REQUIRED for certificate authenticated
 cipher suites.

 - "supported_groups" and "key_share" are REQUIRED for DHE or ECDHE
 cipher suites.

Rescorla Expires January 12, 2017 [Page 75]

https://tools.ietf.org/pdf/rfc7748
https://tools.ietf.org/pdf/rfc6066#section-3

Internet-Draft TLS July 2016

 - "pre_shared_key" is REQUIRED for PSK cipher suites.

 - "cookie" is REQUIRED for all cipher suites.

 When negotiating use of applicable cipher suites, endpoints MUST
 abort the connection with a "missing_extension" alert if the required
 extension was not provided. Any endpoint that receives any invalid
 combination of cipher suites and extensions MAY abort the connection
 with a "missing_extension" alert, regardless of negotiated
 parameters.

 Additionally, all implementations MUST support use of the
 "server_name" extension with applications capable of using it.
 Servers MAY require clients to send a valid "server_name" extension.
 Servers requiring this extension SHOULD respond to a ClientHello
 lacking a "server_name" extension with a fatal "missing_extension"
 alert.

 Servers MUST NOT send the "signature_algorithms" extension; if a
 client receives this extension it MUST respond with a fatal
 "unsupported_extension" alert and close the connection.

9. Security Considerations

 Security issues are discussed throughout this memo, especially in
 Appendices B, C, and D.

10. IANA Considerations

 This document uses several registries that were originally created in
 [RFC4346]. IANA has updated these to reference this document. The
 registries and their allocation policies are below:

 - TLS Cipher Suite Registry: Values with the first byte in the range
 0-254 (decimal) are assigned via Specification Required [RFC2434].
 Values with the first byte 255 (decimal) are reserved for Private
 Use [RFC2434]. IANA [SHALL add/has added] a "Recommended" column
 to the cipher suite registry. All cipher suites listed in
 Appendix A.4 are marked as "Yes". All other cipher suites are
 marked as "No". IANA [SHALL add/has added] add a note to this
 column reading:

 Cipher suites marked as "Yes" are those allocated via Standards
 Track RFCs. Cipher suites marked as "No" are not; cipher
 suites marked "No" range from "good" to "bad" from a
 cryptographic standpoint.

Rescorla Expires January 12, 2017 [Page 76]

https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434

Internet-Draft TLS July 2016

 - TLS ContentType Registry: Future values are allocated via
 Standards Action [RFC2434].

 - TLS Alert Registry: Future values are allocated via Standards
 Action [RFC2434].

 - TLS HandshakeType Registry: Future values are allocated via
 Standards Action [RFC2434]. IANA [SHALL update/has updated] this
 registry to rename item 4 from "NewSessionTicket" to
 "new_session_ticket".

 This document also uses a registry originally created in [RFC4366].
 IANA has updated it to reference this document. The registry and its
 allocation policy is listed below:

 - TLS ExtensionType Registry: Values with the first byte in the
 range 0-254 (decimal) are assigned via Specification Required
 [RFC2434]. Values with the first byte 255 (decimal) are reserved
 for Private Use [RFC2434]. IANA [SHALL update/has updated] this
 registry to include the "key_share", "pre_shared_key", and
 "early_data" extensions as defined in this document.

 IANA [shall update/has updated] this registry to include a "TLS
 1.3" column with the following four values: "Client", indicating
 that the server shall not send them. "Clear", indicating that
 they shall be in the ServerHello. "Encrypted", indicating that
 they shall be in the EncryptedExtensions block, and "No"
 indicating that they are not used in TLS 1.3. This column [shall
 be/has been] initially populated with the values in this document.
 IANA [shall update/has updated] this registry to add a
 "Recommended" column. IANA [shall/has] initially populated this
 column with the values in the table below. This table has been
 generated by marking Standards Track RFCs as "Yes" and all others
 as "No".

 +-------------------------------+-----------+-----------------------+
 | Extension | Recommend | TLS 1.3 |
 | | ed | |
 +-------------------------------+-----------+-----------------------+
server_name [RFC6066]	Yes	Encrypted
max_fragment_length [RFC6066]	Yes	Encrypted
client_certificate_url	Yes	Encrypted
[RFC6066]		
trusted_ca_keys [RFC6066]	Yes	Encrypted

Rescorla Expires January 12, 2017 [Page 77]

https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc4366
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS July 2016

truncated_hmac [RFC6066]	Yes	No
status_request [RFC6066]	Yes	No
user_mapping [RFC4681]	Yes	Encrypted
client_authz [RFC5878]	No	Encrypted
server_authz [RFC5878]	No	Encrypted
cert_type [RFC6091]	Yes	Encrypted
supported_groups [RFC-ietf-	Yes	Encrypted
tls-negotiated-ff-dhe]		
ec_point_formats [RFC4492]	Yes	No
srp [RFC5054]	No	No
signature_algorithms	Yes	Client
[RFC5246]		
use_srtp [RFC5764]	Yes	Encrypted
heartbeat [RFC6520]	Yes	Encrypted
application_layer_protocol_ne	Yes	Encrypted
gotiation [RFC7301]		
status_request_v2 [RFC6961]	Yes	Encrypted
signed_certificate_timestamp	No	Encrypted
[RFC6962]		
client_certificate_type	Yes	Encrypted
[RFC7250]		
server_certificate_type	Yes	Encrypted
[RFC7250]		
padding [RFC7685]	Yes	Client
encrypt_then_mac [RFC7366]	Yes	No
extended_master_secret	Yes	No
[RFC7627]		
SessionTicket TLS [RFC4507]	Yes	No

Rescorla Expires January 12, 2017 [Page 78]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc4681
https://tools.ietf.org/pdf/rfc5878
https://tools.ietf.org/pdf/rfc5878
https://tools.ietf.org/pdf/rfc6091
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5054
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5764
https://tools.ietf.org/pdf/rfc6520
https://tools.ietf.org/pdf/rfc7301
https://tools.ietf.org/pdf/rfc6961
https://tools.ietf.org/pdf/rfc6962
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7685
https://tools.ietf.org/pdf/rfc7366
https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc4507

Internet-Draft TLS July 2016

renegotiation_info [RFC5746]	Yes	No
key_share [[this document]]	Yes	Clear
pre_shared_key [[this	Yes	Clear
document]]		
early_data [[this document]]	Yes	Encrypted
cookie [[this document]]	Yes	Encrypted/HelloRetryR
		equest
 +-------------------------------+-----------+-----------------------+

 In addition, this document defines two new registries to be
 maintained by IANA

 - TLS SignatureScheme Registry: Values with the first byte in the
 range 0-254 (decimal) are assigned via Specification Required
 [RFC2434]. Values with the first byte 255 (decimal) are reserved
 for Private Use [RFC2434]. This registry SHALL have a
 "Recommended" column. The registry [shall be/ has been] initially
 populated with the values described in Section 4.2.2 . The
 following values SHALL be marked as "Recommended":
 ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384, rsa_pss_sha256,
 rsa_pss_sha384, rsa_pss_sha512, ed25519.

11. References

11.1 . Normative References

 [AES] National Institute of Standards and Technology,
 "Specification for the Advanced Encryption Standard
 (AES)", NIST FIPS 197, November 2001.

 [DH] Diffie, W. and M. Hellman, "New Directions in
 Cryptography", IEEE Transactions on Information Theory,
 V.IT-22 n.6 , June 1977.

 [I-D.irtf-cfrg-eddsa]
 Josefsson, S. and I. Liusvaara, "Edwards-curve Digital
 Signature Algorithm (EdDSA)", draft-irtf-cfrg-eddsa-05
 (work in progress), March 2016.

Rescorla Expires January 12, 2017 [Page 79]

https://tools.ietf.org/pdf/rfc5746
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/rfc2434
https://tools.ietf.org/pdf/draft-irtf-cfrg-eddsa-05

Internet-Draft TLS July 2016

 [I-D.mattsson-tls-ecdhe-psk-aead]
 Mattsson, J. and D. Migault, "ECDHE_PSK with AES-GCM and
 AES-CCM Cipher Suites for Transport Layer Security (TLS)",
 draft-mattsson-tls-ecdhe-psk-aead-05 (work in progress),
 April 2016.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104 ,
 DOI 10.17487/RFC2104, February 1997,
 < http://www.rfc-editor.org/info/rfc2104 >.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997,
 < http://www.rfc-editor.org/info/rfc2119 >.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434 ,
 DOI 10.17487/RFC2434, October 1998,
 < http://www.rfc-editor.org/info/rfc2434 >.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447 , DOI 10.17487/RFC3447, February
 2003, < http://www.rfc-editor.org/info/rfc3447 >.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280 , DOI 10.17487/RFC5280, May 2008,
 < http://www.rfc-editor.org/info/rfc5280 >.

