Abstract

This document specifies a method of encapsulating network protocol packet within GRE and UDP headers. This GRE-in-UDP encapsulation allows the UDP source port field to be used as an entropy field. This may be used for load balancing of GRE traffic in transit networks using existing ECMP mechanisms. This document also specifies GRE-in-UDP tunnel requirements for two applicability scenarios: (1) general Internet; (2) a traffic-managed controlled environment. The controlled environment has less restrictive requirements than the general Internet.

Status of This Document

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 4, 2017.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ...3
 1.1. Terminology ..3
 1.2. Requirements Language4
2. Applicability Statement ..4
 2.1. GRE-in-UDP Tunnel Requirements5
 2.1.1. Requirements for Default GRE-in-UDP Tunnel5
 2.1.2. Requirements for TMCE GRE-in-UDP Tunnel6
3. GRE-in-UDP Encapsulation6
 3.1. IP Header ..9
 3.2. UDP Header ...9
 3.2.1. Source Port9
 3.2.2. Destination Port10
 3.2.3. Checksum ...10
 3.2.4. Length ...10
 3.3. GRE Header ..10
4. Encapsulation Process Procedures11
 4.1. MTU and Fragmentation11
 4.2. Differentiated Services and ECN Marking12
5. Use of DTLS ..12
6. UDP Checksum Handling ...13
 6.1. UDP Checksum with IPv413
 6.2. UDP Checksum with IPv613
7. Middlebox Considerations16
 7.1. Middlebox Considerations for Zero Checksums17
8. Congestion Considerations17
9. Backward Compatibility18
10. IANA Considerations ...19
11. Security Considerations20
12. Acknowledgements ...20
13. Contributors ...21
14. References ..22
 14.1. Normative References22
 14.2. Informative References23
15. Authors’ Addresses ...24
1. Introduction

This document specifies a generic GRE-in-UDP encapsulation for tunneling network protocol packets across an IP network. This encapsulation uses Generic Routing Encapsulation (GRE) [RFC2784][RFC7676] and User Datagram Protocol (UDP) [RFC768] headers. The GRE header provides payload protocol type as an EtherType in the protocol type field, and the source port field in the UDP header may be used to provide additional entropy that may be used for load balancing GRE traffic in transit networks using existing Equal-Cost Multi-Path (ECMP) mechanisms. Existing ECMP mechanisms, when the IP payload is a UDP or Transmission Control Protocol (TCP) [RFC793] packet, frequently use a hash of the five-tuple of source IP address, destination IP address, UDP/TCP source port, UDP/TCP destination port, and protocol/next-header. A GRE-in-UDP tunnel offers the additional possibility of using GRE across networks that might otherwise disallow it; for instance GRE-in-UDP may be used to bridge two islands where GRE is not supported natively across the middleboxes.

This encapsulation method requires no changes to the transit IP network. Hash functions in most existing IP routers may utilize and benefit from the use of a GRE-in-UDP tunnel without needing any change or upgrade to their ECMP implementation. The encapsulation mechanism is applicable to a variety of IP networks including Data Center and wide area networks.

GRE-in-UDP encapsulation may be used to encapsulate already tunneled traffic, i.e. tunnel-in-tunnel. In this case, GRE-in-UDP tunnel do not differentiate such end hosts from other end hosts, i.e., applying the same treatment for traffic from hosts and tunnel endpoints.

This document specifies GRE-in-UDP tunnel requirements for two applicability scenarios: (1) general Internet; (2) a traffic-managed controlled environment. The controlled environment has less restrictive requirements than the general Internet.

The document also specifies Datagram Transport Layer Security (DTLS) version of GRE-in-UDP tunnel to be used where/when security is a concern.

1.1. Terminology

The terms defined in [RFC768] and [RFC2784] are used in this document. Following are additional terms used in this draft.
ECMP: Equal-Cost Multi-Path.

Flow Entropy: The information to be derived from traffic or applications and to be used by network devices in ECMP process [RFC6438].

Default GRE-in-UDP Tunnel: A GRE-in-UDP tunnel that can apply to the general Internet.

TMCE: A Traffic-managed controlled environment, i.e. an IP network that is traffic-engineered and/or otherwise managed (e.g., via use of traffic rate limiters) to avoid congestion, as defined in Section 2.

TMCE GRE-in-UDP Tunnel: A GRE-in-UDP tunnel that can only apply to a traffic-managed controlled environment that is defined in Section 2.

