Abstract

As internet traffic is increasingly sourced-from and destined-to wireless endpoints, it is crucial that Quality of Service be aligned between wired and wireless networks; however, this is not always the case by default. This document specifies a set of Differentiated Services Code Point (DSCP) to IEEE 802.11 User Priority (UP) mappings to reconcile the marking recommendations offered by the IETF and the IEEE so as to maintain consistent QoS treatment between wired and IEEE 802.11 wireless networks.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 21, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect

Table of Contents

1. Introduction .. 3
 1.1. Related work 3
 1.2. Interaction with RFC 7561 4
 1.3. Applicability Statement 4
 1.4. Document Organization 5
 1.5. Requirements Language 5
 1.6. Terminology Used in this Document 6

2. Service Comparison and Default Interoperation of Diffserv and IEEE 802.11 9
 2.1. Diffserv Domain Boundaries 9
 2.2. EDCF Queuing 10
 2.3. Default DSCP-to-UP Mappings and Conflicts 10
 2.4. Default UP-to-DSCP Mappings and Conflicts 11

4. DSCP-to-UP Mapping Recommendations ... 13
 4.1. Network Control Traffic 14
 4.1.1. Network Control Protocols 14
 4.1.2. Operations Administration Management (OAM) 15
 4.2. User Traffic ... 15
 4.2.1. Telephony 15
 4.2.2. Signaling 16
 4.2.3. Multimedia Conferencing 16
 4.2.4. Real-Time Interactive 17
 4.2.5. Multimedia-Streaming 17
 4.2.6. Broadcast Video 17
 4.2.7. Low-Latency Data 18
 4.2.8. High-Throughput Data 18
 4.2.9. Standard Service Class 19
 4.2.10. Low-Priority Data 19
 4.3. DSCP-to-UP Mapping Recommendations Summary 20

5. Upstream Mapping and Marking Recommendations 21
 5.1. Upstream DSCP-to-UP Mapping within the Wireless Client Operating System 22
 5.2. Upstream UP-to-DSCP Mapping at the Wireless Access Point 22
 5.3. Upstream DSCP-Passthrough at the Wireless Access Point 23
 5.4. Upstream DSCP Marking at the Wireless Access Point 24

6. IEEE 802.11 QoS Overview ... 24
 6.1. Distributed Coordination Function (DCF) 24
 6.1.1. Slot Time 25
 6.1.2. Interframe Spaces 25
IEEE 802.11 [IEEE.802.11-2016] wireless has become the preferred medium for endpoints connecting to business and private networks. However, the wireless medium defined by IEEE 802.11 [IEEE.802.11-2016] presents several design challenges for ensuring end-to-end quality of service. Some of these challenges relate to the nature of the IEEE 802.11 Radio Frequency (RF) medium itself, being a half-duplex and shared medium, while other challenges relate to the fact that the IEEE 802.11 standard is not administered by the same standards body as IP networking standards. While the IEEE has developed tools to enable QoS over wireless networks, little guidance exists on how to maintain consistency of QoS treatment between wired IP and wireless IEEE 802.11 networks. The purpose of this document is to provide such guidance.

1.1. Related work

Several RFCs outline Diffserv QoS recommendations over IP networks, including:

- [RFC2474] specifies the Diffserv Codepoint Field. This RFC also details Class Selectors, as well as the Default Forwarding (DF) treatment.

- [RFC2475] defines a Diffserv architecture

- [RFC3246] specifies the Expedited Forwarding (EF) Per-Hop Behavior (PHB)
Internet-Draft DSCP Mapping for IEEE 802.11 December 2017

- [RFC2597] specifies the Assured Forwarding (AF) PHB.
- [RFC3662] specifies a Lower Effort Per-Domain Behavior (PDB)
- [RFC4594] presents Configuration Guidelines for Diffserv Service Classes
- [RFC5127] presents the Aggregation of Diffserv Service Classes
- [RFC5865] specifies a DSCP for Capacity Admitted Traffic

Note: [RFC4594] is intended to be viewed as a framework for supporting Diffserv in any network, including wireless networks; thus, it describes different types of traffic expected in IP networks and provides guidance as to what DSCP marking(s) should be associated with each traffic type. As such, this document draws heavily on [RFC4594], as well as [RFC5127], and [RFC8100].

In turn, the relevant standard for wireless QoS is IEEE 802.11, which is being progressively updated; the current version of which (at the time of writing) is [IEEE.802.11-2016].

1.2. Interaction with RFC 7561

There is also a recommendation from the Global System for Mobile Communications Association (GSMA) on DSCP to UP Mapping for IP Packet eXchange (IPX), specifically their Guidelines for IPX Provider networks [GSMA-IPX_Guidelines]. These GSMA Guidelines were developed without reference to existing IETF specifications for various services, referenced in Section 1.1. In turn, [RFC7561] was written based on these GSMA Guidelines, as explicitly called out in [RFC7561] Section 4.2. Thus, [RFC7561] conflicts with the overall Diffserv traffic-conditioning service plan, both in the services specified and the code points specified for them. As such, these two plans cannot be normalized. Rather, as discussed in [RFC2474] Section 2, the two domains (IEEE 802.11 and GSMA) are different Differentiated Services Domains separated by a Differentiated Services Boundary. At that boundary, code points from one domain are translated to code points for the other, and maybe to Default (zero) if there is no corresponding service to translate to.

1.3. Applicability Statement

This document is applicable to the use of Differentiated Services that interconnect with IEEE 802.11 wireless LANs (referred to as Wi-Fi, throughout this document, for simplicity). These guidelines are applicable whether the wireless access points (APs) are deployed in an autonomous manner, managed by (centralized or distributed) WLAN
controllers or some hybrid deployment option. This is because in all these cases, the wireless access point is the bridge between wired and wireless media.

This document applies to IP networks using WiFi infrastructure at the link layer. Such networks typically include wired LANs with wireless access points at their edges, however, such networks can also include Wi-Fi backhaul, wireless mesh solutions or any other type of AP-to-AP wireless network that extends the wired network infrastructure.

1.4. Document Organization

This document is organized as follows:

- **Section 1** introduces the wired-to-wireless QoS challenge, references related work, outlines the organization of the document, and specifies both the requirements language and the terminology used in this document.

- **Section 2** begins the discussion with a comparison of IETF Diffserv QoS and Wi-Fi QoS standards and highlights discrepancies between these that require reconciliation.

- **Section 3** presents the marking and mapping capabilities that wireless access points and wireless endpoint devices are recommended to support.

- **Section 4** presents DSCP-to-UP mapping recommendations for each of the [RFC4594] service classes, which are primarily applicable in the downstream (wired-to-wireless) direction.

- **Section 5**, in turn, considers upstream (wireless-to-wired) QoS options, their respective merits and recommendations.

- **Section 6** (in the form of an Appendix) presents a brief overview of how QoS is achieved over IEEE 802.11 wireless networks, given the shared, half-duplex nature of the wireless medium.

- **Section 7** on notes IANA considerations

- **Section 8** presents security considerations relative to DSCP-to-UP, UP-to-DSCP mapping and remarking

1.5. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP...
1.6. Terminology Used in this Document

Key terminology used in this document includes:

AC: Access Category. A label for the common set of enhanced distributed channel access (EDCA) parameters that are used by a quality-of-service (QoS) station (STA) to contend for the channel in order to transmit medium access control (MAC) service data units (MSDUs) with certain priorities. [IEEE.802.11-2016] Section 3.2.