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288 ,
 DOI 10.17487/RFC5288, August 2008,
 < http://www.rfc-editor.org/info/rfc5288 >.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289 ,
 DOI 10.17487/RFC5289, August 2008,
 < http://www.rfc-editor.org/info/rfc5289 >.

 [RFC5487] Badra, M., "Pre-Shared Key Cipher Suites for TLS with SHA-
 256/384 and AES Galois Counter Mode", RFC 5487 ,
 DOI 10.17487/RFC5487, March 2009,
 < http://www.rfc-editor.org/info/rfc5487 >.

Rescorla Expires January 12, 2017 [Page 80]

https://tools.ietf.org/pdf/draft-mattsson-tls-ecdhe-psk-aead-05
https://tools.ietf.org/pdf/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/pdf/rfc2434
http://www.rfc-editor.org/info/rfc2434
https://tools.ietf.org/pdf/rfc3447
http://www.rfc-editor.org/info/rfc3447
https://tools.ietf.org/pdf/rfc5280
http://www.rfc-editor.org/info/rfc5280
https://tools.ietf.org/pdf/rfc5288
http://www.rfc-editor.org/info/rfc5288
https://tools.ietf.org/pdf/rfc5289
http://www.rfc-editor.org/info/rfc5289
https://tools.ietf.org/pdf/rfc5487
http://www.rfc-editor.org/info/rfc5487

Internet-Draft TLS July 2016

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705 , DOI 10.17487/RFC5705,
 March 2010, < http://www.rfc-editor.org/info/rfc5705 >.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869 ,
 DOI 10.17487/RFC5869, May 2010,
 < http://www.rfc-editor.org/info/rfc5869 >.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066 ,
 DOI 10.17487/RFC6066, January 2011,
 < http://www.rfc-editor.org/info/rfc6066 >.

 [RFC6209] Kim, W., Lee, J., Park, J., and D. Kwon, "Addition of the
 ARIA Cipher Suites to Transport Layer Security (TLS)",
 RFC 6209 , DOI 10.17487/RFC6209, April 2011,
 < http://www.rfc-editor.org/info/rfc6209 >.

 [RFC6367] Kanno, S. and M. Kanda, "Addition of the Camellia Cipher
 Suites to Transport Layer Security (TLS)", RFC 6367 ,
 DOI 10.17487/RFC6367, September 2011,
 < http://www.rfc-editor.org/info/rfc6367 >.

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655 ,
 DOI 10.17487/RFC6655, July 2012,
 < http://www.rfc-editor.org/info/rfc6655 >.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961 ,
 DOI 10.17487/RFC6961, June 2013,
 < http://www.rfc-editor.org/info/rfc6961 >.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979 , DOI 10.17487/RFC6979, August
 2013, < http://www.rfc-editor.org/info/rfc6979 >.

 [RFC7251] McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
 TLS", RFC 7251 , DOI 10.17487/RFC7251, June 2014,
 < http://www.rfc-editor.org/info/rfc7251 >.

Rescorla Expires January 12, 2017 [Page 81]

https://tools.ietf.org/pdf/rfc5705
http://www.rfc-editor.org/info/rfc5705
https://tools.ietf.org/pdf/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://tools.ietf.org/pdf/rfc6066
http://www.rfc-editor.org/info/rfc6066
https://tools.ietf.org/pdf/rfc6209
http://www.rfc-editor.org/info/rfc6209
https://tools.ietf.org/pdf/rfc6367
http://www.rfc-editor.org/info/rfc6367
https://tools.ietf.org/pdf/rfc6655
http://www.rfc-editor.org/info/rfc6655
https://tools.ietf.org/pdf/rfc6961
http://www.rfc-editor.org/info/rfc6961
https://tools.ietf.org/pdf/rfc6979
http://www.rfc-editor.org/info/rfc6979
https://tools.ietf.org/pdf/rfc7251
http://www.rfc-editor.org/info/rfc7251

Internet-Draft TLS July 2016

 [RFC7443] Patil, P., Reddy, T., Salgueiro, G., and M. Petit-
 Huguenin, "Application-Layer Protocol Negotiation (ALPN)
 Labels for Session Traversal Utilities for NAT (STUN)
 Usages", RFC 7443 , DOI 10.17487/RFC7443, January 2015,
 < http://www.rfc-editor.org/info/rfc7443 >.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748 , DOI 10.17487/RFC7748, January
 2016, < http://www.rfc-editor.org/info/rfc7748 >.

 [RFC7905] Langley, A., Chang, W., Mavrogiannopoulos, N.,
 Strombergson, J., and S. Josefsson, "ChaCha20-Poly1305
 Cipher Suites for Transport Layer Security (TLS)",
 RFC 7905 , DOI 10.17487/RFC7905, June 2016,
 < http://www.rfc-editor.org/info/rfc7905 >.

 [SHS] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Secure Hash Standard", NIST FIPS
 PUB 180-4, March 2012.

 [X690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2002, 2002.

 [X962] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 1998.

11.2 . Informative References

 [AEAD-LIMITS]
 Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", 2016,
 < http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf >.

 [BBFKZG16]
 Bhargavan, K., Brzuska, C., Fournet, C., Kohlweiss, M.,
 Zanella-Beguelin, S., and M. Green, "Downgrade Resilience
 in Key-Exchange Protocols", Proceedings of IEEE Symposium
 on Security and Privacy (Oakland) 2016 , 2016.

 [CHSV16] Cremers, C., Horvat, M., Scott, S., and T. van der Merwe,
 "Automated Analysis and Verification of TLS 1.3: 0-RTT,
 Resumption and Delayed Authentication", Proceedings of
 IEEE Symposium on Security and Privacy (Oakland) 2016 ,
 2016.

Rescorla Expires January 12, 2017 [Page 82]

https://tools.ietf.org/pdf/rfc7443
http://www.rfc-editor.org/info/rfc7443
https://tools.ietf.org/pdf/rfc7748
http://www.rfc-editor.org/info/rfc7748
https://tools.ietf.org/pdf/rfc7905
http://www.rfc-editor.org/info/rfc7905
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf

Internet-Draft TLS July 2016

 [CK01] Canetti, R. and H. Krawczyk, "Analysis of Key-Exchange
 Protocols and Their Use for Building Secure Channels",
 Proceedings of Eurocrypt 2001 , 2001.

 [DOW92] Diffie, W., van Oorschot, P., and M. Wiener,
 ""Authentication and authenticated key exchanges"",
 Designs, Codes and Cryptography , n.d..

 [DSS] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Digital Signature Standard,
 version 4", NIST FIPS PUB 186-4, 2013.

 [ECDSA] American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry: The
 Elliptic Curve Digital Signature Algorithm (ECDSA)",
 ANSI ANS X9.62-2005, November 2005.

 [FGSW16] Fischlin, M., Guenther, F., Schmidt, B., and B. Warinschi,
 "Key Confirmation in Key Exchange: A Formal Treatment and
 Implications for TLS 1.3", Proceedings of IEEE Symposium
 on Security and Privacy (Oakland) 2016 , 2016.

 [FI06] Finney, H., "Bleichenbacher’s RSA signature forgery based
 on implementation error", August 2006,
 < https://www.ietf.org/mail-archive/web/openpgp/current/
 msg00999.html >.

 [GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC",
 NIST Special Publication 800-38D, November 2007.

 [I-D.ietf-tls-cached-info]
 Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", draft-ietf-tls-
 cached-info-23 (work in progress), May 2016.

 [I-D.ietf-tls-negotiated-ff-dhe]
 Gillmor, D., "Negotiated Finite Field Diffie-Hellman
 Ephemeral Parameters for TLS", draft-ietf-tls-negotiated-
 ff-dhe-10 (work in progress), June 2015.

 [IEEE1363]
 IEEE, "Standard Specifications for Public Key
 Cryptography", IEEE 1363 , 2000.

Rescorla Expires January 12, 2017 [Page 83]

https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.html
https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.html
https://tools.ietf.org/pdf/draft-ietf-tls-cached-info-23
https://tools.ietf.org/pdf/draft-ietf-tls-cached-info-23
https://tools.ietf.org/pdf/draft-ietf-tls-negotiated-ff-dhe-10
https://tools.ietf.org/pdf/draft-ietf-tls-negotiated-ff-dhe-10

Internet-Draft TLS July 2016

 [LXZFH16] Li, X., Xu, J., Feng, D., Zhang, Z., and H. Hu, "Multiple
 Handshakes Security of TLS 1.3 Candidates", Proceedings of
 IEEE Symposium on Security and Privacy (Oakland) 2016 ,
 2016.