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Applicability Statement

GRE-in-UDP encapsulation as specified herein applies to IPv4 and IPv6 networks. When using GRE-in-UDP encapsulation, packets so encapsulated are treated as UDP datagrams by an IP network. As such, a GRE-in-UDP tunnel needs to meet the UDP requirements specified in [RFC5405bis], which imposes requirements on GRE-in-UDP tunnel usage. These requirements depend on both the delivery network and the nature of the encapsulated traffic. For example, the GRE-in-UDP tunnel protocol does not provide any congestion control functionality beyond that of the encapsulated traffic. Therefore, a GRE-in-UDP tunnel MUST be used only with congestion controlled traffic (e.g., IP unicast traffic) and/or within a network that has traffic management capability to avoid congestion.

[RFC5405bis] considers two types of IETF UDP applications: 1) General Internet and 2) A controlled environment. The controlled environment means a single administrative domain or bilaterally agreed connection between domains. A network forming a controlled environment can be managed/operated to meet certain conditions while the general Internet cannot be; thus the requirements for a tunnel protocol operating under a controlled environment can be less restrictive than the requirements in the general Internet.
For the purpose of this document, a traffic-managed controlled environment is defined as an IP network that is traffic-engineered and/or otherwise managed (e.g., via use of traffic rate limiters) to avoid congestion.

This document specifies GRE-in-UDP tunnel usage in the general Internet and GRE-in-UDP tunnel usage in a traffic-managed controlled environment and uses "default GRE-in-UDP tunnel" and "TMCE GRE-in-UDP tunnel" terms to refer to each usage.

2.1. GRE-in-UDP Tunnel Requirements

This section states out the requirements for a GRE-in-UDP tunnel. Section 2.1.1 describes the requirements for a default GRE-in-UDP tunnel that is suitable for the general Internet; Section 2.1.2 describes a set of relaxed requirements for a TMCE GRE-in-UDP tunnel used in a traffic-managed controlled environment. They are applicable to an IPv4 or IPv6 delivery network.

2.1.1. Requirements for Default GRE-in-UDP Tunnel

The following is a summary of the default GRE-in-UDP tunnel requirements:

1. A UDP checksum SHOULD be used when encapsulating in IPv4.

2. A UDP checksum MUST be used when encapsulating in IPv6.

3. GRE-in-UDP tunnel MUST NOT be used for traffic that does not implement congestion control. As stated in [RFC5405bis], IP-based unicast traffic is generally assumed to be congestion-controlled, i.e., it is assumed that the transport protocols generating IP-based traffic at the sender already employ mechanisms that are sufficient to address congestion on the path. GRE-in-UDP tunnels are not appropriate for traffic that is not known to be congestion-controlled (e.g., IP multicast traffic).

4. UDP source port values that are used as a source of flow entropy SHOULD be chosen from the ephemeral port range (49152-65535).[RFC5405bis]

5. The use of the UDP source port MUST be configurable so that a single value can be set for all traffic within the tunnel (this disables use of the UDP source port to provide flow entropy). When a single value is set, a random port SHOULD be selected in order to minimize the vulnerability to off-path attacks [RFC6056].
6. For IPv6 delivery networks, the flow entropy SHOULD also be placed in the flow label field for ECMP per [RFC6438].

7. At the tunnel ingress, any fragmentation of the incoming packet (e.g., because the tunnel has an MTU that is smaller than the packet should be performed before encapsulation. In addition, the tunnel ingress MUST apply the UDP checksum to all encapsulated fragments so that the tunnel egress can validate reassembly of the fragments; it MUST set the same DSCP value as in the DS field of the payload packet in all fragments [RFC2474]. To avoid unwanted forwarding over multiple paths, the same source UDP port value SHOULD be set in all packet fragments.

2.1.2. Requirements for TMCE GRE-in-UDP Tunnel

The section contains the TMCE GRE-in-UDP tunnel requirements. It lists the changed requirements, compared with a Default GRE-in-UDP Tunnel, for a TMCE GRE-in-UDP Tunnel, which corresponds to the requirements 1-3 listed in Section 2.1.1.

1. A UDP checksum SHOULD be used when encapsulating in IPv4. A tunnel endpoint sending GRE-in-UDP MAY disable the UDP checksum, since GRE has been designed to work without a UDP checksum [RFC2784]. However, a checksum also offers protection from mis-delivery to another port.

2. Use of UDP checksum MUST be the default when encapsulating in IPv6. This default MAY be overridden via configuration of UDP zero-checksum mode. All usage of UDP zero-checksum mode with IPv6 is subject to the additional requirements specified in Section 6.2.