AIFS: Arbitration Interframe Space. Interframe space used by QoS stations before transmission of data and other frame types defined by [IEEE.802.11-2016] Section 10.3.2.3.6.

AP: Access Point. An entity that contains one station (STA) and provides access to the distribution services, via the wireless medium (WM) for associated STAs. An AP comprises a STA and a distribution system access function (DSAF) [IEEE.802.11-2016] Section 3.1.

BSS: Basic Service Set. Informally, a wireless cell; formally, a set of stations that have successfully synchronized using the JOIN service primitives and one STA that has used the START primitive. Alternatively, a set of STAs that have used the START primitive specifying matching mesh profiles where the match of the mesh profiles has been verified via the scanning procedure. Membership in a BSS does not imply that wireless communication with all other members of the BSS is possible. Defined in [IEEE.802.11-2016] Section 3.1.

Contention Window: See CW.

CSMA/CA: Carrier Sense Multiple Access with Collision Avoidance. A media access control method in which carrier sensing is used, but nodes attempt to avoid collisions by transmitting only when the channel is sensed to be "idle". When these do transmit, nodes transmit their packet data in its entirety.

CSMA/CD: Carrier Sense Multiple Access with Collision Detection. A media access control method (used most notably in early Ethernet technology) for local area networking. It uses a carrier-sensing scheme in which a transmitting station detects collisions by sensing transmissions from other stations while transmitting a frame. When this collision condition is detected, the station
stops transmitting that frame, transmits a jam signal, and then waits for a random time interval before trying to resend the frame.

CW: Contention Window. Limits a CWMin and CWMax, from which a random backoff is computed.

CWMax: Contention Window Maximum. The maximum value (in unit of Slot Time) that a contention window can take.

CWMin: Contention Window Minimum. The minimum value that a contention window can take.

DCF: Distributed Coordinated Function. A class of coordination function where the same coordination function logic is active in every station (STA) in the basic service set (BSS) whenever the network is in operation.

DIFS: Distributed (Coordination Function) Interframe Space. A unit of time during which the medium has to be detected as idle before a station should attempt to send frames, as per [IEEE.802.11-2016] Section 10.3.2.3.5.

DSCP: Differentiated Service Code Point [RFC2474] and [RFC2475]. The DSCP is carried in the first 6 bits of the IPv4 and IPv6 Type of Service (TOS) Byte (the remaining 2 bits are used for IP Explicit Congestion Notification [RFC3168]).

EIFS: Extended Interframe Space. A unit of time that a station has to defer before transmitting a frame if the previous frame contained an error, as per [IEEE.802.11-2016] Section 10.3.2.3.7.

HCF: Hybrid Coordination Function A coordination function that combines and enhances aspects of the contention based and contention free access methods to provide quality-of-service (QoS) stations (STAs) with prioritized and parameterized QoS access to the wireless medium (WM), while continuing to support non-QoS STAs for best-effort transfer. [IEEE.802.11-2016] Section 3.1.

IFS: Interframe Space. Period of silence between transmissions over 802.11 networks. [IEEE.802.11-2016] describes several types of Interframe Spaces.

Random Backoff Timer: A pseudorandom integer period of time (in units of Slot Time) over the interval (0,CW), where CWmin is less-than-or-equal-to CW, which in turn is less-than-or-equal-to CWMax. Stations desiring to initiate transfer of data frames and-or Management frames using the DCF shall invoke the carrier sense.
mechanism to determine the busy-or-idle state of the medium. If the medium is busy, the STA shall defer until the medium is determined to be idle without interruption for a period of time equal to DIFS when the last frame detected on the medium was received correctly, or after the medium is determined to be idle without interruption for a period of time equal to EIFS when the last frame detected on the medium was not received correctly. After this DIFS or EIFS medium idle time, the STA shall then generate a random backoff period for an additional deferral time before transmitting. [IEEE.802.11-2016] Section 10.3.3.

RF: Radio Frequency.

SIFS: Short Interframe Space. An IFS used before transmission of specific frames as defined in [IEEE.802.11-2016] Section 10.3.2.3.3.

Slot Time: A unit of time used to count time intervals in 802.11 networks, and defined in [IEEE.802.11-2016] Section 10.3.2.13.

Trust: From a QoS-perspective, trust refers to the accepting of the QoS markings of a packet by a network device. Trust is typically extended at Layer 3 (by accepting the DSCP), but may also be extended at lower layers, such as at Layer 2 by accepting User Priority markings. For example, if an access point is configured to trust DSCP markings and it receives a packet marked EF, then it would treat the packet with the Expedite Forwarding PHB and propagate the EF marking value (DSCP 46) as it transmits the packet. Alternatively, if a network device is configured to operate in an untrusted manner, then it would remark packets as these entered the device, typically to DF (or to a different marking value at the network administrator’s preference). Note: The terms "trusted" and "untrusted" are used extensively in [RFC4594].

UP: User Priority. A value associated with a medium access control (MAC) service data unit (MSDU) that indicates how the MSDU is to be handled. The UP is assigned to an MSDU in the layers above the MAC [IEEE.802.11-2016] Section 3.1. The UP defines a level of priority for the associated frame, on a scale of 0 to 7.

Wi-Fi: An interoperability certification defined by the Wi-Fi Alliance. However, this term is commonly used, including in the present document, to be the equivalent of IEEE 802.11.

Wireless: In the context of this document, "wireless" refers to the media defined in IEEE 802.11 [IEEE.802.11-2016], and not 3G/4G LTE or any other radio telecommunications specification.
2. Service Comparison and Default Interoperation of Diffserv and IEEE 802.11

(Section 6 provides a brief overview of IEEE 802.11 QoS.)

The following comparisons between IEEE 802.11 and Diffserv services should be noted:

- [IEEE.802.11-2016] does not support an EF PHB service [RFC3246], as it is not possible to assure that a given access category will be serviced with strict priority over another (due to the random element within the contention process).

- [IEEE.802.11-2016] does not support an AF PHB service [RFC2597], again because it is not possible to assure that a given access category will be serviced with a minimum amount of assured bandwidth (due to the non-deterministic nature of the contention process).

- [IEEE.802.11-2016] loosely supports a [RFC2474] Default Forwarding service via the Best Effort Access Category (AC_BE).

- [IEEE.802.11-2016] loosely supports a [RFC3662] Lower Effort PDB service via the Background Access Category (AC_BK).

As such, these high-level considerations should be kept in mind when mapping from Diffserv to [IEEE.802.11-2016] (and vice-versa); however, access points may or may not always be positioned at Diffserv domain boundaries, as will be discussed next.

2.1. Diffserv Domain Boundaries

It is important to recognize that the wired-to-wireless edge may or may not function as an edge of a Diffserv domain or a domain boundary.

In most commonly-deployed WLAN models, the wireless access point represents not only the edge of the Diffserv domain, but also the edge of the network infrastructure itself. As such, only client endpoint devices (and no network infrastructure devices) are downstream from the access points in these deployment models. Note: security considerations and recommendations for hardening such Wifi-at-the-edge deployment models are detailed in Section 8; these recommendations include mapping network control protocols (which are not used downstream from the AP in this deployment model) to UP 0.

Alternatively, in other deployment models, such as Wi-Fi backhaul, wireless mesh infrastructures, wireless AP-to-AP deployments, or in
cases where a Wi-Fi link connects to a device providing service via another technology (e.g. Wi-Fi to Bluetooth or Zigbee router), the wireless access point extends the network infrastructure and thus, typically, the Diffserv domain. In such deployments, both client devices and infrastructure devices may be expected downstream from the access points, and as such network control protocols are RECOMMENDED to be mapped to UP 7 in this deployment model, as is discussed in Section 4.1.1.