 [PKCS6] RSA Laboratories, "PKCS #6: RSA Extended Certificate
 Syntax Standard, version 1.5", November 1993.

 [PKCS7] RSA Laboratories, "PKCS #7: RSA Cryptographic Message
 Syntax Standard, version 1.5", November 1993.

 [PSK-FINISHED]
 Cremers, C., Horvat, M., van der Merwe, T., and S. Scott,
 "Revision 10: possible attack if client authentication is
 allowed during PSK", 2015, < https://www.ietf.org/mail-
 archive/web/tls/current/msg18215.html >.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793 , DOI 10.17487/RFC0793, September 1981,
 < http://www.rfc-editor.org/info/rfc793 >.

 [RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
 RFC 1948 , DOI 10.17487/RFC1948, May 1996,
 < http://www.rfc-editor.org/info/rfc1948 >.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72 , RFC 3552 ,
 DOI 10.17487/RFC3552, July 2003,
 < http://www.rfc-editor.org/info/rfc3552 >.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106 , RFC 4086 ,
 DOI 10.17487/RFC4086, June 2005,
 < http://www.rfc-editor.org/info/rfc4086 >.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279 , DOI 10.17487/RFC4279, December 2005,
 < http://www.rfc-editor.org/info/rfc4279 >.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302 ,
 DOI 10.17487/RFC4302, December 2005,
 < http://www.rfc-editor.org/info/rfc4302 >.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303 , DOI 10.17487/RFC4303, December 2005,
 < http://www.rfc-editor.org/info/rfc4303 >.

Rescorla Expires January 12, 2017 [Page 84]

https://www.ietf.org/mail-archive/web/tls/current/msg18215.html
https://www.ietf.org/mail-archive/web/tls/current/msg18215.html
https://tools.ietf.org/pdf/rfc793
http://www.rfc-editor.org/info/rfc793
https://tools.ietf.org/pdf/rfc1948
http://www.rfc-editor.org/info/rfc1948
https://tools.ietf.org/pdf/bcp72
https://tools.ietf.org/pdf/rfc3552
http://www.rfc-editor.org/info/rfc3552
https://tools.ietf.org/pdf/bcp106
https://tools.ietf.org/pdf/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://tools.ietf.org/pdf/rfc4279
http://www.rfc-editor.org/info/rfc4279
https://tools.ietf.org/pdf/rfc4302
http://www.rfc-editor.org/info/rfc4302
https://tools.ietf.org/pdf/rfc4303
http://www.rfc-editor.org/info/rfc4303

Internet-Draft TLS July 2016

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346 ,
 DOI 10.17487/RFC4346, April 2006,
 < http://www.rfc-editor.org/info/rfc4346 >.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366 , DOI 10.17487/RFC4366, April 2006,
 < http://www.rfc-editor.org/info/rfc4366 >.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492 ,
 DOI 10.17487/RFC4492, May 2006,
 < http://www.rfc-editor.org/info/rfc4492 >.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506 , DOI 10.17487/RFC4506, May
 2006, < http://www.rfc-editor.org/info/rfc4506 >.

 [RFC4507] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 4507 , DOI 10.17487/RFC4507, May
 2006, < http://www.rfc-editor.org/info/rfc4507 >.

 [RFC4681] Santesson, S., Medvinsky, A., and J. Ball, "TLS User
 Mapping Extension", RFC 4681 , DOI 10.17487/RFC4681,
 October 2006, < http://www.rfc-editor.org/info/rfc4681 >.

 [RFC5054] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
 "Using the Secure Remote Password (SRP) Protocol for TLS
 Authentication", RFC 5054 , DOI 10.17487/RFC5054, November
 2007, < http://www.rfc-editor.org/info/rfc5054 >.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077 , DOI 10.17487/RFC5077,
 January 2008, < http://www.rfc-editor.org/info/rfc5077 >.

 [RFC5081] Mavrogiannopoulos, N., "Using OpenPGP Keys for Transport
 Layer Security (TLS) Authentication", RFC 5081 ,
 DOI 10.17487/RFC5081, November 2007,
 < http://www.rfc-editor.org/info/rfc5081 >.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116 , DOI 10.17487/RFC5116, January 2008,
 < http://www.rfc-editor.org/info/rfc5116 >.

Rescorla Expires January 12, 2017 [Page 85]

https://tools.ietf.org/pdf/rfc4346
http://www.rfc-editor.org/info/rfc4346
https://tools.ietf.org/pdf/rfc4366
http://www.rfc-editor.org/info/rfc4366
https://tools.ietf.org/pdf/rfc4492
http://www.rfc-editor.org/info/rfc4492
https://tools.ietf.org/pdf/rfc4506
http://www.rfc-editor.org/info/rfc4506
https://tools.ietf.org/pdf/rfc4507
http://www.rfc-editor.org/info/rfc4507
https://tools.ietf.org/pdf/rfc4681
http://www.rfc-editor.org/info/rfc4681
https://tools.ietf.org/pdf/rfc5054
http://www.rfc-editor.org/info/rfc5054
https://tools.ietf.org/pdf/rfc5077
http://www.rfc-editor.org/info/rfc5077
https://tools.ietf.org/pdf/rfc5081
http://www.rfc-editor.org/info/rfc5081
https://tools.ietf.org/pdf/rfc5116
http://www.rfc-editor.org/info/rfc5116

Internet-Draft TLS July 2016

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246 ,
 DOI 10.17487/RFC5246, August 2008,
 < http://www.rfc-editor.org/info/rfc5246 >.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746 , DOI 10.17487/RFC5746, February 2010,
 < http://www.rfc-editor.org/info/rfc5746 >.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763 , DOI 10.17487/RFC5763, May
 2010, < http://www.rfc-editor.org/info/rfc5763 >.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764 ,
 DOI 10.17487/RFC5764, May 2010,
 < http://www.rfc-editor.org/info/rfc5764 >.

 [RFC5878] Brown, M. and R. Housley, "Transport Layer Security (TLS)
 Authorization Extensions", RFC 5878 , DOI 10.17487/RFC5878,
 May 2010, < http://www.rfc-editor.org/info/rfc5878 >.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929 , DOI 10.17487/RFC5929, July 2010,
 < http://www.rfc-editor.org/info/rfc5929 >.

 [RFC6091] Mavrogiannopoulos, N. and D. Gillmor, "Using OpenPGP Keys
 for Transport Layer Security (TLS) Authentication",
 RFC 6091 , DOI 10.17487/RFC6091, February 2011,
 < http://www.rfc-editor.org/info/rfc6091 >.

 [RFC6176] Turner, S. and T. Polk, "Prohibiting Secure Sockets Layer
 (SSL) Version 2.0", RFC 6176 , DOI 10.17487/RFC6176, March
 2011, < http://www.rfc-editor.org/info/rfc6176 >.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347 , DOI 10.17487/RFC6347,
 January 2012, < http://www.rfc-editor.org/info/rfc6347 >.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520 ,
 DOI 10.17487/RFC6520, February 2012,
 < http://www.rfc-editor.org/info/rfc6520 >.

Rescorla Expires January 12, 2017 [Page 86]

https://tools.ietf.org/pdf/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://tools.ietf.org/pdf/rfc5746
http://www.rfc-editor.org/info/rfc5746
https://tools.ietf.org/pdf/rfc5763
http://www.rfc-editor.org/info/rfc5763
https://tools.ietf.org/pdf/rfc5764
http://www.rfc-editor.org/info/rfc5764
https://tools.ietf.org/pdf/rfc5878
http://www.rfc-editor.org/info/rfc5878
https://tools.ietf.org/pdf/rfc5929
http://www.rfc-editor.org/info/rfc5929
https://tools.ietf.org/pdf/rfc6091
http://www.rfc-editor.org/info/rfc6091
https://tools.ietf.org/pdf/rfc6176
http://www.rfc-editor.org/info/rfc6176
https://tools.ietf.org/pdf/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://tools.ietf.org/pdf/rfc6520
http://www.rfc-editor.org/info/rfc6520

Internet-Draft TLS July 2016

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962 , DOI 10.17487/RFC6962, June 2013,
 < http://www.rfc-editor.org/info/rfc6962 >.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230 , DOI 10.17487/RFC7230, June 2014,
 < http://www.rfc-editor.org/info/rfc7230 >.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250 , DOI 10.17487/RFC7250,
 June 2014, < http://www.rfc-editor.org/info/rfc7250 >.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301 , DOI 10.17487/RFC7301,
 July 2014, < http://www.rfc-editor.org/info/rfc7301 >.