3. A GRE-in-UDP tunnel MAY encapsulate traffic that is not congestion controlled.

The requirements 4-7 listed in Section 2.1.1 also apply to a TMCE GRE-in-UDP Tunnel.

3. GRE-in-UDP Encapsulation

The GRE-in-UDP encapsulation format contains a UDP header [RFC768] and a GRE header [RFC2890]. The format is shown as follows:

(presented in bit order)
IPv4 Header:

```
+-----------------------------------------------+
<table>
<thead>
<tr>
<th>Version</th>
<th>IHL</th>
<th>Type of Service</th>
<th>Total Length</th>
</tr>
</thead>
</table>
+-----------------------------------------------+
| Identification | Flags | Fragment Offset |
+-----------------------------------------------+
| Time to Live | Protocol=17(UDP) | Header Checksum |
+-----------------------------------------------+
| Source IPv4 Address |
`
IPv6 Header:

+-----------------------------------------------+
<table>
<thead>
<tr>
<th>Version</th>
<th>Traffic Class</th>
<th>Flow Label</th>
</tr>
</thead>
</table>
+-----------------------------------------------+

+-----------------------------------------------+
<table>
<thead>
<tr>
<th>Payload Length</th>
<th>NxtHdr=17(UDP)</th>
<th>Hop Limit</th>
</tr>
</thead>
</table>
+-----------------------------------------------+

+---------------------------------------------+
<table>
<thead>
<tr>
<th>Outer Source IPv6 Address</th>
</tr>
</thead>
</table>
+---------------------------------------------+

+---------------------------------------------+
<table>
<thead>
<tr>
<th>Outer Destination IPv6 Address</th>
</tr>
</thead>
</table>
+---------------------------------------------+

UDP Header:

+-----------------------------------------------+
<table>
<thead>
<tr>
<th>Source Port = entropy value</th>
<th>Dest. Port = TBD1/TBD2</th>
</tr>
</thead>
</table>
+-----------------------------------------------+

+-----------------------------------------------+
<table>
<thead>
<tr>
<th>UDP Length</th>
<th>UDP Checksum</th>
</tr>
</thead>
</table>
+-----------------------------------------------+

GRE Header:

+-----------------------------------------------+
<table>
<thead>
<tr>
<th>C</th>
<th>K</th>
<th>S</th>
<th>Reserved0</th>
<th>Ver</th>
<th>Protocol Type</th>
</tr>
</thead>
</table>
+-----------------------------------------------+

+-----------------------------------------------+
<table>
<thead>
<tr>
<th>Checksum (optional)</th>
<th>Reserved1 (Optional)</th>
</tr>
</thead>
</table>
+-----------------------------------------------+

+-----------------------------------------------+
<table>
<thead>
<tr>
<th>Key (optional)</th>
</tr>
</thead>
</table>
+-----------------------------------------------+

+-----------------------------------------------+
<table>
<thead>
<tr>
<th>Sequence Number (optional)</th>
</tr>
</thead>
</table>
+-----------------------------------------------+

Figure 2  UDP+GRE Headers in IPv6
The contents of the IP, UDP, and GRE headers that are relevant in this encapsulation are described below.

3.1. IP Header

An encapsulator MUST encode its own IP address as the source IP address and the decapsulator’s IP address as the destination IP address. A sufficiently large value is needed in the IPv4 TTL field or IPv6 Hop Count field to allow delivery of the encapsulated packet to the peer of the encapsulation.

3.2. UDP Header

3.2.1. Source Port

GRE-in-UDP permits the UDP source port value to be used to encode an entropy value. The UDP source port contains a 16-bit entropy value that is generated by the encapsulator to identify a flow for the encapsulated packet. The port value SHOULD be within the ephemeral port range, i.e., 49152 to 65535, where the high order two bits of the port are set to one. This provides fourteen bits of entropy for the inner flow identifier. In the case that an encapsulator is unable to derive flow entropy from the payload header or the entropy usage has to be disabled to meet operational requirements (see Section 7), to avoid reordering with a packet flow, the encapsulator SHOULD use the same UDP source port value for all packets assigned to a flow e.g., the result of an algorithm that perform a hash of the tunnel ingress and egress IP address.

The source port value for a flow set by an encapsulator MAY change over the lifetime of the encapsulated flow. For instance, an encapsulator may change the assignment for Denial of Service (DOS) mitigation or as a means to effect routing through the ECMP network. An encapsulator SHOULD NOT change the source port selected for a flow more than once every thirty seconds.

An IPv6 GRE-in-UDP tunnel endpoint should copy a flow entropy value in the IPv6 flow label field (requirement 6). This permits network equipment to inspect this value and utilize it during forwarding, e.g. to perform ECMP [RFC6438].

This document places requirements on the generation of the flow entropy value [RFC5405bis] but does not specify the algorithm that an implementation should use to derive this value.