Thus, as can be seen from these two examples, the QoS treatment of packets at the access point will depend on the position of the AP in the network infrastructure and on the WLAN deployment model.

However, regardless of the access point being at the Diffserv boundary or not, Diffserv to [IEEE.802.11-2016] (and vice-versa) marking-specific incompatibilities exist that must be reconciled, as will be discussed next.

2.2. EDCF Queuing

[IEEE.802.11-2016] displays a reference implementation queuing model in Figure 10-24, which depicts four transmit queues, one per access category.

However, in practical implementations, it is common for WLAN network equipment vendors to implement dedicated transmit queues on a per-UP (versus a per access category) basis, which are then dequeued into their associated access category in a preferred (or even in a strict priority manner). For example, it is common for vendors to dequeue UP 5 ahead of UP 4 to the hardware performing the EDCA function (EDCAF) for the Video Access Category (AC_VI).

Some of the recommendations made in Section 4 make reference to this common implementation model of queuing per UP.

2.3. Default DSCP-to-UP Mappings and Conflicts

While no explicit guidance is offered in mapping (6-Bit) Layer 3 DSCP values to (3-Bit) Layer 2 markings (such as IEEE 802.1D, 802.1p or 802.11e), a common practice in the networking industry is to map these by what we will refer to as ‘Default DSCP-to-UP Mapping’ (for lack of a better term), wherein the 3 Most Significant Bits (MSB) of the DSCP are used as the corresponding L2 markings.

Note: There are mappings provided in [IEEE.802.11-2016] Annex V Tables V-1 and V2, but it bears mentioning that these mappings are provided as examples (as opposed to explicit recommendations). Furthermore, some of these mappings do not align with the intent and
recommendations expressed in [RFC4594], as will be discussed in this and the following section (Section 2.4).

However, when this default DSCP-to-UP mapping method is applied to packets marked per [RFC4594] recommendations and destined to 802.11 WLAN clients, it will yield a number of inconsistent QoS mappings, specifically:

- **Voice (EF-101110)** will be mapped to UP 5 (101), and treated in the Video Access Category (AC_VI), rather than the Voice Access Category (AC_VO), for which it is intended.

- **Multimedia Streaming (AF3-011xx0)** will be mapped to UP3 (011) and treated in the Best Effort Access Category (AC_BE), rather than the Video Access Category (AC_VI), for which it is intended.

- **Broadcast Video (CS3-011000)** will be mapped to UP3 (011) and treated in the Best Effort Access Category (AC_BE), rather than the Video Access Category (AC_VI), for which it is intended.

- **OAM traffic (CS2-010000)** will be mapped to UP 2 (010) and treated in the Background Access Category (AC_BK), which is not the intent expressed in [RFC4594] for this service class.

It should also be noted that while [IEEE.802.11-2016] defines an intended use for each access category through the AC naming convention (for example, UP 6 and UP 7 belong to AC_VO, the Voice Access Category), [IEEE.802.11-2016] does not:

- define how upper layer markings (such as DSCP) should map to UPs (and hence to ACs)

- define how UPs should translate to other medium Layer 2 QoS markings

- strictly restrict each access category to applications reflected in the AC name

2.4. Default UP-to-DSCP Mappings and Conflicts

In the opposite direction of flow (the upstream direction, that is, from wireless-to-wired), many APs use what we will refer to as ‘Default UP-to-DSCP Mapping’ (for lack of a better term), wherein DSCP values are derived from UP values by multiplying the UP values by 8 (i.e. shifting the 3 UP bits to the left and adding three additional zeros to generate a DSCP value). This derived DSCP value is then used for QoS treatment between the wireless access point and the nearest classification and marking policy enforcement point.
(which may be the centralized wireless LAN controller, relatively deep within the network). Alternatively, in the case where there is no other classification and marking policy enforcement point, then this derived DSCP value will be used on the remainder of the Internet path.

It goes without saying that when 6 bits of marking granularity are derived from 3, then information is lost in translation. Servicing differentiation cannot be made for 12 classes of traffic (as recommended in [RFC4594]), but for only 8 (with one of these classes being reserved for future use (i.e. UP 7 which maps to DSCP CS7).

Such default upstream mapping can also yield several inconsistencies with [RFC4594], including:

- Mapping UP 6 ([RFC4594] Voice) to CS6, which [RFC4594] recommends for Network Control
- Mapping UP 4 ([RFC4594] Multimedia Conferencing and/or Real-Time Interactive) to CS4, thus losing the ability to differentiate between these two distinct service classes, as recommended in [RFC4594] Sections 4.3 and 4.4
- Mapping UP 3 ([RFC4594] Multimedia Streaming and/or Broadcast Video) to CS3, thus losing the ability to differentiate between these two distinct service classes, as recommended in [RFC4594] Sections 4.5 and 4.6
- Mapping UP 2 ([RFC4594] Low-Latency Data and/or OAM) to CS2, thus losing the ability to differentiate between these two distinct service classes, as recommended in [RFC4594] Sections 4.7 and 3.3, and possibly overwhelming the queues provisioned for OAM (which is typically lower in capacity [being network control traffic], as compared to Low-Latency Data queues [being user traffic])
- Mapping UP 1 ([RFC4594] High-Throughput Data and/or Low-Priority Data) to CS1, thus losing the ability to differentiate between these two distinct service classes, as recommended in [RFC4594] Sections 4.8 and 4.10, and causing legitimate business-relevant High-Throughput Data to receive a [RFC3662] Lower Effort PDB, for which it is not intended

The following sections address these limitations and concerns in order to reconcile [RFC4594] and [IEEE.802.11-2016]. First downstream (wired-to-wireless) DSCP-to-UP mappings will be aligned and then upstream (wireless-to-wired) models will be addressed.
3. Wireless Device Marking and Mapping Capability Recommendations

This document assumes and RECOMMENDS that all wireless access points (as the interconnects between wired-and-wireless networks) support the ability to:

- mark DSCP, per Diffserv standards
- mark UP, per the [IEEE.802.11-2016] standard
- support fully-configurable mappings between DSCP and UP
- process DSCP markings set by wireless endpoint devices

This document further assumes and RECOMMENDS that all wireless endpoint devices support the ability to:

- mark DSCP, per Diffserv standards
- mark UP, per the [IEEE.802.11-2016] standard
- support fully-configurable mappings between DSCP (set by applications in software) and UP (set by the operating system and/or wireless network interface hardware drivers)

Having made the assumptions and recommendations above, it bears mentioning while the mappings presented in this document are RECOMMENDED to replace the current common default practices (as discussed in Section 2.3 and Section 2.4), these mapping recommendations are not expected to fit every last deployment model, and as such MAY be overridden by network administrators, as needed.

4. DSCP-to-UP Mapping Recommendations

The following section specifies downstream (wired-to-wireless) mappings between [RFC4594] Configuration Guidelines for Diffserv Service Classes and [IEEE.802.11-2016]. As such, this section draws heavily from [RFC4594], including service class definitions and recommendations.

This section assumes [IEEE.802.11-2016] wireless access points and/or WLAN controllers that support customizable, non-default DSCP-to-UP mapping schemes.