 [RFC7366] Gutmann, P., "Encrypt-then-MAC for Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7366 , DOI 10.17487/RFC7366, September 2014,
 < http://www.rfc-editor.org/info/rfc7366 >.

 [RFC7465] Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465 ,
 DOI 10.17487/RFC7465, February 2015,
 < http://www.rfc-editor.org/info/rfc7465 >.

 [RFC7568] Barnes, R., Thomson, M., Pironti, A., and A. Langley,
 "Deprecating Secure Sockets Layer Version 3.0", RFC 7568 ,
 DOI 10.17487/RFC7568, June 2015,
 < http://www.rfc-editor.org/info/rfc7568 >.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",
 RFC 7627 , DOI 10.17487/RFC7627, September 2015,
 < http://www.rfc-editor.org/info/rfc7627 >.

 [RFC7685] Langley, A., "A Transport Layer Security (TLS) ClientHello
 Padding Extension", RFC 7685 , DOI 10.17487/RFC7685,
 October 2015, < http://www.rfc-editor.org/info/rfc7685 >.

 [RSA] Rivest, R., Shamir, A., and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems", Communications of the ACM v. 21, n. 2, pp.
 120-126., February 1978.

Rescorla Expires January 12, 2017 [Page 87]

https://tools.ietf.org/pdf/rfc6962
http://www.rfc-editor.org/info/rfc6962
https://tools.ietf.org/pdf/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://tools.ietf.org/pdf/rfc7250
http://www.rfc-editor.org/info/rfc7250
https://tools.ietf.org/pdf/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://tools.ietf.org/pdf/rfc7366
http://www.rfc-editor.org/info/rfc7366
https://tools.ietf.org/pdf/rfc7465
http://www.rfc-editor.org/info/rfc7465
https://tools.ietf.org/pdf/rfc7568
http://www.rfc-editor.org/info/rfc7568
https://tools.ietf.org/pdf/rfc7627
http://www.rfc-editor.org/info/rfc7627
https://tools.ietf.org/pdf/rfc7685
http://www.rfc-editor.org/info/rfc7685

Internet-Draft TLS July 2016

 [SIGMA] Krawczyk, H., "SIGMA: the ’SIGn-and-MAc’ approach to
 authenticated Di e-Hellman and its use in the IKE
 protocols", Proceedings of CRYPTO 2003 , 2003.

 [SLOTH] Bhargavan, K. and G. Leurent, "Transcript Collision
 Attacks: Breaking Authentication in TLS, IKE, and SSH",
 Network and Distributed System Security Symposium (NDSS
 2016) , 2016.

 [SSL2] Hickman, K., "The SSL Protocol", February 1995.

 [SSL3] Freier, A., Karlton, P., and P. Kocher, "The SSL 3.0
 Protocol", November 1996.

 [TIMING] Boneh, D. and D. Brumley, "Remote timing attacks are
 practical", USENIX Security Symposium, 2003.

 [X501] "Information Technology - Open Systems Interconnection -
 The Directory: Models", ITU-T X.501, 1993.

11.3 . URIs

 [1] mailto:tls@ietf.org

Rescorla Expires January 12, 2017 [Page 88]

Internet-Draft TLS July 2016

Appendix A . Protocol Data Structures and Constant Values

 This section describes protocol types and constants. Values listed
 as _RESERVED were used in previous versions of TLS and are listed
 here for completeness. TLS 1.3 implementations MUST NOT send them
 but might receive them from older TLS implementations.

A.1 . Record Layer

 enum {
 invalid_RESERVED(0),
 change_cipher_spec_RESERVED(20),
 alert(21),
 handshake(22),
 application_data(23)
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } TLSInnerPlaintext;

 struct {
 ContentType opaque_type = application_data(23); /* see fragment.type */
 ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */
 uint16 length;
 opaque encrypted_record[length];
 } TLSCiphertext;

A.2 . Alert Messages

Rescorla Expires January 12, 2017 [Page 89]

Internet-Draft TLS July 2016

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 end_of_early_data(1),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed_RESERVED(21),
 record_overflow(22),
 decompression_failure_RESERVED(30),
 handshake_failure(40),
 no_certificate_RESERVED(41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction_RESERVED(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 inappropriate_fallback(86),
 user_canceled(90),
 no_renegotiation_RESERVED(100),
 missing_extension(109),
 unsupported_extension(110),
 certificate_unobtainable(111),
 unrecognized_name(112),
 bad_certificate_status_response(113),
 bad_certificate_hash_value(114),
 unknown_psk_identity(115),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

Rescorla Expires January 12, 2017 [Page 90]

Internet-Draft TLS July 2016

A.3 . Handshake Protocol

 enum {
 hello_request_RESERVED(0),
 client_hello(1),
 server_hello(2),
 new_session_ticket(4),
 hello_retry_request(6),
 encrypted_extensions(8),
 certificate(11),
 server_key_exchange_RESERVED(12),
 certificate_request(13),
 server_hello_done_RESERVED(14),
 certificate_verify(15),
 client_key_exchange_RESERVED(16),
 finished(20),
 key_update(24),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_retry_request: HelloRetryRequest;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 } body;
 } Handshake;

A.3.1 . Key Exchange Messages

 struct {
 uint8 major;
 uint8 minor;
 } ProtocolVersion;

 struct {
 opaque random_bytes[32];
 } Random;

Rescorla Expires January 12, 2017 [Page 91]

Internet-Draft TLS July 2016

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion client_version = { 3, 4 }; /* TLS v1.3 */
 Random random;
 opaque legacy_session_id<0..32>;
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<0..2^16-1>;
 } ClientHello;

 struct {
 ProtocolVersion server_version;
 Random random;
 CipherSuite cipher_suite;
 Extension extensions<0..2^16-1>;
 } ServerHello;

 struct {
 ProtocolVersion server_version;
 CipherSuite cipher_suite;
 NamedGroup selected_group;
 Extension extensions<0..2^16-1>;
 } HelloRetryRequest;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 supported_groups(10),
 signature_algorithms(13),
 key_share(40),
 pre_shared_key(41),
 early_data(42),
 cookie(44),
 (65535)
 } ExtensionType;

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

 struct {
 select (role) {
 case client:

Rescorla Expires January 12, 2017 [Page 92]

Internet-Draft TLS July 2016

 KeyShareEntry client_shares<0..2^16-1>;

 case server:
 KeyShareEntry server_share;
 }
 } KeyShare;

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<2..2^16-1>;

 case server:
 uint16 selected_identity;
 }
 } PreSharedKeyExtension;

 struct {
 select (Role) {
 case client:
 uint32 obfuscated_ticket_age;

 case server:
 struct {};
 }
 } EarlyDataIndication;

A.3.1.1 . Cookie Extension

 struct {
 opaque cookie<0..2^16-1>;
 } Cookie;

A.3.1.2 . Signature Algorithm Extension

Rescorla Expires January 12, 2017 [Page 93]

Internet-Draft TLS July 2016

 enum {
 /* RSASSA-PKCS1-v1_5 algorithms */
 rsa_pkcs1_sha1 (0x0201),
 rsa_pkcs1_sha256 (0x0401),
 rsa_pkcs1_sha384 (0x0501),
 rsa_pkcs1_sha512 (0x0601),

 /* ECDSA algorithms */
 ecdsa_secp256r1_sha256 (0x0403),
 ecdsa_secp384r1_sha384 (0x0503),
 ecdsa_secp521r1_sha512 (0x0603),

 /* RSASSA-PSS algorithms */
 rsa_pss_sha256 (0x0700),
 rsa_pss_sha384 (0x0701),
 rsa_pss_sha512 (0x0702),

 /* EdDSA algorithms */
 ed25519 (0x0703),
 ed448 (0x0704),

 /* Reserved Code Points */
 dsa_sha1_RESERVED (0x0202),
 dsa_sha256_RESERVED (0x0402),
 dsa_sha384_RESERVED (0x0502),
 dsa_sha512_RESERVED (0x0602),
 ecdsa_sha1_RESERVED (0x0203),
 obsolete_RESERVED (0x0000..0x0200),
 obsolete_RESERVED (0x0204..0x0400),
 obsolete_RESERVED (0x0404..0x0500),
 obsolete_RESERVED (0x0504..0x0600),
 obsolete_RESERVED (0x0604..0x06FF),
 private_use (0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 SignatureScheme supported_signature_algorithms<2..2^16-2>;

A.3.1.3 . Named Group Extension

Rescorla Expires January 12, 2017 [Page 94]

Internet-Draft TLS July 2016

 enum {
 /* Elliptic Curve Groups (ECDHE) */
 obsolete_RESERVED (1..22),
 secp256r1 (23), secp384r1 (24), secp521r1 (25),
 obsolete_RESERVED (26..28),
 x25519 (29), x448 (30),

 /* Finite Field Groups (DHE) */
 ffdhe2048 (256), ffdhe3072 (257), ffdhe4096 (258),
 ffdhe6144 (259), ffdhe8192 (260),

 /* Reserved Code Points */
 ffdhe_private_use (0x01FC..0x01FF),
 ecdhe_private_use (0xFE00..0xFEFF),
 obsolete_RESERVED (0xFF01..0xFF02),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<1..2^16-1>;
 } NamedGroupList;

 Values within "obsolete_RESERVED" ranges were used in previous
 versions of TLS and MUST NOT be offered or negotiated by TLS 1.3
 implementations. The obsolete curves have various known/theoretical
 weaknesses or have had very little usage, in some cases only due to
 unintentional server configuration issues. They are no longer
 considered appropriate for general use and should be assumed to be
 potentially unsafe. The set of curves specified here is sufficient
 for interoperability with all currently deployed and properly
 configured TLS implementations.

