Requirements for address selection mechanisms
draft-ietf-v6ops-addr-select-req-07.txt

Abstract

There are some problematic cases when using the default address selection mechanism which RFC 3484 defines. This document describes additional requirements co-working with RFC 3484 to solve the problems.
Table of Contents

1. Introduction .. 3
2. Requirements of Address Selection 3
 2.1. Effectiveness ... 3
 2.2. Timing .. 3
 2.3. Dynamic Behavior Update 4
 2.4. Node-Specific Behavior 4
 2.5. Application-Specific Behavior 4
 2.6. Multiple Interface 4
 2.7. Central Control .. 4
 2.8. Next-hop Selection 4
 2.9. Compatibility with RFC 3493 4
 2.10. Compatibility and Interoperability with RFC 3484 ... 5
 2.11. Security .. 5
3. Security Considerations ... 5
 3.1. List of threats introduced by new address-selection mechanism .. 5
 3.2. List of recommendations in which security mechanism should be applied 6
4. IANA Considerations ... 6
5. References ... 6
 5.1. Normative References 6
 5.2. Informative References 6
Appendix A. Appendix. Revision History 6
Authors’ Addresses .. 7
Intellectual Property and Copyright Statements 9
1. Introduction

Today, the RFC 3484 [RFC3484] mechanism is widely implemented in major OSs. However, in many sites, the default address-selection rules are not appropriate, and cause a communication failure. PS [I-D.ietf-v6ops-addr-select-ps] lists problematic cases that resulted from incorrect address selection.

Though RFC 3484 made the address-selection behavior of a host configurable, typical users cannot make use of that because of the complexity of the mechanism and lack of knowledge about their network topologies. Therefore, an address-selection autoconfiguration mechanism is necessary, especially for unmanaged hosts of typical users.

This document contains requirements for address-selection mechanisms that enable hosts to perform appropriate address selection automatically.

2. Requirements of Address Selection

Address-selection mechanisms have to fulfill the following eleven requirements.

2.1. Effectiveness

The mechanism can modify RFC 3484 default address-selection behavior at nodes. As documented in PS [I-D.ietf-v6ops-addr-select-ps], the default rules defined in RFC 3484 do not work properly in some environments. Therefore, the mechanism has to be able to modify the address-selection behavior of a host, and to solve the problematic cases described in the PS document.

2.2. Timing

Nodes can perform appropriate address selection when they select addresses.

If nodes need to have address-selection information to perform appropriate address selection, then the mechanism has to provide a function for nodes to obtain the necessary information beforehand.

The mechanism should not degrade usability. The mechanism should not enforce long address-selection processing time upon users. Therefore, forcing every consumer user to manipulate address selection policy table is usually not an acceptable solution. So, in this case, some kind of autoconfiguration mechanism is desirable.
2.3. Dynamic Behavior Update

The address-selection behavior of nodes can be dynamically updated. When the network structure changes and the address-selection behavior has to be changed accordingly, a network administrator can modify the address-selection behavior of nodes.

2.4. Node-Specific Behavior

The mechanism can support node-specific address-selection behavior. Even when multiple nodes are on the same subnet, the mechanism should be able to provide a method for the network administrator to make nodes behave differently. For example, each node may have a different set of assigned prefixes. In such a case, the appropriate address-selection behavior may be different.

2.5. Application-Specific Behavior

The mechanism can support application-specific address-selection behavior or combined use with an application-specific address-selection mechanism such as address-selection APIs.

2.6. Multiple Interface

The mechanism can support those nodes equipped with multiple interfaces. The mechanism has to assume that nodes have multiple interfaces and makes address selection of those nodes work appropriately.

2.7. Central Control

The address selection behavior of nodes can be centrally controlled. A site administrator or a service provider could determine or could have effect on the address-selection behavior at their users’ hosts.

2.8. Next-hop Selection

The mechanism can control next-hop-selection behavior at hosts or cooperate with other routing mechanisms, such as routing protocols and RFC 4191 [RFC4191]. If the address-selection mechanism is used with a routing mechanism, the two mechanisms have to be able to work synchronously.