This section also assumes that [IEEE.802.11-2016] access points and endpoint devices differentiate UP markings with corresponding queuing and dequeuing treatments, as described in Section 2.2.
4.1. Network Control Traffic

Network control traffic is defined as packet flows that are essential for stable operation of the administered network [RFC4594] Section 3. Network control traffic is different from user application control (signaling) that may be generated by some applications or services. Network control traffic MAY be split into two service classes:

- Network Control, and
- Operations Administration and Management (OAM)

4.1.1. Network Control Protocols

The Network Control service class is used for transmitting packets between network devices (e.g. routers) that require control (routing) information to be exchanged between nodes within the administrative domain, as well as across a peering point between different administrative domains.

[RFC4594] Section 3.2 recommends that Network Control traffic be marked CS6 DSCP. Additionally, as stated in [RFC4594] Section 3.1: "CS7 DSCP value SHOULD be reserved for future use, potentially for future routing or control protocols."

By default (as described in Section 2.3), packets marked DSCP CS7 will be mapped to UP 7 and serviced within the Voice Access Category (AC_VO). This represents the RECOMMENDED mapping for CS7, that is, packets marked to CS7 DSCP are RECOMMENDED to be mapped to UP 7.

However, by default (as described in Section 2.3), packets marked DSCP CS6 will be mapped to UP 6 and serviced within the Voice Access Category (AC_VO); such mapping and servicing is a contradiction to the intent expressed in [RFC4594] Section 3.2. As such, it is RECOMMENDED to map Network Control traffic marked CS6 to UP 7 (per [IEEE.802.11-2016] Section 10.2.4.2, Table 10-1), thereby admitting it to the Voice Access Category (AC_VO), albeit with a marking distinguishing it from (data-plane) voice traffic.

It should be noted that encapsulated routing protocols for encapsulated or overlay networks (e.g., VPN, Network Virtualization Overlays, etc.) are not network control traffic for any physical network at the AP, and hence SHOULD NOT be marked with CS6 in the first place.

Additionally, and as previously noted, the Security Considerations section (Section 8) contains additional recommendations for hardening Wifi-at-the-edge deployment models, where, for example, network...
control protocols are not expected to be sent nor received between APs and downstream endpoint client devices.

4.1.2. Operations Administration Management (OAM)

The OAM (Operations, Administration, and Management) service class is recommended for OAM&P (Operations, Administration, and Management and Provisioning). The OAM service class can include network management protocols, such as SNMP, SSH, TFTP, Syslog, etc., as well as network services, such as NTP, DNS, DHCP, etc. [RFC4594] Section 3.3 recommends that OAM traffic be marked CS2 DSCP.

By default (as described in Section 2.3), packets marked DSCP CS2 will be mapped to UP 2 and serviced with the Background Access Category (AC_BK). Such servicing is a contradiction to the intent expressed in [RFC4594] Section 3.3. As such, it is RECOMMENDED that a non-default mapping be applied to OAM traffic, such that CS2 DSCP is mapped to UP 0, thereby admitting it to the Best Effort Access Category (AC_BE).

4.2. User Traffic

User traffic is defined as packet flows between different users or subscribers. It is the traffic that is sent to or from end-terminals and that supports a very wide variety of applications and services [RFC4594] Section 4.

Network administrators can categorize their applications according to the type of behavior that they require and MAY choose to support all or a subset of the defined service classes.

4.2.1. Telephony

The Telephony service class is recommended for applications that require real-time, very low delay, very low jitter, and very low packet loss for relatively constant-rate traffic sources (inelastic traffic sources). This service class SHOULD be used for IP telephony service. The fundamental service offered to traffic in the Telephony service class is minimum jitter, delay, and packet loss service up to a specified upper bound. [RFC4594] Section 4.1 recommends that Telephony traffic be marked EF DSCP.

Traffic marked to DSCP EF will map by default (as described in Section 2.3) to UP 5, and thus to the Video Access Category (AC_VI), rather than to the Voice Access Category (AC_VO), for which it is intended. Therefore, a non-default DSCP-to-UP mapping is RECOMMENDED, such that EF DSCP is mapped to UP 6, thereby admitting it into the Voice Access Category (AC_VO).
Similarly, the [RFC5865] VOICE-ADMIT DSCP (44/101100) is RECOMMENDED to be mapped to UP 6, thereby admitting it also into the Voice Access Category (AC_VO).

4.2.2. Signaling

The Signaling service class is recommended for delay-sensitive client-server (e.g. traditional telephony) and peer-to-peer application signaling. Telephony signaling includes signaling between IP phone and soft-switch, soft-client and soft-switch, and media gateway and soft-switch as well as peer-to-peer using various protocols. This service class is intended to be used for control of sessions and applications. [RFC4594] Section 4.2 recommends that Signaling traffic be marked CS5 DSCP.

While Signaling is recommended to receive a superior level of service relative to the default class (i.e. AC_BE), it does not require the highest level of service (i.e. AC_VO). This leaves only the Video Access Category (AC_VI), which it will map to by default (as described in Section 2.3). Therefore it is RECOMMENDED to map Signaling traffic marked CS5 DSCP to UP 5, thereby admitting it to the Video Access Category (AC_VI).

Note: Signaling traffic is not control plane traffic from the perspective of the network (but rather is data plane traffic); as such, it does not merit provisioning in the Network Control service class (marked CS6 and mapped to UP 6). However, Signaling traffic is control-plane traffic from the perspective of the voice/video telephony overlay-infrastructure. As such, Signaling should be treated with preferential servicing vs. other data plane flows. This may be achieved in common WLAN deployments by mapping Signaling traffic marked CS5 to UP 5. On APs supporting per-UP EDCAF queuing logic (as described in Section 2.2) this will result in preferential treatment for Signaling traffic versus other video flows in the same access category (AC_VI), which are marked to UP 4, as well as preferred treatment over flows in the Best Effort (AC_BE) and Background (AC_BK) access categories.

4.2.3. Multimedia Conferencing

The Multimedia Conferencing service class is recommended for applications that require real-time service for rate-adaptive traffic. [RFC4594] Section 4.3 recommends Multimedia Conferencing traffic be marked AF4x (that is, AF41, AF42 and AF43, according to the rules defined in [RFC2475]).

The primary media type typically carried within the Multimedia Conferencing service class is video; as such, it is RECOMMENDED to
map this class into the Video Access Category, which it does by default (as described in Section 2.3). Specifically, it is RECOMMENDED to map AF41, AF42 and AF43 to UP 4, thereby admitting Multimedia Conferencing into the Video Access Category (AC_VI).

4.2.4. Real-Time Interactive

The Real-Time Interactive service class is recommended for applications that require low loss and jitter and very low delay for variable rate inelastic traffic sources. Such applications may include inelastic video-conferencing applications, but may also include gaming applications (as pointed out in [RFC4594] Sections 2.1 through 2.3, and Section 4.4). [RFC4594] Section 4.4 recommends Real-Time Interactive traffic be marked CS4 DSCP.

The primary media type typically carried within the Real-Time Interactive service class is video; as such, it is RECOMMENDED to map this class into the Video Access Category, which it does by default (as described in Section 2.3). Specifically, it is RECOMMENDED to map CS4 to UP 4, thereby admitting Real-Time Interactive traffic into the Video Access Category (AC_VI).

4.2.5. Multimedia-Streaming

The Multimedia Streaming service class is recommended for applications that require near-real-time packet forwarding of variable rate elastic traffic sources. Typically these flows are unidirectional. [RFC4594] Section 4.5 recommends Multimedia Streaming traffic be marked AF3x (that is, AF31, AF32 and AF33, according to the rules defined in [RFC2475]).