A.3.1.4 . Deprecated Extensions

 The following extensions are no longer applicable to TLS 1.3,
 although TLS 1.3 clients MAY send them if they are willing to
 negotiate them with prior versions of TLS. TLS 1.3 servers MUST
 ignore these extensions if they are negotiating TLS 1.3:
 truncated_hmac [RFC6066], srp [RFC5054], encrypt_then_mac [RFC7366],
 extended_master_secret [RFC7627], SessionTicket [RFC5077], and
 renegotiation_info [RFC5746].

A.3.2 . Server Parameters Messages

Rescorla Expires January 12, 2017 [Page 95]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc5054
https://tools.ietf.org/pdf/rfc7366
https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc5077
https://tools.ietf.org/pdf/rfc5746

Internet-Draft TLS July 2016

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 opaque DistinguishedName<1..2^16-1>;

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } CertificateExtension;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 SignatureScheme
 supported_signature_algorithms<2..2^16-2>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 CertificateExtension certificate_extensions<0..2^16-1>;
 } CertificateRequest;

A.3.3 . Authentication Messages

 opaque ASN1Cert<1..2^24-1>;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 ASN1Cert certificate_list<0..2^24-1>;
 } Certificate;

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 struct {
 opaque verify_data[Hash.length];
 } Finished;

A.3.4 . Ticket Establishment

Rescorla Expires January 12, 2017 [Page 96]

Internet-Draft TLS July 2016

 enum { (65535) } TicketExtensionType;

 struct {
 TicketExtensionType extension_type;
 opaque extension_data<1..2^16-1>;
 } TicketExtension;

 enum {
 allow_early_data(1),
 allow_dhe_resumption(2),
 allow_psk_resumption(4)
 } TicketFlags;

 struct {
 uint32 ticket_lifetime;
 uint32 flags;
 uint32 ticket_age_add;
 TicketExtension extensions<2..2^16-2>;
 opaque ticket<0..2^16-1>;
 } NewSessionTicket;

A.4 . Cipher Suites

 A cipher suite defines a cipher specification supported in TLS and
 negotiated via hello messages in the TLS handshake. Cipher suite
 names follow a general naming convention composed of a series of
 component algorithm names separated by underscores:

 CipherSuite TLS_KEA_AUTH_WITH_CIPHER_HASH = VALUE;

 +-----------+---+
 | Component | Contents |
 +-----------+---+
TLS	The string "TLS"
KEA	The key exchange algorithm (e.g. ECDHE, DHE)
AUTH	The authentication algorithm (e.g. certificates, PSK)
WITH	The string "WITH"
CIPHER	The symmetric cipher used for record protection
HASH	The hash algorithm used with HKDF
VALUE	The two byte ID assigned for this cipher suite
 +-----------+---+

Rescorla Expires January 12, 2017 [Page 97]

Internet-Draft TLS July 2016

 The "CIPHER" component commonly has sub-components used to designate
 the cipher name, bits, and mode, if applicable. For example,
 "AES_256_GCM" represents 256-bit AES in the GCM mode of operation.
 Cipher suite names that lack a "HASH" value that are defined for use
 with TLS 1.2 or later use the SHA-256 hash algorithm by default.

 The primary key exchange algorithm used in TLS is Ephemeral Diffie-
 Hellman [DH]. The finite field based version is denoted "DHE" and
 the elliptic curve based version is denoted "ECDHE". Prior versions
 of TLS supported non-ephemeral key exchanges, however these are not
 supported by TLS 1.3.

 See the definitions of each cipher suite in its specification
 document for the full details of each combination of algorithms that
 is specified.

 The following is a list of standards track server-authenticated (and
 optionally client-authenticated) cipher suites which are currently
 available in TLS 1.3:

Rescorla Expires January 12, 2017 [Page 98]

Internet-Draft TLS July 2016

 +--+-----------+--------------+
 | Cipher Suite Name | Value | Specificatio |
 | | | n |
 +--+-----------+--------------+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	{0x00,0x9	[RFC5288]
	E}	
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	{0x00,0x9	[RFC5288]
	F}	
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA25	{0xC0,0x2	[RFC5289]
6	B}	
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA38	{0xC0,0x2	[RFC5289]
4	C}	
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	{0xC0,0x2	[RFC5289]
	F}	
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	{0xC0,0x3	[RFC5289]
	0}	
TLS_DHE_RSA_WITH_AES_128_CCM	{0xC0,0x9	[RFC6655]
	E}	
TLS_DHE_RSA_WITH_AES_256_CCM	{0xC0,0x9	[RFC6655]
	F}	
TLS_DHE_RSA_WITH_AES_128_CCM_8	{0xC0,0xA	[RFC6655]
	2}	
TLS_DHE_RSA_WITH_AES_256_CCM_8	{0xC0,0xA	[RFC6655]
	3}	
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_S	{0xCC,0xA	[RFC7905]
HA256	8}	
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305	{0xCC,0xA	[RFC7905]
_SHA256	9}	
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA	{0xCC,0xA	[RFC7905]
256	A}	
 +--+-----------+--------------+

 Note: The values listed for ChaCha/Poly are preliminary but are being
 or will be used for interop testing and therefore are likely to be
 assigned.

Rescorla Expires January 12, 2017 [Page 99]

https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5288
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc5289
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc7905
https://tools.ietf.org/pdf/rfc7905
https://tools.ietf.org/pdf/rfc7905

Internet-Draft TLS July 2016

 Note: ECDHE AES GCM was not yet standards track prior to the
 publication of this specification. This document promotes the above-
 listed ciphers to standards track.

 The following is a list of standards track ephemeral pre-shared key
 cipher suites which are currently available in TLS 1.3:

Rescorla Expires January 12, 2017 [Page 100]

Internet-Draft TLS July 2016

 +------------------------------+----------+-------------------------+
 | Cipher Suite Name | Value | Specification |
 +------------------------------+----------+-------------------------+
TLS_DHE_PSK_WITH_AES_128_GCM	{0x00,0x	[RFC5487]
_SHA256	AA}	
TLS_DHE_PSK_WITH_AES_256_GCM	{0x00,0x	[RFC5487]
_SHA384	AB}	
TLS_DHE_PSK_WITH_AES_128_CCM	{0xC0,0x	[RFC6655]
	A6}	
TLS_DHE_PSK_WITH_AES_256_CCM	{0xC0,0x	[RFC6655]
	A7}	
TLS_PSK_DHE_WITH_AES_128_CCM	{0xC0,0x	[RFC6655]
_8	AA}	
TLS_PSK_DHE_WITH_AES_256_CCM	{0xC0,0x	[RFC6655]
_8	AB}	
TLS_ECDHE_PSK_WITH_AES_128_G	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_SHA256	01}	-psk-aead]
TLS_ECDHE_PSK_WITH_AES_256_G	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_SHA384	02}	-psk-aead]
TLS_ECDHE_PSK_WITH_AES_128_C	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_8_SHA256	03}	-psk-aead]
TLS_ECDHE_PSK_WITH_AES_128_C	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_SHA256	04}	-psk-aead]
TLS_ECDHE_PSK_WITH_AES_256_C	{0xD0,0x	[I-D.mattsson-tls-ecdhe
CM_SHA384	05}	-psk-aead]
TLS_ECDHE_PSK_WITH_CHACHA20_	{0xCC,0x	[RFC7905]
POLY1305_SHA256	AC}	
TLS_DHE_PSK_WITH_CHACHA20_PO	{0xCC,0x	[RFC7905]
LY1305_SHA256	AD}	
 +------------------------------+----------+-------------------------+

 Note: The values listed for ECDHE and ChaCha/Poly are preliminary but
 are being or will be used for interop testing and therefore are
 likely to be assigned.