3.2.2. Destination Port

The destination port of the UDP header is set either GRE-in-UDP (TBD1) or GRE-UDP-DTLS (TBD2) (see Section 5).

3.2.3. Checksum

The UDP checksum is set and processed per [RFC768] and [RFC1122] for IPv4, and [RFC2460] for IPv6. Requirements for checksum handling and use of zero UDP checksums are detailed in Section 6.

3.2.4. Length

The usage of this field is in accordance with the current UDP specification in [RFC768]. This length will include the UDP header (eight bytes), GRE header, and the GRE payload (encapsulated packet).

3.3. GRE Header

An encapsulator sets the protocol type (EtherType) of the packet being encapsulated in the GRE Protocol Type field.

An encapsulator MAY set the GRE Key Present, Sequence Number Present, and Checksum Present bits and associated fields in the GRE header as defined by [RFC2784] and [RFC2890]. Usage of the reserved bits, i.e., Reserved0, is specified in [RFC2784].

The GRE checksum MAY be enabled to protect the GRE header and payload. When the UDP checksum is enabled, it protects the GRE payload, resulting in the GRE checksum being mostly redundant. Enabling both checksums may result in unnecessary processing. Since the UDP checksum covers the pseudo-header and the packet payload, including the GRE header and its payload, the UDP checksum SHOULD be used in preference to using the GRE checksum.

An implementation MAY use the GRE keyid to authenticate the encapsulator. (See Security Considerations Section) In this model, a shared value is either configured or negotiated between an encapsulator and decapsulator. When a decapsulator determines a presented keyid is not valid for the source, the packet MUST be dropped.

Although GRE-in-UDP encapsulation protocol uses both UDP header and GRE header, it is one tunnel encapsulation protocol. GRE and UDP headers MUST be applied and removed as a pair at the encapsulation and decapsulation points. This specification does not support UDP encapsulation of a GRE header where that GRE header is applied or
removed at a network node other than the UDP tunnel ingress or egress.

4. Encapsulation Process Procedures

The procedures specified in this section apply to both a default GRE-in-UDP tunnel and a TMCE GRE-in-UDP tunnel.

The GRE-in-UDP encapsulation allows encapsulated packets to be forwarded through "GRE-in-UDP tunnels". The encapsulator MUST set the UDP and GRE header according to Section 3.

Intermediate routers, upon receiving these UDP encapsulated packets, could load balance these packets based on the hash of the five-tuple of UDP packets.

Upon receiving these UDP encapsulated packets, the decapsulator decapsulates them by removing the UDP and GRE headers and then processes them accordingly.

GRE-in-UDP allows encapsulation of unicast, IPv4 broadcast, or multicast traffic. Entropy may be generated from the header of encapsulated packets at an encapsulator. The mapping mechanism between the encapsulated multicast traffic and the multicast capability in the IP network is transparent and independent of the encapsulation and is otherwise outside the scope of this document.

To provide entropy for ECMP, GRE-in-UDP does not rely on GRE keep-alive. It is RECOMMENDED not to use GRE keep-alive in the GRE-in-UDP tunnel. This aligns with middlebox traversal guidelines in Section 3.5 of [RFC5405bis].

4.1. MTU and Fragmentation

Regarding packet fragmentation, an encapsulator/decapsulator SHOULD perform fragmentation before the encapsulation. The size of fragments SHOULD be less or equal to the PMTU associated with the path between the GRE ingress and the GRE egress tunnel endpoints minus the GRE and UDP overhead, assuming the egress resemble MTU is larger than PMTU. When applying payload fragmentation, the UDP checksum MUST be used so that the receiving endpoint can validate reassembly of the fragments; the same source UDP port SHOULD be used for all packet fragments to ensure the transit routers will forward the fragments on the same path.

If the operator of the transit network supporting the tunnel is able to control the payload MTU size, the MTU SHOULD be configured to
avoid fragmentation, i.e., sufficient for the largest supported size of packet, including all additional bytes introduced by the tunnel overhead [RFC5405bis].

4.2. Differentiated Services and ECN Marking

To ensure that tunneled traffic receives the same treatment over the IP network as traffic that is not tunneled, prior to the encapsulation process, an encapsulator processes the tunneled IP packet headers to retrieve appropriate parameters for the encapsulating IP packet header such as DiffServ [RFC2983]. Encapsulation end points that support Explicit Congestion Notification (ECN) must use the method described in [RFC6040] for ECN marking propagation. The congestion control process is outside of the scope of this document.