The primary media type typically carried within the Multimedia Streaming service class is video; as such, it is RECOMMENDED to map this class into the Video Access Category, which it will by default (as described in Section 2.3). Specifically, it is RECOMMENDED to map AF31, AF32 and AF33 to UP 4, thereby admitting Multimedia Streaming into the Video Access Category (AC_VI).

4.2.6. Broadcast Video

The Broadcast Video service class is recommended for applications that require near-real-time packet forwarding with very low packet loss of constant rate and variable rate inelastic traffic sources. Typically these flows are unidirectional. [RFC4594] Section 4.6 recommends Broadcast Video traffic be marked CS3 DSCP.

As directly implied by the name, the primary media type typically carried within the Broadcast Video service class is video; as such,
it is RECOMMENDED to map this class into the Video Access Category; however, by default (as described in Section 2.3), this service class will map to UP 3, and thus the Best Effort Access Category (AC_BE). Therefore, a non-default mapping is RECOMMENDED, such that CS4 maps to UP 4, thereby admitting Broadcast Video into the Video Access Category (AC_VI).

4.2.7. Low-Latency Data

The Low-Latency Data service class is recommended for elastic and time-sensitive data applications, often of a transactional nature, where a user is waiting for a response via the network in order to continue with a task at hand. As such, these flows are considered foreground traffic, with delays or drops to such traffic directly impacting user-productivity. [RFC4594] Section 4.7 recommends Low-Latency Data be marked AF2x (that is, AF21, AF22 and AF23, according to the rules defined in [RFC2475]).

By default (as described in Section 2.3), Low-Latency Data will map to UP 2 and thus to the Background Access Category (AC_BK), which is contrary to the intent expressed in [RFC4594].

Mapping Low-Latency Data to UP 3 may allow such to receive a superior level of service via per-UP transmit queues servicing the EDCAF hardware for the Best Effort Access Category (AC_BE), as described in Section 2.2. Therefore it is RECOMMENDED to map Low-Latency Data traffic marked AF2x DSCP to UP 3, thereby admitting it to the Best Effort Access Category (AC_BE).

4.2.8. High-Throughput Data

The High-Throughput Data service class is recommended for elastic applications that require timely packet forwarding of variable rate traffic sources and, more specifically, is configured to provide efficient, yet constrained (when necessary) throughput for TCP longer-lived flows. These flows are typically non-user-interactive. According to [RFC4594] Section 4.8, it can be assumed that this class will consume any available bandwidth and that packets traversing congested links may experience higher queuing delays or packet loss. It is also assumed that this traffic is elastic and responds dynamically to packet loss. [RFC4594] Section 4.8 recommends High-Throughput Data be marked AF1x (that is, AF11, AF12 and AF13, according to the rules defined in [RFC2475]).

By default (as described in Section 2.3), High-Throughput Data will map to UP 1 and thus to the Background Access Category (AC_BK), which is contrary to the intent expressed in [RFC4594].
Unluckily, there really is no corresponding fit for the High-Throughput Data service class within the constrained 4 Access Category [IEEE.802.11-2016] model. If the High-Throughput Data service class is assigned to the Best Effort Access Category (AC_BE), then it would contend with Low-Latency Data (while [RFC4594] recommends a distinction in servicing between these service classes) as well as with the default service class; alternatively, if it is assigned to the Background Access Category (AC_BK), then it would receive a less-then-best-effort service and contend with Low-Priority Data (as discussed in Section 4.2.10).

As such, since there is no directly corresponding fit for the High-Throughput Data service class within the [IEEE.802.11-2016] model, it is generally RECOMMENDED to map High-Throughput Data to UP 0, thereby admitting it to the Best Effort Access Category (AC_BE).

4.2.9. Standard Service Class

The Standard service class is recommended for traffic that has not been classified into one of the other supported forwarding service classes in the Diffserv network domain. This service class provides the Internet's "best-effort" forwarding behavior. [RFC4594] Section 4.9 states that the "Standard service class MUST use the Default Forwarding (DF) PHB."

The Standard Service Class loosely corresponds to the [IEEE.802.11-2016] Best Effort Access Category (AC_BE) and therefore it is RECOMMENDED to map Standard Service Class traffic marked DF DSCP to UP 0, thereby admitting it to the Best Effort Access Category (AC_BE). This happens to correspond to the default mapping (as described in Section 2.3).

4.2.10. Low-Priority Data

The Low-Priority Data service class serves applications that the user is willing to accept without service assurances. This service class is specified in [RFC3662] and [I-D.ietf-tsvwg-le-phb].

[RFC3662] and [RFC4594] both recommend Low-Priority Data be marked CS1 DSCP.

Note: This marking recommendation may change in the future, as [I-D.ietf-tsvwg-le-phb] defines a Lower Effort (LE) per-hop behavior (PHB) for Low-Priority Data traffic and recommends an additional DSCP for this traffic.

The Low-Priority Data service class loosely corresponds to the [IEEE.802.11-2016] Background Access Category (AC_BK) and therefore
it is RECOMMENDED to map Low-Priority Data traffic marked CS1 DSCP to
UP 1, thereby admitting it to the Background Access Category (AC_BK).
This happens to correspond to the default mapping (as described in
Section 2.3).

4.3. DSCP-to-UP Mapping Recommendations Summary

Figure 1 summarizes the [RFC4594] DSCP marking recommendations mapped
to [IEEE.802.11-2016] UP and access categories applied in the
downstream direction (i.e. from wired-to-wireless networks).
5. Upstream Mapping and Marking Recommendations

In the upstream direction (i.e. wireless-to-wired), there are three types of mapping that may be implemented:

- DSCP-to-UP mapping within the wireless client operating system, and
- UP-to-DSCP mapping at the wireless access point, or
- DSCP-Passthrough at the wireless access point (effectively a 1:1 DSCP-to-DSCP mapping)

As an alternative to the latter two options, the network administrator MAY choose to use the wireless-to-wired edge as a DiffServ boundary and explicitly set (or reset) DSCP markings according to administrative policy, thus making the wireless edge a DiffServ policy enforcement point; this approach is RECOMMENDED whenever the APs support the required classification and marking capabilities.

Each of these options will now be considered.
5.1. Upstream DSCP-to-UP Mapping within the Wireless Client Operating System

Some operating systems on wireless client devices utilize a similar default DSCP-to-UP mapping scheme as described in Section 2.3. As such, this can lead to the same conflicts as described in that section, but in the upstream direction.

Therefore, to improve on these default mappings, and to achieve parity and consistency with downstream QoS, it is RECOMMENDED that wireless client operating systems utilize instead the same DSCP-to-UP mapping recommendations presented in Section 4, with the explicit RECOMMENDATION that packets requesting a marking of CS6 or CS7 DSCP SHOULD be mapped to UP 0 (and not to UP 7). Furthermore, in such cases the wireless client operating system SHOULD remark such packets to DSCP 0. This is because CS6 and CS7 DSCP, as well as UP 7 markings, are intended for network control protocols and these SHOULD NOT be sourced from wireless client endpoint devices. This recommendation is detailed in the Security Considerations section (Section 8).

5.2. Upstream UP-to-DSCP Mapping at the Wireless Access Point

UP-to-DSCP mapping generates a DSCP value for the IP packet (either an unencapsulated IP packet or an IP packet encapsulated within a tunneling protocol such as CAPWAP - and destined towards a wireless LAN controller for decapsulation and forwarding) from the Layer 2 [IEEE.802.11-2016] UP marking. This is typically done in the manner described in Section 2.4.