Rescorla Expires January 12, 2017 [Page 101]

https://tools.ietf.org/pdf/rfc5487
https://tools.ietf.org/pdf/rfc5487
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc7905
https://tools.ietf.org/pdf/rfc7905

Internet-Draft TLS July 2016

 Note: [RFC6655] is inconsistent with respect to the ordering of
 components within PSK AES CCM cipher suite names. The names above
 are as defined.

 All cipher suites in this section are specified for use with both TLS
 1.2 and TLS 1.3, as well as the corresponding versions of DTLS. (see
 Appendix C)

 New cipher suite values are assigned by IANA as described in
 Section 10 .

A.4.1 . Unauthenticated Operation

 Previous versions of TLS offered explicitly unauthenticated cipher
 suites based on anonymous Diffie-Hellman. These cipher suites have
 been deprecated in TLS 1.3. However, it is still possible to
 negotiate cipher suites that do not provide verifiable server
 authentication by several methods, including:

 - Raw public keys [RFC7250].

 - Using a public key contained in a certificate but without
 validation of the certificate chain or any of its contents.

 Either technique used alone is are vulnerable to man-in-the-middle
 attacks and therefore unsafe for general use. However, it is also
 possible to bind such connections to an external authentication
 mechanism via out-of-band validation of the server’s public key,
 trust on first use, or channel bindings [RFC5929]. [[NOTE: TLS 1.3
 needs a new channel binding definition that has not yet been
 defined.]] If no such mechanism is used, then the connection has no
 protection against active man-in-the-middle attack; applications MUST
 NOT use TLS in such a way absent explicit configuration or a specific
 application profile.

Appendix B . Implementation Notes

 The TLS protocol cannot prevent many common security mistakes. This
 section provides several recommendations to assist implementors.

B.1 . Random Number Generation and Seeding

 TLS requires a cryptographically secure pseudorandom number generator
 (PRNG). Care must be taken in designing and seeding PRNGs. PRNGs
 based on secure hash operations, most notably SHA-256, are
 acceptable, but cannot provide more security than the size of the
 random number generator state.

Rescorla Expires January 12, 2017 [Page 102]

https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc5929

Internet-Draft TLS July 2016

 To estimate the amount of seed material being produced, add the
 number of bits of unpredictable information in each seed byte. For
 example, keystroke timing values taken from a PC compatible 18.2 Hz
 timer provide 1 or 2 secure bits each, even though the total size of
 the counter value is 16 bits or more. Seeding a 128-bit PRNG would
 thus require approximately 100 such timer values.

 [RFC4086] provides guidance on the generation of random values.

B.2 . Certificates and Authentication

 Implementations are responsible for verifying the integrity of
 certificates and should generally support certificate revocation
 messages. Certificates should always be verified to ensure proper
 signing by a trusted Certificate Authority (CA). The selection and
 addition of trusted CAs should be done very carefully. Users should
 be able to view information about the certificate and root CA.

B.3 . Cipher Suite Support

 TLS supports a range of key sizes and security levels, including some
 that provide no or minimal security. A proper implementation will
 probably not support many cipher suites. Applications SHOULD also
 enforce minimum and maximum key sizes. For example, certification
 paths containing keys or signatures weaker than 2048-bit RSA or
 224-bit ECDSA are not appropriate for secure applications. See also
 Appendix C.4 .

B.4 . Implementation Pitfalls

 Implementation experience has shown that certain parts of earlier TLS
 specifications are not easy to understand, and have been a source of
 interoperability and security problems. Many of these areas have
 been clarified in this document, but this appendix contains a short
 list of the most important things that require special attention from
 implementors.

 TLS protocol issues:

 - Do you correctly handle handshake messages that are fragmented to
 multiple TLS records (see Section 5.1)? Including corner cases
 like a ClientHello that is split to several small fragments? Do
 you fragment handshake messages that exceed the maximum fragment
 size? In particular, the certificate and certificate request
 handshake messages can be large enough to require fragmentation.

 - Do you ignore the TLS record layer version number in all TLS
 records? (see Appendix C)

Rescorla Expires January 12, 2017 [Page 103]

Internet-Draft TLS July 2016

 - Have you ensured that all support for SSL, RC4, EXPORT ciphers,
 and MD5 (via the "signature_algorithm" extension) is completely
 removed from all possible configurations that support TLS 1.3 or
 later, and that attempts to use these obsolete capabilities fail
 correctly? (see Appendix C)

 - Do you handle TLS extensions in ClientHello correctly, including
 unknown extensions or omitting the extensions field completely?

 - When the server has requested a client certificate, but no
 suitable certificate is available, do you correctly send an empty
 Certificate message, instead of omitting the whole message (see
 Section 4.3.1.2)?

 - When processing the plaintext fragment produced by AEAD-Decrypt
 and scanning from the end for the ContentType, do you avoid
 scanning past the start of the cleartext in the event that the
 peer has sent a malformed plaintext of all-zeros?

 - When processing a ClientHello containing a version of { 3, 5 } or
 higher, do you respond with the highest common version of TLS
 rather than requiring an exact match? Have you ensured this
 continues to be true with arbitrarily higher version numbers?
 (e.g. { 4, 0 }, { 9, 9 }, { 255, 255 })

 - Do you properly ignore unrecognized cipher suites (Section 4.1.1),
 hello extensions (Section 4.2), named groups (Section 4.2.3), and
 signature algorithms (Section 4.2.2)?

 Cryptographic details:

 - What countermeasures do you use to prevent timing attacks against
 RSA signing operations [TIMING]?

 - When verifying RSA signatures, do you accept both NULL and missing
 parameters? Do you verify that the RSA padding doesn’t have
 additional data after the hash value? [FI06]

 - When using Diffie-Hellman key exchange, do you correctly preserve
 leading zero bytes in the negotiated key (see Section 7.3.1)?

 - Does your TLS client check that the Diffie-Hellman parameters sent
 by the server are acceptable, (see Section 4.2.4.1)?

 - Do you use a strong and, most importantly, properly seeded random
 number generator (see Appendix B.1) when generating Diffie-Hellman
 private values, the ECDSA "k" parameter, and other security-

Rescorla Expires January 12, 2017 [Page 104]

Internet-Draft TLS July 2016

 critical values? It is RECOMMENDED that implementations implement
 "deterministic ECDSA" as specified in [RFC6979].

 - Do you zero-pad Diffie-Hellman public key values to the group size
 (see Section 4.2.4.1)?

B.5 . Client Tracking Prevention

 Clients SHOULD NOT reuse a session ticket for multiple connections.
 Reuse of a session ticket allows passive observers to correlate
 different connections. Servers that issue session tickets SHOULD
 offer at least as many session tickets as the number of connections
 that a client might use; for example, a web browser using HTTP/1.1
 [RFC7230] might open six connections to a server. Servers SHOULD
 issue new session tickets with every connection. This ensures that
 clients are always able to use a new session ticket when creating a
 new connection.

Appendix C . Backward Compatibility

 The TLS protocol provides a built-in mechanism for version
 negotiation between endpoints potentially supporting different
 versions of TLS.

 TLS 1.x and SSL 3.0 use compatible ClientHello messages. Servers can
 also handle clients trying to use future versions of TLS as long as
 the ClientHello format remains compatible and the client supports the
 highest protocol version available in the server.

 Prior versions of TLS used the record layer version number for
 various purposes. (TLSPlaintext.record_version &
 TLSCiphertext.record_version) As of TLS 1.3, this field is deprecated
 and its value MUST be ignored by all implementations. Version
 negotiation is performed using only the handshake versions.
 (ClientHello.client_version & ServerHello.server_version) In order to
 maximize interoperability with older endpoints, implementations that
 negotiate the use of TLS 1.0-1.2 SHOULD set the record layer version
 number to the negotiated version for the ServerHello and all records
 thereafter.

 For maximum compatibility with previously non-standard behavior and
 misconfigured deployments, all implementations SHOULD support
 validation of certification paths based on the expectations in this
 document, even when handling prior TLS versions’ handshakes. (see
 Section 4.3.1.1)

 TLS 1.2 and prior supported an "Extended Master Secret" [RFC7627]
 extension which digested large parts of the handshake transcript into

Rescorla Expires January 12, 2017 [Page 105]

https://tools.ietf.org/pdf/rfc6979
https://tools.ietf.org/pdf/rfc7230
https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS July 2016

 the master secret. Because TLS 1.3 always hashes in the transcript
 up to the server CertificateVerify, implementations which support
 both TLS 1.3 and earlier versions SHOULD indicate the use of the
 Extended Master Secret extension in their APIs whenever TLS 1.3 is
 used.