Additional information on IP header processing is provided in Section 3.1.

5. Use of DTLS

Datagram Transport Layer Security (DTLS) [RFC6347] can be used for application security and can preserve network and transport layer protocol information. Specifically, if DTLS is used to secure the GRE-in-UDP tunnel, the destination port of the UDP header MUST be set to an IANA-assigned value (TBD2) indicating GRE-in-UDP with DTLS, and that UDP port MUST NOT be used for other traffic. The UDP source port field can still be used to add entropy, e.g., for load-sharing purposes. DTLS applies to a default GRE-in-UDP tunnel and a TMCE GRE-in-UDP tunnel.

Use of DTLS is limited to a single DTLS session for any specific tunnel encapsulator/decapsulator pair (identified by source and destination IP addresses). Both IP addresses MUST be unicast addresses - multicast traffic is not supported when DTLS is used. A GRE-in-UDP tunnel decapsulator that supports DTLS is expected to be able to establish DTLS sessions with multiple tunnel encapsulators, and likewise a GRE-in-UDP tunnel encapsulator is expected to be able to establish DTLS sessions with multiple decapsulators. Different source and/or destination IP addresses will be involved (see Section 6.2) for discussion of one situation where use of different source IP addresses is important.

If an application already performs encryption, no need to encrypt traffic again. Applying DTLS to a GRE-in-UDP tunnel requires both tunnel end points to configure use of DTLS.
6. UDP Checksum Handling

6.1. UDP Checksum with IPv4

For UDP in IPv4, the UDP checksum MUST be processed as specified in [RFC768] and [RFC1122] for both transmit and receive. The IPv4 header includes a checksum that protects against mis-delivery of the packet due to corruption of IP addresses. The UDP checksum potentially provides protection against corruption of the UDP header, GRE header, and GRE payload. Disabling the use of checksums is a deployment consideration that should take into account the risk and effects of packet corruption.

When a decapsulator receives a packet, the UDP checksum field MUST be processed. If the UDP checksum is non-zero, the decapsulator MUST verify the checksum before accepting the packet. By default a decapsulator SHOULD accept UDP packets with a zero checksum. A node MAY be configured to disallow zero checksums per [RFC1122]; this may be done selectively, for instance disallowing zero checksums from certain hosts that are known to be sending over paths subject to packet corruption. If verification of a non-zero checksum fails, a decapsulator lacks the capability to verify a non-zero checksum, or a packet with a zero-checksum was received and the decapsulator is configured to disallow, the packet MUST be dropped and an event MAY be logged.

6.2. UDP Checksum with IPv6

For UDP in IPv6, the UDP checksum MUST be processed as specified in [RFC768] and [RFC2460] for both transmit and receive.

When UDP is used over IPv6, the UDP checksum is relied upon to protect both the IPv6 and UDP headers from corruption. As such, a default GRE-in-UDP Tunnel MUST perform UDP checksum; A TMCE GRE-in-UDP Tunnel MAY be configured with the UDP zero-checksum mode if the traffic-managed controlled environment or a set of closely cooperating traffic-managed controlled environments (such as by network operators who have agreed to work together in order to jointly provide specific services) meet at least one of following conditions:

a. It is known (perhaps through knowledge of equipment types and lower layer checks) that packet corruption is exceptionally unlikely and where the operator is willing to take the risk of undetected packet corruption.
b. It is judged through observational measurements (perhaps of historic or current traffic flows that use a non-zero checksum) that the level of packet corruption is tolerably low and where the operator is willing to take the risk of undetected packet corruption.

c. Carrying applications that are tolerant of mis-delivered or corrupted packets (perhaps through higher layer checksum, validation, and retransmission or transmission redundancy) where the operator is willing to rely on the applications using the tunnel to survive any corrupt packets.

The following requirements apply to a TMCE GRE-in-UDP tunnel that uses UDP zero-checksum mode:

a. Use of the UDP checksum with IPv6 MUST be the default configuration of all GRE-in-UDP tunnels.

b. The GRE-in-UDP tunnel implementation MUST comply with all requirements specified in Section 4 of [RFC6936] and with requirement 1 specified in Section 5 of [RFC6936].

c. The tunnel decapsulator SHOULD only allow the use of UDP zero-checksum mode for IPv6 on a single received UDP Destination Port regardless of the encapsulator. The motivation for this requirement is possible corruption of the UDP Destination Port, which may cause packet delivery to the wrong UDP port. If that other UDP port requires the UDP checksum, the mis-delivered packet will be discarded.