It should be noted that any explicit remarking policy to be performed on such a packet only takes place at the nearest classification and marking policy enforcement point, which may be:

- At the wireless access point
- At the wired network switch port
- At the wireless LAN controller

As such, UP-to-DSCP mapping allows for wireless L2 markings to affect the QoS treatment of a packet over the wired IP network (that is, until the packet reaches the nearest classification and marking policy enforcement point).

It should be further noted that nowhere in the [IEEE.802.11-2016] specifications is there an intent expressed for UP markings to be used to influence QoS treatment over wired IP networks. Furthermore,
[RFC2474], [RFC2475] and [RFC8100] all allow for the host to set DSCP markings for end-to-end QoS treatment over IP networks. Therefore, wireless access points MUST NOT leverage Layer 2 [IEEE.802.11-2016] UP markings as set by wireless hosts and subsequently perform a UP-to-DSCP mapping in the upstream direction. But rather, if wireless host markings are to be leveraged (as per business requirements, technical constraints and administrative policies), then it is RECOMMENDED to pass through the Layer 3 DSCP markings set by these wireless hosts instead, as is discussed in the next section.

5.3. Upstream DSCP-Passthrough at the Wireless Access Point

It is generally NOT RECOMMENDED to pass through DSCP markings from unauthenticated and unauthorized devices, as these are typically considered untrusted sources.

When business requirements and/or technical constraints and/or administrative policies require QoS markings to be passed through at the wireless edge, then it is RECOMMENDED to pass through Layer 3 DSCP markings (over Layer 2 [IEEE.802.11-2016] UP markings) in the upstream direction, with the exception of CS6 and CS7 (as will be discussed further), for the following reasons:

- [RFC2474], [RFC2475] and [RFC8100] all allow for hosts to set DSCP markings to achieve an end-to-end differentiated service
- [IEEE.802.11-2016] does not specify that UP markings are to be used to affect QoS treatment over wired IP networks
- Most present wireless device operating systems generate UP values by the same method as described in Section 2.3 (i.e. by using the 3 MSB of the encapsulated 6-bit DSCP); then, at the access point, these 3-bit markings are converted back into DSCP values, typically in the default manner described in Section 2.4; as such, information is lost in the translation from a 6-bit marking to a 3-bit marking (which is then subsequently translated back to a 6-bit marking); passing through the original (encapsulated) DSCP marking prevents such loss of information
- A practical implementation benefit is also realized by passing through the DSCP set by wireless client devices, as enabling applications to mark DSCP is much more prevalent and accessible to programmers of applications running on wireless device platforms, vis-a-vis trying to explicitly set UP values, which requires special hooks into the wireless device operating system and/or hardware device drivers, many of which do not support such functionality
CS6 and CS7 are exceptions to this pass through recommendation because wireless hosts SHOULD NOT use them (see Section 5.1) and traffic with those two markings poses a threat to operation of the wired network (see Section 8.2). CS6 and CS7 SHOULD NOT be passed through to the wired network in the upstream direction unless the access point has been specifically configured to do that by a network administrator or operator.

5.4. Upstream DSCP Marking at the Wireless Access Point

An alternative option to mapping is for the administrator to treat the wireless edge as the edge of the Diffserv domain and explicitly set (or reset) DSCP markings in the upstream direction according to administrative policy. This option is RECOMMENDED over mapping, as this typically is the most secure solution, as the network administrator directly enforces the Diffserv policy across the IP network (versus an application developer and/or the wireless endpoint device operating system developer, who may be functioning completely independently of the network administrator).

6. IEEE 802.11 QoS Overview

QoS is enabled on wireless networks by means of the Hybrid Coordination Function (HCF). To give better context to the enhancements in HCF that enable QoS, it may be helpful to begin with a review of the original Distributed Coordination Function (DCF).

6.1. Distributed Coordination Function (DCF)

As has been noted, the Wi-Fi medium is a shared medium, with each station—including the wireless access point—contending for the medium on equal terms. As such, it shares the same challenge as any other shared medium in requiring a mechanism to prevent (or avoid) collisions which can occur when two (or more) stations attempt simultaneous transmission.

The IEEE Ethernet working group solved this challenge by implementing a Carrier Sense Multiple Access/Collision Detection (CSMA/CD) mechanism that could detect collisions over the shared physical cable (as collisions could be detected as reflected energy pulses over the physical wire). Once a collision was detected, then a pre-defined set of rules was invoked that required stations to back off and wait random periods of time before re-attempting transmission. While CSMA/CD improved the usage of Ethernet as a shared medium, it should be noted the ultimate solution to solving Ethernet collisions was the advance of switching technologies, which treated each Ethernet cable as a dedicated collision domain.
However, unlike Ethernet (which uses physical cables), collisions cannot be directly detected over the wireless medium, as RF energy is radiated over the air and colliding bursts are not necessarily reflected back to the transmitting stations. Therefore, a different mechanism is required for this medium.

As such, the IEEE modified the CSMA/CD mechanism to adapt it to wireless networks to provide Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA). The original CSMA/CA mechanism used in IEEE 802.11 was the Distributed Coordination Function. DCF is a timer-based system that leverages three key sets of timers, the slot time, interframe spaces and contention windows.

6.1.1. Slot Time

The slot time is the basic unit of time measure for both DCF and HCF, on which all other timers are based. The slot time duration varies with the different generations of data-rates and performances described by the [IEEE.802.11-2016] standard. For example, the [IEEE.802.11-2016] standard specifies the slot time to be 20 us ([IEEE.802.11-2016] Table 15-5) for legacy implementations (such as IEEE 802.11b, supporting 1, 2, 5.5 and 11 Mbps data rates), while newer implementations (including IEEE 802.11g, 802.11a, 802.11n and 802.11ac, supporting data rates from 6.5 Mbps to over 2 Gbps per spatial stream) define a shorter slot time of 9 us ([IEEE.802.11-2016], Section 17.4.4, Table 17-21).

6.1.2. Interframe Spaces

The time interval between frames that are transmitted over the air is called the Interframe Space (IFS). Several IFS are defined in [IEEE.802.11-2016], with the most relevant to DCF being the Short Interframe Space (SIFS), the DCF Interframe Space (DIFS) and the Extended Interframe Space (EIFS).

The SIFS is the amount of time in microseconds required for a wireless interface to process a received RF signal and its associated [IEEE.802.11-2016] frame and to generate a response frame. Like slot times, the SIFS can vary according to the performance implementation of the [IEEE.802.11-2016] standard. The SIFS for IEEE 802.11a, 802.11n and 802.11ac (in 5 GHz) is 16 us ([IEEE.802.11-2016], Section 17.4.4, Table 17-21).

Additionally, a station must sense the status of the wireless medium before transmitting. If it finds that the medium is continuously idle for the duration of a DIFS, then it is permitted to attempt transmission of a frame (after waiting an additional random backoff period, as will be discussed in the next section). If the channel is
found busy during the DIFS interval, the station must defer its transmission until the medium is found idle for the duration of a DIFS interval. The DIFS is calculated as:

\[
\text{DIFS} = \text{SIFS} + (2 \times \text{Slot time})
\]

However, if all stations waited only a fixed amount of time before attempting transmission then collisions would be frequent. To offset this, each station must wait, not only a fixed amount of time (the DIFS), but also a random amount of time (the random backoff) prior to transmission. The range of the generated random backoff timer is bounded by the Contention Window.