C.1 . Negotiating with an older server

 A TLS 1.3 client who wishes to negotiate with such older servers will
 send a normal TLS 1.3 ClientHello containing { 3, 4 } (TLS 1.3) in
 ClientHello.client_version. If the server does not support this
 version it will respond with a ServerHello containing an older
 version number. If the client agrees to use this version, the
 negotiation will proceed as appropriate for the negotiated protocol.
 A client resuming a session SHOULD initiate the connection using the
 version that was previously negotiated.

 Note that 0-RTT data is not compatible with older servers. See
 Appendix C.3 .

 If the version chosen by the server is not supported by the client
 (or not acceptable), the client MUST send a "protocol_version" alert
 message and close the connection.

 If a TLS server receives a ClientHello containing a version number
 greater than the highest version supported by the server, it MUST
 reply according to the highest version supported by the server.

 Some legacy server implementations are known to not implement the TLS
 specification properly and might abort connections upon encountering
 TLS extensions or versions which it is not aware of.
 Interoperability with buggy servers is a complex topic beyond the
 scope of this document. Multiple connection attempts may be required
 in order to negotiate a backwards compatible connection, however this
 practice is vulnerable to downgrade attacks and is NOT RECOMMENDED.

C.2 . Negotiating with an older client

 A TLS server can also receive a ClientHello containing a version
 number smaller than the highest supported version. If the server
 wishes to negotiate with old clients, it will proceed as appropriate
 for the highest version supported by the server that is not greater
 than ClientHello.client_version. For example, if the server supports
 TLS 1.0, 1.1, and 1.2, and client_version is TLS 1.0, the server will
 proceed with a TLS 1.0 ServerHello. If the server only supports
 versions greater than client_version, it MUST send a
 "protocol_version" alert message and close the connection.

Rescorla Expires January 12, 2017 [Page 106]

Internet-Draft TLS July 2016

 Note that earlier versions of TLS did not clearly specify the record
 layer version number value in all cases
 (TLSPlaintext.record_version). Servers will receive various TLS 1.x
 versions in this field, however its value MUST always be ignored.

C.3 . Zero-RTT backwards compatibility

 0-RTT data is not compatible with older servers. An older server
 will respond to the ClientHello with an older ServerHello, but it
 will not correctly skip the 0-RTT data and fail to complete the
 handshake. This can cause issues when a client attempts to use
 0-RTT, particularly against multi-server deployments. For example, a
 deployment could deploy TLS 1.3 gradually with some servers
 implementing TLS 1.3 and some implementing TLS 1.2, or a TLS 1.3
 deployment could be downgraded to TLS 1.2.

 A client that attempts to send 0-RTT data MUST fail a connection if
 it receives a ServerHello with TLS 1.2 or older. A client that
 attempts to repair this error SHOULD NOT send a TLS 1.2 ClientHello,
 but instead send a TLS 1.3 ClientHello without 0-RTT data.

 To avoid this error condition, multi-server deployments SHOULD ensure
 a uniform and stable deployment of TLS 1.3 without 0-RTT prior to
 enabling 0-RTT.

C.4 . Backwards Compatibility Security Restrictions

 If an implementation negotiates use of TLS 1.2, then negotiation of
 cipher suites also supported by TLS 1.3 SHOULD be preferred, if
 available.

 The security of RC4 cipher suites is considered insufficient for the
 reasons cited in [RFC7465]. Implementations MUST NOT offer or
 negotiate RC4 cipher suites for any version of TLS for any reason.

 Old versions of TLS permitted the use of very low strength ciphers.
 Ciphers with a strength less than 112 bits MUST NOT be offered or
 negotiated for any version of TLS for any reason.

 The security of SSL 2.0 [SSL2] is considered insufficient for the
 reasons enumerated in [RFC6176], and MUST NOT be negotiated for any
 reason.

 Implementations MUST NOT send an SSL version 2.0 compatible CLIENT-
 HELLO. Implementations MUST NOT negotiate TLS 1.3 or later using an
 SSL version 2.0 compatible CLIENT-HELLO. Implementations are NOT
 RECOMMENDED to accept an SSL version 2.0 compatible CLIENT-HELLO in
 order to negotiate older versions of TLS.

Rescorla Expires January 12, 2017 [Page 107]

https://tools.ietf.org/pdf/rfc7465
https://tools.ietf.org/pdf/rfc6176

Internet-Draft TLS July 2016

 Implementations MUST NOT send or accept any records with a version
 less than { 3, 0 }.

 The security of SSL 3.0 [SSL3] is considered insufficient for the
 reasons enumerated in [RFC7568], and MUST NOT be negotiated for any
 reason.

 Implementations MUST NOT send a ClientHello.client_version or
 ServerHello.server_version set to { 3, 0 } or less. Any endpoint
 receiving a Hello message with ClientHello.client_version or
 ServerHello.server_version set to { 3, 0 } MUST respond with a
 "protocol_version" alert message and close the connection.

 Implementations MUST NOT use the Truncated HMAC extension, defined in
 Section 7 of [RFC6066] , as it is not applicable to AEAD ciphers and
 has been shown to be insecure in some scenarios.

Appendix D . Overview of Security Properties

 [[TODO: This section is still a WIP and needs a bunch more work.]]

 A complete security analysis of TLS is outside the scope of this
 document. In this section, we provide an informal description the
 desired properties as well as references to more detailed work in the
 research literature which provides more formal definitions.

 We cover properties of the handshake separately from those of the
 record layer.

D.1 . Handshake

 The TLS handshake is an Authenticated Key Exchange (AKE) protocol
 which is intended to provide both one-way authenticated (server-only)
 and mutually authenticated (client and server) functionality. At the
 completion of the handshake, each side outputs its view on the
 following values:

 - A "session key" (the master secret) from which can be derived a
 set of working keys.

 - A set of cryptographic parameters (algorithms, etc.)

 - The identities of the communicating parties.

 We assume that the attacker has complete control of the network in
 between the parties [RFC3552]. Even under these conditions, the
 handshake should provide the properties listed below. Note that

Rescorla Expires January 12, 2017 [Page 108]

https://tools.ietf.org/pdf/rfc7568
https://tools.ietf.org/pdf/rfc6066#section-7
https://tools.ietf.org/pdf/rfc3552

Internet-Draft TLS July 2016

 these properties are not necessarily independent, but reflect the
 protocol consumers’ needs.

 Establishing the same session key. The handshake needs to output the
 same session key on both sides of the handshake, provided that it
 completes successfully on each endpoint (See [CK01]; defn 1, part
 1).

 Secrecy of the session key. The shared session key should be known
 only to the communicating parties, not to the attacker (See
 [CK01]; defn 1, part 2). Note that in a unilaterally
 authenticated connection, the attacker can establish its own
 session keys with the server, but those session keys are distinct
 from those established by the client.

 Peer Authentication. The client’s view of the peer identity should
 reflect the server’s identity. If the client is authenticated,
 the server’s view of the peer identity should match the client’s
 identity.

 Uniqueness of the session key: Any two distinct handshakes should
 produce distinct, unrelated session keys

 Downgrade protection. The cryptographic parameters should be the
 same on both sides and should be the same as if the peers had been
 communicating in the absence of an attack (See [BBFKZG16]; defns 8
 and 9}).

 Forward secret If the long-term keying material (in this case the
 signature keys in certificate-based authentication modes or the
 PSK in PSK-(EC)DHE modes) are compromised after the handshake is
 complete, this does not compromise the security of the session key
 (See [DOW92]).

 Protection of endpoint identities. The server’s identity
 (certificate) should be protected against passive attackers. The
 client’s identity should be protected against both passive and
 active attackers.

 Informally, the signature-based modes of TLS 1.3 provide for the
 establishment of a unique, secret, shared, key established by an
 (EC)DHE key exchange and authenticated by the server’s signature over
 the handshake transcript, as well as tied to the server’s identity by
 a MAC. If the client is authenticated by a certificate, it also
 signs over the handshake transcript and provides a MAC tied to both
 identities. [SIGMA] describes the analysis of this type of key
 exchange protocol. If fresh (EC)DHE keys are used for each
 connection, then the output keys are forward secret.

Rescorla Expires January 12, 2017 [Page 109]

Internet-Draft TLS July 2016

 The PSK and resumption-PSK modes bootstrap from a long-term shared
 secret into a unique per-connection short-term session key. This
 secret may have been established in a previous handshake. If
 PSK-(EC)DHE modes are used, this session key will also be forward
 secret. The resumption-PSK mode has been designed so that the
 resumption master secret computed by connection N and needed to form
 connection N+1 is separate from the traffic keys used by connection
 N, thus providing forward secrecy between the connections.