d. It is RECOMMENDED that the UDP zero-checksum mode for IPv6 is only enabled for certain selected source addresses. The tunnel decapsulator MUST check that the source and destination IPv6 addresses are valid for the GRE-in-UDP tunnel on which the packet was received if that tunnel uses UDP zero-checksum mode and discard any packet for which this check fails.

e. The tunnel encapsulator SHOULD use different IPv6 addresses for each GRE-in-UDP tunnel that uses UDP zero-checksum mode regardless of the decapsulator in order to strengthen the decapsulator’s check of the IPv6 source address (i.e., the same IPv6 source address SHOULD NOT be used with more than one IPv6 destination address, independent of whether that destination address is a unicast or multicast address). When this is not possible, it is RECOMMENDED to use each source IPv6 address for as few UDP zero-checksum mode GRE-in-UDP tunnels as is feasible.
f. When any middlebox exists on the path of a GRE-in-UDP tunnel, it is RECOMMENDED to use the default mode, i.e. use UDP checksum, to reduce the chance that the encapsulated packets will be dropped.

g. Any middlebox that allows the UDP zero-checksum mode for IPv6 MUST comply with requirement 1 and 8-10 in Section 5 of [RFC6936].

h. Measures SHOULD be taken to prevent IPv6 traffic with zero UDP checksums from "escaping" to the general Internet; see Section 8 for examples of such measures.

i. IPv6 traffic with zero UDP checksums MUST be actively monitored for errors by the network operator. For example, the operator may monitor Ethernet layer packet error rates.

j. If a packet with a non-zero checksum is received, the checksum MUST be verified before accepting the packet. This is regardless of whether the tunnel encapsulator and decapsulator have been configured with UDP zero-checksum mode.

The above requirements do not change either the requirements specified in [RFC2460] as modified by [RFC6935] or the requirements specified in [RFC6936].

The requirement to check the source IPv6 address in addition to the destination IPv6 address, plus the strong recommendation against reuse of source IPv6 addresses among GRE-in-UDP tunnels collectively provide some mitigation for the absence of UDP checksum coverage of the IPv6 header. A traffic-managed controlled environment that satisfies at least one of three conditions listed at the beginning of this section provides additional assurance.

A GRE-in-UDP tunnel is suitable for transmission over lower layers in the traffic-managed controlled environments that are allowed by the exceptions stated above and the rate of corruption of the inner IP packet on such networks is not expected to increase by comparison to GRE traffic that is not encapsulated in UDP. For these reasons, GRE-in-UDP does not provide an additional integrity check except when GRE checksum is used when UDP zero-checksum mode is used with IPv6, and this design is in accordance with requirements 2, 3 and 5 specified in Section 5 of [RFC6936].

Generic Router Encapsulation (GRE) does not accumulate incorrect transport layer state as a consequence of GRE header corruption. A corrupt GRE packet may result in either packet discard or forwarding
of the packet without accumulation of GRE state. Active monitoring of GRE-in-UDP traffic for errors is REQUIRED as occurrence of errors will result in some accumulation of error information outside the protocol for operational and management purposes. This design is in accordance with requirement 4 specified in Section 5 of [RFC6936].

The remaining requirements specified in Section 5 of [RFC6936] are not applicable to GRE-in-UDP. Requirements 6 and 7 do not apply because GRE does not include a control feedback mechanism. Requirements 8-10 are middlebox requirements that do not apply to GRE-in-UDP tunnel endpoints (see Section 7.1 for further middlebox discussion).

It is worth mentioning that the use of a zero UDP checksum should present the equivalent risk of undetected packet corruption when sending similar packet using GRE-in-IPv6 without UDP [RFC7676] and without GRE checksums.

In summary, a TMCE GRE-in-UDP Tunnel is allowed to use UDP-zero-checksum mode for IPv6 when the conditions and requirements stated above are met. Otherwise the UDP checksum need to be used for IPv6 as specified in [RFC768] and [RFC2460]. Use of GRE checksum is RECOMMENDED when the UDP checksum is not used.

7. Middlebox Considerations

