Abstract

In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document outlines how IOAM data fields are encapsulated in IPv6.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
1. Introduction

In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document outlines how IOAM data fields are encapsulated in the IPv6 [RFC8200].

2. Conventions

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
2.2. Abbreviations

Abbreviations used in this document:

E2E: Edge-to-Edge

IOAM: In-situ Operations, Administration, and Maintenance

OAM: Operations, Administration, and Maintenance

POT: Proof of Transit

3. In-situ OAM Metadata Transport in IPv6

IOAM data is carried in IPv6 packets as Hop-by-Hop or Destination options. One IPv6 Destination Options and Hop-by-Hop Options Type codepoint is assigned for IOAM. Multiple options with the same Option Type MAY appear in the same Hop-by-Hop Options or Destination Options header, with varying content. This mechanism of in-situ OAM in IPv6 is used to enhance diagnostics of IPv6 networks. It complements other mechanisms proposed to enhance diagnostics of IPv6 networks, such as the IPv6 Performance and Diagnostic Metrics Destination Option described in [RFC8250].

IPv6 Hop-by-Hop and Destination Option format for carrying in-situ OAM data fields:

```
+-----------------------------------------------+
<table>
<thead>
<tr>
<th>Option Type</th>
<th>Opt Data Len</th>
<th>Reserved</th>
<th>IOAM Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>. I</td>
<td>. O</td>
<td></td>
</tr>
<tr>
<td>. Option Data</td>
<td>. A</td>
<td>. M</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>. P</td>
</tr>
<tr>
<td>.</td>
<td>. T</td>
<td>. I</td>
<td>. O</td>
</tr>
<tr>
<td>.</td>
<td>. N</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
+-----------------------------------------------+<->
```
Option Type: 8-bit identifier of the type of option.

Opt Data Len: 8-bit unsigned integer. Length of the Reserved and Option Data field of this option, in octets.

Reserved: 8-bit field MUST be set to zero upon transmission and ignored upon reception.

IOAM Type: 8-bit field as defined in section 7.2 in [I-D.ietf-ippm-ioam-data].

Option Data: Variable-length field. Option-Type-specific data.

In-situ OAM Options are inserted as Option data as follows:

1. Pre-allocated Tracing Option: The in-situ OAM Preallocated Tracing option defined in [I-D.ietf-ippm-ioam-data] is represented as a IPv6 option in hop by hop extension header:

 Option Type: 001xxxxx 8-bit identifier of the IOAM type of option. xxxxx=TBD.

 IOAM Type: IOAM Pre-allocated Trace Option Type.

2. Incremental Tracing Option: The in-situ OAM Incremental Tracing option defined in [I-D.ietf-ippm-ioam-data] is represented as a IPv6 option in hop by hop extension header:

 Option Type: 001xxxxx 8-bit identifier of the IOAM type of option. xxxxx=TBD.

 IOAM Type: IOAM Incremental Trace Option Type.

3. Proof of Transit Option: The in-situ OAM POT option defined in [I-D.ietf-ippm-ioam-data] is represented as a IPv6 option in hop by hop extension header:

 Option Type: 001xxxxx 8-bit identifier of the IOAM type of option. xxxxx=TBD.

 IOAM Type: IOAM POT Option Type.

4. Edge to Edge Option: The in-situ OAM E2E option defined in [I-D.ietf-ippm-ioam-data] is represented as a IPv6 option in IPv6 option in destination options extension header:

 Option Type: 000xxxxx 8-bit identifier of the IOAM type of option. xxxxx=TBD.
All the in-situ OAM IPv6 options defined here have alignment requirements. Specifically, they all require 4n alignment. This ensures that 4 octet fields specified in [I-D.ietf-ippm-ioam-data] such as transit delay are aligned at a multiple-of-4 offset from the start of the Hop-by-Hop Options header. In addition, to maintain IPv6 extension header 8-octet alignment and avoid the need to add or remove padding at every hop, the Trace-Type for Incremental Tracing Option in IPv6 MUST be selected such that the IOAM node data length is a multiple of 8-octets.

4. Security Considerations

This document describes the encapsulation of IOAM data fields in IPv6. Security considerations of the specific IOAM data fields for each case (i.e., Trace, Proof of Transit, and E2E) are described in defined in [I-D.ietf-ippm-ioam-data].

As this document describes new options for IPv6, these are similar to the security considerations of [RFC8200] and the new weakness documented in [RFC8250].

5. IANA Considerations

This draft requests the following IPv6 Option Type assignments from the Destination Options and Hop-by-Hop Options sub-registry of Internet Protocol Version 6 (IPv6) Parameters.

<table>
<thead>
<tr>
<th>Hex Value</th>
<th>Binary Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>act chg rest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD_1_0</td>
<td>00 0</td>
<td>TBD_1</td>
<td>IOAM</td>
</tr>
<tr>
<td>TBD_1_1</td>
<td>00 1</td>
<td>TBD_1</td>
<td>IOAM</td>
</tr>
</tbody>
</table>

6. Acknowledgements

The authors would like to thank Tom Herbert, Eric Vyncke, Nalini Elkins, Srihari Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya Nadahalli, Stefano Previdi, Hemant Singh, Erik Nordmark, LJ Wonker, and Andrew Yourtchenko for the comments and advice. For the IPv6 encapsulation, this document leverages concepts described in [I-D.kitamura-ipv6-record-route]. The authors would like to acknowledge the work done by the author Hiroshi Kitamura and people involved in writing it.
7. References

7.1. Normative References

[I-D.ietf-ippm-ioam-data]

7.2. Informative References

[I-D.kitamura-ipv6-record-route]

Authors’ Addresses

Shwetha Bhandari
Cisco Systems, Inc.
Cessna Business Park, Sarjapura Marathalli Outer Ring Road
Bangalore, KARNATAKA 560 087
India

Email: shwethab@cisco.com
Aviv Kfir
Mellanox Technologies, Inc.
350 Oakmead Parkway, Suite 100
Sunnyvale, CA 94085
U.S.A.
Email: avivk@mellanox.com

Barak Gafni
Mellanox Technologies, Inc.
350 Oakmead Parkway, Suite 100
Sunnyvale, CA 94085
U.S.A.
Email: gbarak@mellanox.com

Petr Lapukhov
Facebook
1 Hacker Way
Menlo Park, CA 94025
US
Email: petr@fb.com

Mickey Spiegel
Barefoot Networks
4750 Patrick Henry Drive
Santa Clara, CA 95054
US
Email: mspiegel@barefootnetworks.com

Suresh Krishnan
Kaloom
Email: suresh@kaloom.com