\subsection*{6.1.3. Contention Windows}

Contention windows bound the range of the generated random backoff timer that each station must wait (in addition to the DIFS) before attempting transmission. The initial range is set between 0 and the Contention Window minimum value (CWmin), inclusive. The CWmin for DCF (in 5 GHz) is specified as 15 slot times ([IEEE.802.11-2016], Section 17.4.4, Table 17-21).

However, it is possible that two (or more) stations happen to pick the exact same random value within this range. If this happens then a collision may occur. At this point, the stations effectively begin the process again, waiting a DIFS and generate a new random backoff value. However, a key difference is that for this subsequent attempt, the Contention Window approximatively doubles in size (thus exponentially increasing the range of the random value). This process repeats as often as necessary if collisions continue to occur, until the maximum Contention Window size (CWmax) is reached. The CWmax for DCF is specified as 1023 slot times ([IEEE.802.11-2016], Section 17.4.4, Table 17-21).

At this point, transmission attempts may still continue (until some other pre-defined limit is reached), but the Contention Window sizes are fixed at the CWmax value.

Incidentally it may be observed that a significant amount of jitter can be introduced by this contention process for wireless transmission access. For example, the incremental transmission delay of 1023 slot times (CWmax) using 9 us slot times may be as high as 9 ms of jitter per attempt. And, as previously noted, multiple attempts can be made at CWmax.
6.2. Hybrid Coordination Function (HCF)

Therefore, as can be seen from the preceding description of DCF, there is no preferential treatment of one station over another when contending for the shared wireless media; nor is there any preferential treatment of one type of traffic over another during the same contention process. To support the latter requirement, the IEEE enhanced DCF in 2005 to support QoS, specifying HCF in IEEE 802.11, which was integrated into the main IEEE 802.11 standard in 2007.

6.2.1. User Priority (UP)

One of the key changes to the [IEEE.802.11-2016] frame format is the inclusion of a QoS Control field, with 3 bits dedicated for QoS markings. These bits are referred to the User Priority (UP) bits and these support eight distinct marking values: 0-7, inclusive.

While such markings allow for frame differentiation, these alone do not directly affect over-the-air treatment. Rather it is the non-configurable and standard-specified mapping of UP markings to [IEEE.802.11-2016] Access Categories (AC) that generate differentiated treatment over wireless media.

6.2.2. Access Category (AC)

Pairs of UP values are mapped to four defined access categories that correspondingly specify different treatments of frames over the air. These access categories (in order of relative priority from the top down) and their corresponding UP mappings are shown in Figure 2 (adapted from [IEEE.802.11-2016], Section 10.2.4.2, Table 10-1).
<table>
<thead>
<tr>
<th>User Priority</th>
<th>Access Category</th>
<th>Designative (informative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>AC_VO</td>
<td>Voice</td>
</tr>
<tr>
<td>6</td>
<td>AC_VO</td>
<td>Voice</td>
</tr>
<tr>
<td>5</td>
<td>AC_VI</td>
<td>Video</td>
</tr>
<tr>
<td>4</td>
<td>AC_VI</td>
<td>Video</td>
</tr>
<tr>
<td>3</td>
<td>AC_BE</td>
<td>Best Effort</td>
</tr>
<tr>
<td>0</td>
<td>AC_BE</td>
<td>Best Effort</td>
</tr>
<tr>
<td>2</td>
<td>AC_BK</td>
<td>Background</td>
</tr>
<tr>
<td>1</td>
<td>AC_BK</td>
<td>Background</td>
</tr>
</tbody>
</table>

Figure 2: IEEE 802.11 Access Categories and User Priority Mappings

The manner in which these four access categories achieve differentiated service over-the-air is primarily by tuning the fixed and random timers that stations have to wait before sending their respective types of traffic, as will be discussed next.

6.2.3. Arbitration Inter-Frame Space (AIFS)

As previously mentioned, each station must wait a fixed amount of time to ensure the medium is idle before attempting transmission. With DCF, the DIFS is constant for all types of traffic. However, with [IEEE.802.11-2016] the fixed amount of time that a station has to wait will depend on the access category and is referred to as an Arbitration Interframe Space (AIFS). AIFS are defined in slot times and the AIFS per access category are shown in Figure 3 (adapted from [IEEE.802.11-2016], Section 9.4.2.29, Table 9-137).
<table>
<thead>
<tr>
<th>Access Category</th>
<th>Designative (informative)</th>
<th>AIFS (slot times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_VO</td>
<td>Voice</td>
<td>2</td>
</tr>
<tr>
<td>AC_VI</td>
<td>Video</td>
<td>2</td>
</tr>
<tr>
<td>AC_BE</td>
<td>Best Effort</td>
<td>3</td>
</tr>
<tr>
<td>AC_BK</td>
<td>Background</td>
<td>7</td>
</tr>
</tbody>
</table>

Figure 3: Arbitration Interframe Spaces by Access Category

6.2.4. Access Category Contention Windows (CW)

Not only is the fixed amount of time that a station has to wait skewed according to [IEEE.802.11-2016] access category, but so are the relative sizes of the Contention Windows that bound the random backoff timers, as shown in Figure 4 (adapted from [IEEE.802.11-2016], Section 9.4.2.29, Table 9-137).

<table>
<thead>
<tr>
<th>Access Category</th>
<th>Designative (informative)</th>
<th>CWmin (slot times)</th>
<th>CWmax (slot times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_VO</td>
<td>Voice</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>AC_VI</td>
<td>Video</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>AC_BE</td>
<td>Best Effort</td>
<td>15</td>
<td>1023</td>
</tr>
<tr>
<td>AC_BK</td>
<td>Background</td>
<td>15</td>
<td>1023</td>
</tr>
</tbody>
</table>

Figure 4: Contention Window Sizes by Access Category

When the fixed and randomly generated timers are added together on a per access category basis, then traffic assigned to the Voice Access Category (i.e. traffic marked to UP 6 or 7) will receive a statistically superior service relative to traffic assigned to the Video Access Category (i.e. traffic marked UP 5 and 4), which, in turn, will receive a statistically superior service relative to traffic assigned to the Best Effort Access Category traffic (i.e. traffic marked UP 3 and 2).
traffic marked UP 3 and 0), which finally will receive a statistically superior service relative to traffic assigned to the Background Access Category traffic (i.e. traffic marked to UP 2 and 1).

6.3. IEEE 802.11u QoS Map Set

IEEE 802.11u [IEEE.802-11u.2011] is an addendum that has now been included within the main [IEEE.802.11-2016] standard, and which includes, among other enhancements, a mechanism by which wireless access points can communicate DSCP to/from UP mappings that have been configured on the wired IP network. Specifically, a QoS Map Set information element (described in [IEEE.802.11-2016] Section 9.4.2.95 and commonly referred to as the QoS Map element) is transmitted from an AP to a wireless endpoint device in an association / re-association Response frame (or within a special QoS Map Configure frame).

The purpose of the QoS Map element is to provide the mapping of higher layer Quality of Service constructs (i.e. DSCP) to User Priorities. One intended effect of receiving such a map is for the wireless endpoint device (that supports this function and is administratively configured to enable it) to perform corresponding DSCP-to-UP mapping within the device (i.e. between applications and the operating system / wireless network interface hardware drivers) to align with what the APs are mapping in the downstream direction, so as to achieve consistent end-to-end QoS in both directions.

The QoS Map element includes two key components:

1) each of the eight UP values (0-7) are associated with a range of DSCP values, and

2) (up to 21) exceptions from these range-based DSCP to/from UP mapping associations may be optionally and explicitly specified.