Many middleboxes read or update UDP port information of the packets that they forward. Network Address/Port Translator (NAPT) is the most commonly deployed Network Address Translation (NAT) device [RFC4787]. An NAPT device establishes a NAT session to translate the {private IP address, private source port number} tuple to a {public IP address, public source port number} tuple, and vice versa, for the duration of the UDP session. This provides a UDP application with the "NAT-pass-through" function. NAPT allows multiple internal hosts to share a single public IP address. The port number, i.e., the UDP Source Port number, is used as the demultiplexer of the multiple internal hosts. However, the above NAPT behaviors conflict with the behavior a GRE-in-UDP tunnel that is configured to use the UDP source port value to provide entropy.

A GRE-in-UDP tunnel is unidirectional; the tunnel traffic is not expected to be returned back to the UDP source port values used to generate entropy. However some middleboxes (e.g., firewall) assume that bidirectional traffic uses a common pair of UDP ports. This assumption also conflicts with the use of the UDP source port field as entropy.
Hence, use of the UDP source port for entropy may impact middleboxes behavior. If a GRE-in-UDP tunnel is expected to be used on a path with a middlebox, the tunnel can be configured to either disable use of the UDP source port for entropy or to configure middleboxes to pass packets with UDP source port entropy.

7.1. Middlebox Considerations for Zero Checksums

IPv6 datagrams with a zero UDP checksum will not be passed by any middlebox that validates the checksum based on [RFC2460] or that updates the UDP checksum field, such as NATs or firewalls. Changing this behavior would require such middleboxes to be updated to correctly handle datagrams with zero UDP checksums. The GRE-in-UDP encapsulation does not provide a mechanism to safely fall back to using a checksum when a path change occurs redirecting a tunnel over a path that includes a middlebox that discards IPv6 datagrams with a zero UDP checksum. In this case the GRE-in-UDP tunnel will be black-holed by that middlebox.

As such, when any middlebox exists on the path of GRE-in-UDP tunnel, use of the UDP checksum is RECOMMENDED to increase the probability of successful transmission of GRE-in-UDP packets. Recommended changes to allow firewalls, NATs and other middleboxes to support use of an IPv6 zero UDP checksum are described in Section 5 of [RFC6936].

8. Congestion Considerations

Section 3.1.9 of [RFC5405bis] discusses the congestion considerations for design and use of UDP tunnels; this is important because other flows could share the path with one or more UDP tunnels, necessitating congestion control [RFC2914] to avoid distractive interference.

Congestion has potential impacts both on the rest of the network containing a UDP tunnel, and on the traffic flows using the UDP tunnels. These impacts depend upon what sort of traffic is carried over the tunnel, as well as the path of the tunnel.

A default GRE-in-UDP tunnel MAY be used to carry IP traffic that is known to be congestion controlled on the Internet. IP unicast traffic is generally assumed to be congestion-controlled. A default GRE-in-UDP tunnel MUST NOT be used to carry traffic that is not known to be congestion-controlled.

A TMCE GRE-in-UDP tunnel can be used to carry traffic that is known not to be congestion controlled. For example, GRE-in-UDP may be used
to carry MPLS that carries pseudowire or VPN traffic where specific bandwidth guarantees are provided to each pseudowire or to each VPN. In such cases, network operators may avoid congestion by careful provisioning of their networks, by rate limiting of user data traffic, and traffic engineering according to path capacity.

When a TMCE GRE-in-UDP tunnel carries traffic that is not known to be congestion controlled, the tunnel MUST be used within a traffic-managed controlled environment (e.g., single operator network that utilizes careful provisioning such as rate limiting at the entries of the network while over-provisioning network capacity) to manage congestion, or within a limited number of networks whose operators closely cooperate in order to jointly provide this same careful provisioning. When a TMCE GRE-in-UDP tunnel is used to carry the traffic that is not known to be congestion controlled, measures SHOULD be taken to prevent the GRE-in-UDP traffic from "escaping" to the general Internet, e.g.:

- Physical or logical isolation of the links carrying GRE-in-UDP from the general Internet.
- Deployment of packet filters that block the UDP ports assigned for GRE-in-UDP.
- Imposition of restrictions on GRE-in-UDP traffic by software tools used to set up GRE-in-UDP tunnels between specific end systems (as might be used within a single data center) or by tunnel ingress nodes for tunnels that don’t terminate at end systems.
- Use of a "Circuit Breaker" for the tunneled traffic as described in [CB].

9. Backward Compatibility

In general, tunnel ingress routers have to be upgraded in order to support the encapsulations described in this document.

