TRILL Support of Point to Multipoint BFD
draft-ietf-trill-p2mp-bfd-09

Abstract

Point to multipoint (P2MP) BFD is designed to verify multipoint connectivity. This document specifies the support of P2MP BFD in TRILL. Similar to TRILL point-to-point BFD, BFD Control packets in TRILL P2MP BFD are transmitted using RBridge Channel messages. This document updates RFC 7175 and RFC 7177.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
1. Introduction

TRILL supports multicast forwarding. Applications based on TRILL multicast may need quick detection of multicast failures using P2MP BFD [I-D.ietf-bfd-multipoint]. This document specifies TRILL support of P2MP BFD.

To use P2MP BFD, the head end needs to periodically transmit BFD Control packets to all tails using TRILL multicast. A new RBridge Channel message is allocated for this purpose.

In order to execute the global protection of distribution used for multicast forwarding [I-D.iets-trill-resilient-trees], the head needs to track the active status of tails [I-D.ietf-bfd-multipoint-active-tail]. If the tail loses connectivity as detected by not receiving the new RBridge Channel message from the head, the tail should notify the head of the lack of multipoint connectivity with unicast BFD Control packets. These unicast BFD Control packets are transmitted using the existing RBridge Channel message assigned to BFD Control [RFC7175].

This document updates [RFC7177] as specified in Section 3 and updates [RFC7175] as specified in Section 4 and Section 5.

2. Acronyms and Terminology
2.1. Acronyms

Data Label: VLAN or Fine Grained Label [RFC7172].

BFD: Bidirectional Forwarding Detection

P2MP: Point to Multi-Point

TRILL: Transparent Interconnection of Lots of Links or Tunneled Routing in the Link Layer

2.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Familiarity with [RFC6325], [RFC7175], and [RFC7178] is assumed in this document.

3. Bootstrapping

The TRILL adjacency mechanism bootstraps the establishment of one-hop TRILL BFD sessions [RFC7177]. Multi-hop sessions are expected to be configured by the network manager. A slight wording update to the second sentence in Section 6 of [RFC7177] is required.

It currently read:

If an RBridge supports BFD [RFC7175], it will have learned whether the other RBridge has BFD enabled by whether or not a BFD-Enabled TLV [RFC6213] was included in its Hellos.

Now it should read:

If an RBridge supports BFD [RFC7175] [this document], it will have learned whether the other RBridge has BFD enabled by whether or not a BFD-Enabled TLV [RFC6213] was included in its Hellos.

4. A New RBridge Channel Message for P2MP BFD

RBridge Channel message protocol 0x002 is defined for TRILL point-to-point BFD Control packets in [RFC7175]. That RFC provides that if the M bit of the TRILL Header of the RBridge channel packet containing a BFD Control packet is non-zero, the packet is generally dropped. In P2MP BFD, the head is required to probe tails using
multicast. This means the M bit will be set to 1. For this reason, a new RBridge Channel message, whose protocol code point is TBD, is specified in this document. An RBridge that supports P2MP BFD MUST support the new RBridge Channel message for P2MP BFD. The capability to support the RBridge Channel message for P2MP BFD, and therefore support performing P2MP BFD, is announced within the "RBridge Channel Protocols Sub-TLV" in LSPs [RFC7176].

As specified in [RFC7178], when the tail receives TRILL Data packets sent as BFD RBridge channel messages, it will absorb the packets itself rather than deliver these packets to its attached end-stations.

5. Discriminators and Packet Demultiplexing

The processing in Section 3.2 of [RFC7175] generally applies except that the test on the M bit in the TRILL Header is reversed. If the M bit is zero, the packet MUST be discarded. If the M bit is one, it is processed.

After the Section 3.2 of [RFC7175] processing, the tail demultiplexes incoming BFD packets based on a combination of the source address and My Discriminator as specified in [I-D.ietf-bfd-multipoint]. In addition to this combination, TRILL P2MP BFD requires that the tail use the Data Label, which is either the inner VLAN or the Fine Grained Label [RFC7172], for demultiplexing. If the tail needs to notify the head about the failure of a multipath, the tail is required to send unicast BFD Control packets using the same Data Label as used by the head.

6. Tracking Active Tails

According to [I-D.ietf-bfd-multipoint], the head has a session of type MultipointHead that is bound to a multipoint path. Multipoint BFD Control packets are sent by this session over the multipoint path, and no BFD Control packets are received by it. Each tail dynamically creates a MultipointTail per a multipoint path. MultipointTail sessions receive BFD Control packets from the head over multipoint paths.

An example use is when a multicast tree root needs to keep track of all the receivers as in [I-D.ietf-trill-resilient-trees]; this can be done by maintaining a session of type MultipointClient per receiver that is of interest, as described in [I-D.ietf-bfd-multipoint-active-tail]. See [I-D.ietf-bfd-multipoint-active-tail] for detail operations of tracking active tails.

7. Security Considerations
Multipoint BFD provides its own authentication but does not provide encryption (see Security Considerations in [I-D.ietf-bfd-multipoint]). As specified in this document, the point-to-multipoint BFD payloads are encapsulated in RBridge Channel messages which have been extended by [RFC7978] to provide security. [RFC7978] provides encryption only for point-to-point extended RBridge Channel messages so its encryption facilities are not applicable to this draft. However [RFC7978] provides stronger authentication than that currently provided in BFD. Thus, there is little reason to use the BFD security mechanisms if [RFC7978] authentication is in use. It is expected that a future TRILL document will provide for group keying; when that occurs, the use of [RFC7978] RBridge Channel security will be able to provide both encryption and authentication.

For general multipoint BFD security considerations, see [I-D.ietf-bfd-multipoint].

For general RBridge Channel security considerations, see [RFC7178].

8. IANA Considerations

IANA is required to allocate a number from the Standards Action range of the RBridge Channel Protocols registry which is part of the Transparent Interconnection of Lots of Links (TRILL) Parameters. The number to be allocated is as follows:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2MP BFD Control</td>
<td>TBD</td>
</tr>
</tbody>
</table>

9. Acknowledgements

Authors would like to thank the comments and suggestions from Gayle Noble and Donald Eastlake.

10. References

10.1. Normative References

[I-D.ietf-bfd-multipoint]

[I-D.ietf-bfd-multipoint-active-tail]

10.2. Informative References

Authors’ Addresses

Mingui Zhang
Huawei Technologies
No.156 Beiqing Rd. Haidian District
Beijing 100095
P.R. China

Email: zhangmingui@huawei.com

Santosh Pallagatti
India

Email: santosh.pallagatti@gmail.com

Vengada Prasad Govindan
Cisco Systems

Email: venggovi@cisco.com