In line with the recommendations put forward in this document, the following recommendations apply when the QoS Map element is enabled:

1) each of the eight UP values (0-7) are RECOMMENDED to be mapped to DSCP 0 (as a baseline, so as to meet the recommendation made in Section 8.2

2) (up to 21) exceptions from this baseline mapping are RECOMMENDED to be made in line with Section 4.3, to correspond to the Diffserv Codepoints that are in use over the IP network.
It is important to note that the QoS Map element is intended to be transmitted from a wireless access point to a non-AP station. As such, the model where this element is used is that of a network where the AP is the edge of the Diffserv domain. Networks where the AP extends the Diffserv domain by connecting other APs and infrastructure devices through the IEEE 802.11 medium are not included in the cases covered by the presence of the QoS Map element, and therefore are not included in the present recommendation.

7. IANA Considerations

This memo asks the IANA for no new parameters.

8. Security Considerations

The recommendations in this document concern widely-deployed wired and wireless network functionality, and for that reason do not present additional security concerns that do not already exist in these networks. In fact, several of the recommendations made in this document serve to protect wired and wireless networks from potential abuse, as is discussed further in this section.

8.1. General QoS Security Recommendations

It may be possible for a wired or wireless device (which could be either a host or a network device) to mark packets (or map packet markings) in a manner that interferes with or degrades existing QoS policies. Such marking or mapping may be done intentionally or unintentionally by developers and/or users and/or administrators of such devices.

To illustrate: A gaming application designed to run on a smart-phone or tablet may request that all its packets be marked DSCP EF and/or UP 6. However, if the traffic from such an application is forwarded without change over a business network, then this could interfere with QoS policies intended to provide priority services for business voice applications.

To mitigate such scenarios it is RECOMMENDED to implement general QoS security measures, including:

- Setting a traffic conditioning policy reflective of business objectives and policy, such that traffic from authorized users and/applications and/or endpoints will be accepted by the network; otherwise packet markings will be "bleached" (i.e. remarked to DSCP DF and/or UP 0). Additionally, Section 5.3 made it clear that it is generally NOT RECOMMENDED to pass through DSCP markings from unauthorized and/or unauthenticated devices, as
these are typically considered untrusted sources. This is especially relevant for IoT deployments, where tens-of-billions of devices are being connected to IP networks with little or no security capabilities (making such vulnerable to be utilized as agents for DDoS attacks, the effects of which can be amplified with preferential QoS treatments, should the packet markings of such devices be trusted).

- Policing EF marked packet flows, as detailed in [RFC2474] Section 7 and [RFC3246] Section 3.

In addition to these general QoS security recommendations, WLAN-specific QoS security recommendations can serve to further mitigate attacks and potential network abuse.

8.2. WLAN QoS Security Recommendations

The wireless LAN presents a unique DoS attack vector, as endpoint devices contend for the shared media on a completely egalitarian basis with the network (as represented by the AP). This means that any wireless client could potentially monopolize the air by sending packets marked to preferred UP values (i.e. UP values 4-7) in the upstream direction. Similarly, airtime could be monopolized if excessive amounts of downstream traffic were marked/mapped to these same preferred UP values. As such, the ability to mark/map to these preferred UP values (of UP 4-7) should be controlled.

If such marking/mapping were not controlled, then, for example, a malicious user could cause WLAN DoS by flooding traffic marked CS7 DSCP downstream. This codepoint would map by default (as described in Section 2.3) to UP 7 and would be assigned to the Voice Access Category (AC_VO). Such a flood could cause Denial-of-Service to not only wireless voice applications, but also to all other traffic classes. Similarly, an uninformed application developer may request all traffic from his/her application to be marked CS7 or CS6, thinking this would achieve in the best overall servicing of their application traffic, while not realizing that such a marking (if honored by the client operating system) could cause not only WLAN DoS, but also IP network instability, as the traffic marked CS7 or CS6 finds its way into queues intended for servicing (relatively low-bandwidth) network control protocols, potentially starving legitimate network control protocols in the process.

Therefore, to mitigate such an attack, it is RECOMMENDED that all packets marked to Diffserv Codepoints not authorized or explicitly provisioned for use over the wireless network by the network administrator be mapped to UP 0; this recommendation applies both at the access point (in the downstream direction) and within the...
wireless endpoint device operating system (in the upstream direction).

Such a policy of mapping unused codepoints to UP 0 would also prevent an attack where non-standard codepoints were used to cause WLAN DoS. Consider the case where codepoints are mapped to UP values using a range function (e.g. DSCP values 48-55 all map to UP 6), then an attacker could flood packets marked, for example to DSCP 49, in either the upstream or downstream direction over the WLAN, causing DoS to all other traffic classes in the process.

In the majority of WLAN deployments, the AP represents not only the edge of the Diffserv domain, but also the edge of the network infrastructure itself; that is, only wireless client endpoint devices are downstream from the AP. In such a deployment model, CS6 and CS7 also fall into the category of codepoints that are not in use over the wireless LAN (since only wireless endpoint client devices are downstream from the AP in this model and these devices do not [legitimately] participate in network control protocol exchanges). As such, it is RECOMMENDED that CS6 and CS7 DSCP be mapped to UP 0 in these Wi-Fi-at-the-edge deployment models. Otherwise, it would be easy for a malicious application developer, or even an inadvertently poorly-programmed IoT device, to cause WLAN DoS and even wired IP network instability by flooding traffic marked CS6 DSCP, which would by default (as described in Section 2.3) be mapped to UP 6, causing all other traffic classes on the WLAN to be starved, as well hijacking queues on the wired IP network that are intended for the servicing of routing protocols. To this point, it was also recommended in Section 5.1 that packets requesting a marking of CS6 or CS7 DSCP SHOULD be remarked to DSCP 0 and mapped to UP 0 by the wireless client operating system.

Finally, it should be noted that the recommendations put forward in this document are not intended to address all attack vectors leveraging QoS marking abuse. Mechanisms that may further help mitigate security risks of both wired and wireless networks deploying QoS include strong device- and/or user-authentication, access-control, rate limiting, control-plane policing, encryption and other techniques; however, the implementation recommendations for such mechanisms are beyond the scope of this document to address in detail. Suffice it to say that the security of the devices and networks implementing QoS, including QoS mapping between wired and wireless networks, merits consideration in actual deployments.
9. Acknowledgements

The authors wish to thank David Black, Gorry Fairhurst, Ruediger Geib, Vincent Roca, Brian Carpenter, David Blake, Cullen Jennings, David Benham and the TSVWG.

The authors also acknowledge a great many inputs, notably from David Kloper, Mark Montanez, Glen Lavers, Michael Fingleton, Sarav Radhakrishnan, Karthik Dakshinamurthy, Simone Arena, Ranga Marathe, Ramachandra Murthy and many others.

10. References

10.1. Normative References

[IEEE.802.11-2016]

10.2. Informative References

[GSMA-IPX_Guidelines]

[I-D.ietf-tsvwg-le-phb]
Bless, R., "A Lower Effort Per-Hop Behavior (LE PHB)", draft-ietf-tsvwg-le-phb-02 (work in progress), June 2017.

[IEEE.802-11u.2011]
Appendix A. Change Log

Initial Version: July 2015

Authors’ Addresses

Tim Szigeti
Cisco Systems
Vancouver, British Columbia V6K 3L4
Canada

Email: szigeti@cisco.com

Jerome Henry
Cisco Systems
Research Triangle Park, North Carolina 27709
USA

Email: jerhenry@cisco.com

Fred Baker
Santa Barbara, California 93117
USA

Email: FredBaker.IETF@gmail.com