 For all handshake modes, the Finished MAC (and where present, the
 signature), prevents downgrade attacks. In addition, the use of
 certain bytes in the random nonces as described in Section 4.1.2
 allows the detection of downgrade to previous TLS versions.

 As soon as the client and the server have exchanged enough
 information to establish shared keys, the remainder of the handshake
 is encrypted, thus providing protection against passive attackers.
 Because the server authenticates before the client, the client can
 ensure that it only reveals its identity to an authenticated server.
 Note that implementations must use the provided record padding
 mechanism during the handshake to avoid leaking information about the
 identities due to length.

 The 0-RTT mode of operation generally provides the same security
 properties as 1-RTT data, with the two exceptions that the 0-RTT
 encryption keys do not provide full forward secrecy and that the the
 server is not able to guarantee full uniqueness of the handshake
 (non-replayability) without keeping potentially undue amounts of
 state. See Section 4.2.6 for one mechanism to limit the exposure to
 replay.

 The reader should refer to the following references for analysis of
 the TLS handshake [CHSV16] [FGSW16] [LXZFH16].

D.2 . Record Layer

 The record layer depends on the handshake producing a strong session
 key which can be used to derive bidirectional traffic keys and
 nonces. Assuming that is true, and the keys are used for no more
 data than indicated in Section 5.5 then the record layer should
 provide the following guarantees:

 Confidentiality. An attacker should not be able to determine the
 plaintext contents of a given record.

 Integrity. An attacker should not be able to craft a new record
 which is different from an existing record which will be accepted
 by the receiver.

Rescorla Expires January 12, 2017 [Page 110]

Internet-Draft TLS July 2016

 Order protection/non-replayability An attacker should not be able to
 cause the receiver to accept a record which it has already
 accepted or cause the receiver to accept record N+1 without having
 first processed record N. [[TODO: If we merge in DTLS to this
 document, we will need to update this guarantee.]]

 Length concealment. Given a record with a given external length, the
 attacker should not be able to determine the amount of the record
 that is content versus padding.

 Forward security after key change. If the traffic key update
 mechanism described in Section 4.4.3 has been used and the
 previous generation key is deleted, an attacker who compromises
 the endpoint should not be able to decrypt traffic encrypted with
 the old key.

 Informally, TLS 1.3 provides these properties by AEAD-protecting the
 plaintext with a strong key. AEAD encryption [RFC5116] provides
 confidentiality and integrity for the data. Non-replayability is
 provided by using a separate nonce for each record, with the nonce
 being derived from the record sequence number (Section 5.3), with the
 sequence number being maintained independently at both sides thus
 records which are delivered out of order result in AEAD deprotection
 failures.

 The plaintext protected by the AEAD function consists of content plus
 variable-length padding. Because the padding is also encrypted, the
 attacker cannot directly determine the length of the padding, but may
 be able to measure it indirectly by the use of timing channels
 exposed during record processing (i.e., seeing how long it takes to
 process a record). In general, it is not known how to remove this
 type of channel because even a constant time padding removal function
 will then feed the content into data-dependent functions.

 Generation N+1 keys are derived from generation N keys via a key
 derivation function Section 7.2 . As long as this function is truly
 one way, it is not possible to compute the previous keys after a key
 change (forward secrecy). However, TLS does not provide security for
 data which is sent after the traffic secret is compromised, even afer
 a key update (backward secrecy); systems which want backward secrecy
 must do a fresh handshake and establish a new session key with an
 (EC)DHE exchange.

 The reader should refer to the following references for analysis of
 the TLS record layer.

Rescorla Expires January 12, 2017 [Page 111]

https://tools.ietf.org/pdf/rfc5116

Internet-Draft TLS July 2016

Appendix E . Working Group Information

 The discussion list for the IETF TLS working group is located at the
 e-mail address tls@ietf.org [1]. Information on the group and
 information on how to subscribe to the list is at
 https://www1.ietf.org/mailman/listinfo/tls

 Archives of the list can be found at: https://www.ietf.org/mail-
 archive/web/tls/current/index.html

Appendix F . Contributors

 - Martin Abadi
 University of California, Santa Cruz
 abadi@cs.ucsc.edu

 - Christopher Allen (co-editor of TLS 1.0)
 Alacrity Ventures
 ChristopherA@AlacrityManagement.com

 - Steven M. Bellovin
 Columbia University
 smb@cs.columbia.edu

 - David Benjamin
 Google
 davidben@google.com

 - Benjamin Beurdouche

 - Karthikeyan Bhargavan (co-author of [RFC7627])
 INRIA
 karthikeyan.bhargavan@inria.fr

 - Simon Blake-Wilson (co-author of [RFC4492])
 BCI
 sblakewilson@bcisse.com

 - Nelson Bolyard (co-author of [RFC4492])
 Sun Microsystems, Inc.
 nelson@bolyard.com

 - Ran Canetti
 IBM
 canetti@watson.ibm.com

 - Pete Chown
 Skygate Technology Ltd

Rescorla Expires January 12, 2017 [Page 112]

https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2016

 pc@skygate.co.uk

 - Antoine Delignat-Lavaud (co-author of [RFC7627])
 INRIA
 antoine.delignat-lavaud@inria.fr

 - Tim Dierks (co-editor of TLS 1.0, 1.1, and 1.2)
 Independent
 tim@dierks.org

 - Taher Elgamal
 Securify
 taher@securify.com

 - Pasi Eronen
 Nokia
 pasi.eronen@nokia.com

 - Cedric Fournet
 Microsoft
 fournet@microsoft.com

 - Anil Gangolli
 anil@busybuddha.org

 - David M. Garrett

 - Vipul Gupta (co-author of [RFC4492])
 Sun Microsystems Laboratories
 vipul.gupta@sun.com

 - Chris Hawk (co-author of [RFC4492])
 Corriente Networks LLC
 chris@corriente.net

 - Kipp Hickman

 - Alfred Hoenes

 - David Hopwood
 Independent Consultant
 david.hopwood@blueyonder.co.uk

 - Subodh Iyengar
 Facebook
 subodh@fb.com

 - Daniel Kahn Gillmor

Rescorla Expires January 12, 2017 [Page 113]

https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS July 2016

 ACLU
 dkg@fifthhorseman.net

 - Phil Karlton (co-author of SSL 3.0)

 - Paul Kocher (co-author of SSL 3.0)
 Cryptography Research
 paul@cryptography.com

 - Hugo Krawczyk
 IBM
 hugo@ee.technion.ac.il

 - Adam Langley (co-author of [RFC7627])
 Google
 agl@google.com

 - Ilari Liusvaara
 Independent
 ilariliusvaara@welho.com

 - Jan Mikkelsen
 Transactionware
 janm@transactionware.com

 - Bodo Moeller (co-author of [RFC4492])
 Google
 bodo@openssl.org

 - Erik Nygren
 Akamai Technologies
 erik+ietf@nygren.org

 - Magnus Nystrom
 RSA Security
 magnus@rsasecurity.com

 - Alfredo Pironti (co-author of [RFC7627])
 INRIA
 alfredo.pironti@inria.fr

 - Andrei Popov
 Microsoft
 andrei.popov@microsoft.com

 - Marsh Ray (co-author of [RFC7627])
 Microsoft
 maray@microsoft.com

Rescorla Expires January 12, 2017 [Page 114]

https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS July 2016

 - Robert Relyea
 Netscape Communications
 relyea@netscape.com

 - Kyle Rose
 Akamai Technologies
 krose@krose.org

 - Jim Roskind
 Netscape Communications
 jar@netscape.com

 - Michael Sabin

 - Dan Simon
 Microsoft, Inc.
 dansimon@microsoft.com

 - Nick Sullivan
 CloudFlare Inc.
 nick@cloudflare.com

 - Bjoern Tackmann
 University of California, San Diego
 btackmann@eng.ucsd.edu

 - Martin Thomson
 Mozilla
 mt@mozilla.com

 - Filippo Valsorda
 CloudFlare Inc.
 filippo@cloudflare.com

 - Tom Weinstein

 - Hoeteck Wee
 Ecole Normale Superieure, Paris
 hoeteck@alum.mit.edu

 - Tim Wright
 Vodafone
 timothy.wright@vodafone.com

Rescorla Expires January 12, 2017 [Page 115]

Internet-Draft TLS July 2016

Author’s Address

 Eric Rescorla
 RTFM, Inc.

 EMail: ekr@rtfm.com

Rescorla Expires January 12, 2017 [Page 116]