2.9. Compatibility with RFC 3493

The mechanism can allow an application that uses the basic socket interface defined in RFC 3493 [RFC3493] to work correctly. That is, with the basic socket interface the application can select
appropriate source and destination addresses and can communicate with the destination host. This requirement does not necessarily mean that OS protocol stack and socket libraries should not be changed.

2.10. Compatibility and Interoperability with RFC 3484

The mechanism is compatible with RFC 3484. Now that RFC 3484 is widely implemented, it may be most preferrable that a new address selection mechanism does not conflict with the address selection mechanisms defined in RFC 3484.

If the solution mechanism changes or replaces the address selection mechanism defined in RFC 3484, interoperability has to be retained. That is, a host with the new solution mechanism and a host with the mechanism of RFC 3484 have to be interoperable.

2.11. Security

The mechanism works without any security problems. Possible security threats are described in Security Considerations section of this document.

3. Security Considerations

3.1. List of threats introduced by new address-selection mechanism

There will be some security incidents when combining these requirements described in Section 2 into a protocol. In particular, there are 3 types of threats, "Leakage", "Hijacking", and "Denial of Services".

1. Tapping from malicious nodes to collect the network policy information and leak them to unauthorized parties.
2. Hijacking of nodes made possible by malicious injection of illegitimate policy information: RFC 3484 defines both of source and destination selection algorithm. An attacker able to inject malicious policy information could redirect packets sent by a victim node to an intentionally chosen server that would scan the victim node activities to find out exploit code. Once exploit code is found the attacker can take control of the victim node.
3. Denial of Service Attack on the ability of nodes to communicate in the absence of the address selection policy: An attacker could launch a flooding attack on the controller to prevent it to deliver the address selection policy information to nodes, thus preventing these nodes to appropriately communicate in the absence of that information.
3.2. List of recommendations in which security mechanism should be applied

The source address selection protocol should be afforded security services listed below. It is preferable that these security services are afforded via use of existing protocols (e.g., IPsec).

1. Integrity of the network policy information itself and the messages exchanged in the protocol. This is a countermeasure against "Leakage", "Hijacking", and "Denial of Services".
2. Authentication and authorization of parties involved in the protocol. This is a countermeasure against "Leakage" and "Hijacking".

4. IANA Considerations

This document has no actions for IANA.

5. References

5.1. Normative References

[I-D.ietf-v6ops-addr-select-ps]

5.2. Informative References

Appendix A. Appendix. Revision History

01:
Other than policy table distribution approach, the solution section included several solutions discussed at 67th IETF meeting.

02: The description and evaluation of solution approaches were separated into a new document called draft-arifumi-v6ops-addr-select-sol-00.

03: Security Considerations section was rewritten according to comments from SECDIR.

04: A new requirement item "Compatibility with RFC 3493" was added, which reflected a comment from Remi Denis-Courmont at the v6ops mailing list.

05: A new requirement item "Security" was added. Security Considerations section was rewritten according to comments from SECDIR.

06: A new requirement item "Compatibility and Interoperability with RFC 3484" was added in response to comments from Tim Polk.

07: A couple of textual and typographical changes were made in response to comments from Alfred Hoenes.

Authors’ Addresses

Arifumi Matsumoto
NTT PF Lab
Midori-Cho 3-9-11
Musashino-shi, Tokyo 180-8585
Japan

Phone: +81 422 59 3334
Email: arifumi@nttv6.net

Tomohiro Fujisaki
NTT PF Lab
Midori-Cho 3-9-11
Musashino-shi, Tokyo 180-8585
Japan

Phone: +81 422 59 7351
Email: fujisaki@nttv6.net
Ruri Hiromi
Intec Netcore, Inc.
Shinsuna 1-3-3
Koto-ku, Tokyo 136-0075
Japan

Phone: +81 3 5665 5069
Email: hiromi@inetcore.com

Ken-ichi Kanayama
Intec Netcore, Inc.
Shinsuna 1-3-3
Koto-ku, Tokyo 136-0075
Japan

Phone: +81 3 5665 5069
Email: kanayama_kenichi@intec-si.co.jp
Internet-Draft Address-Selection Req May 2008

Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).