No change is required at transit routers to support forwarding of the encapsulation described in this document.

If a tunnel endpoint (a host or router) that is intended for use as a decapsulator does not support or enable the GRE-in-UDP encapsulation described in this document, that endpoint will not listen on the destination port assigned to the GRE-encapsulation (TBD1 and TBD2). In these cases, the endpoint will perform normal
UDP processing and respond to an encapsulator with an ICMP message indicating "port unreachable" according to [RFC792]. Upon receiving this ICMP message, the node MUST NOT continue to use GRE-in-UDP encapsulation toward this peer without management intervention.

10. IANA Considerations

IANA is requested to make the following allocations:

One UDP destination port number for the indication of GRE,

- Service Name: GRE-in-UDP
- Transport Protocol(s): UDP
- Assignee: IESG <iesg@ietf.org>
- Contact: IETF Chair <chair@ietf.org>
- Description: GRE-in-UDP Encapsulation
- Reference: [This.I-D]
- Port Number: TBD1
- Service Code: N/A
- Known Unauthorized Uses: N/A
- Assignment Notes: N/A

Editor Note: replace "TBD1" in section 3 and 9 with IANA assigned number.

One UDP destination port number for the indication of GRE with DTLS,

- Service Name: GRE-UDP-DTLS
- Transport Protocol(s): UDP
- Assignee: IESG <iesg@ietf.org>
- Contact: IETF Chair <chair@ietf.org>
- Description: GRE-in-UDP Encapsulation with DTLS
- Reference: [This.I-D]
- Port Number: TBD2
- Service Code: N/A
- Known Unauthorized Uses: N/A
- Assignment Notes: N/A

Editor Note: replace "TBD2" in section 3, 5, and 9 with IANA assigned number.
11. Security Considerations

GRE-in-UDP encapsulation does not affect security for the payload protocol. When using GRE-in-UDP, Network Security in a network is mostly equivalent to that of a network using GRE.

To secure original traffic, DTLS SHOULD be used as specified in Section 5.

In the case that UDP source port for entropy usage is disabled, a random port SHOULD be selected in order to minimize the vulnerability to off-path attacks. [RFC6056] The random port may also be periodically changed to mitigate certain denial of service attacks as mentioned in Section 3.2.1.

Using one standardized value as the UDP destination port to indicate an encapsulation may increase the vulnerability of off-path attack. To overcome this, an alternate port may be agreed upon to use between an encapsulator and decapsulator [RFC6056]. How the encapsulator end points communicate the value is outside scope of this document.

This document does not require that a decapsulator validates the IP source address of the tunneled packets (with the exception that the IPv6 source address MUST be validated when UDP zero-checksum mode is used with IPv6), but it should be understood that failure to do so presupposes that there is effective destination-based (or a combination of source-based and destination-based) filtering at the boundaries.

Corruption of a GRE header can cause a privacy and security concern for some applications that rely on the key field for traffic segregation. When the GRE key field is used for privacy and security, either UDP checksum or GRE checksum SHOULD be used for GRE-in-UDP with both IPv4 and IPv6, and in particular, when UDP zero-checksum mode is used, GRE checksum SHOULD be used.

12. Acknowledgements

Authors like to thank Vivek Kumar, Ron Bonica, Joe Touch, Ruediger Geib, Lar Edds, Lloyd Wood, Bob Briscoe, and many others for their review and valuable input on this draft.

Thank Donald Eastlake, Eliot Lear, and Martin Stiemerling for their detail reviews and valuable suggestions in WGLC process.
Thank the design team led by David Black (members: Ross Callon, Gorry Fairhurst, Xiaohu Xu, Lucy Yong) to efficiently work out the descriptions for the congestion considerations and IPv6 UDP zero checksum.

Thank David Black and Gorry Fairhurst for their great help in document content and editing.

13. Contributors

The following people all contributed significantly to this document and are listed below in alphabetical order:

David Black
EMC Corporation
176 South Street
Hopkinton, MA  01748
USA

Email: david.black@emc.com

Ross Callon
Juniper Networks
10 Technology Park Drive
Westford, MA  01886
USA

Email: rcallon@juniper.net

John E. Drake
Juniper Networks

Email: jdrake@juniper.net

Gorry Fairhurst
University of Aberdeen

Email: gorry@erg.abdn.ac.uk

Yongbing Fan
China Telecom
Guangzhou, China.
14. References

14.1. Normative References


14.2. Informative References


15. Authors’ Addresses

Lucy Yong
Huawei Technologies, USA

Email: lucy.yong@huawei.com

Edward Crabbe
Oracle

Email: edward.crabbe@gmail.com

Xiaohu Xu
Huawei Technologies,
Beijing, China

Email: xuxiaohu@huawei.com

Tom Herbert
Facebook
1 Hacker Way
Menlo Park, CA
Email: tom@herbertland.com