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Abstract

   The elliptic curve signature scheme Edwards-curve Digital Signature
   Algorithm (EdDSA) is described.  The algorithm is instantiated with
   recommended parameters for the Curve25519 and Curve448 curves.  An
   example implementation and test vectors are provided.

   NOTE: Anything not about Ed25519 in this document is premature and
   there is at least one FIXME that makes some things unimplementable.
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
   Schnorr’s signature system with (possibly Twisted) Edwards curves.
   EdDSA needs to be instantiated with certain parameters and this
   document describe some recommended variants.

   To facilitate adoption in the Internet community of EdDSA, this
   document describe the signature scheme in an implementation-oriented
   way, and provide sample code and test vectors.

   The advantages with EdDSA include:

   1.  High-performance on a variety of platforms.

   2.  Does not require the use of a unique random number for each
       signature.

   3.  More resilient to side-channel attacks.

   4.  Small public keys (32 or 57 bytes) and signatures (64 or 114
       bytes).

   5.  The formulas are "strongly unified", i.e., they are valid for all
       points on the curve, with no exceptions.  This obviates the need
       for EdDSA to perform expensive point validation on untrusted
       public values.

   6.  Collision resilience, meaning that hash-function collisions do
       not break this system.  (Only holds for PureEdDSA.)

   The original EdDSA paper [ EDDSA] and the generalized version
   described in "EdDSA for more curves" [ EDDSA2] provide further
   background.  The [ I-D.irtf-cfrg-curves ] document discuss specific
   curves, including Curve25519 [ CURVE25519] and Ed448-Goldilocks
   [ ED448].

   Ed25519 is intended to operate at around the 128-bit security level,
   and Ed448 at around the 224-bit security level.  A large quantum
   computer would be able to break both.  Reasonable projections of the
   abilities of classical computers conclude that Ed25519 is perfectly
   safe.  Ed448 is provided for those applications with relaxed
   performance requirements and where there is a desire to hedge against
   analytical attacks on elliptic curves.

Josefsson & Liusvaara     Expires June 11, 2016                 [Page 3]



 
Internet-Draft          EdDSA: Ed25519 and Ed448           December 2015

2.  Notation and Conventions

   FIXME: make sure this is aligned with irtf-cfrg-curves

   The following notation is used throughout the document:

   GF(p) --- finite field with p elements

   x^y --- x multiplied by itself y times

   B --- generator of the group or subgroup of interest

   [n]B --- B added to itself n times.

   h_i --- the i’th bit of h

   a || b --- (bit-)string a concatenated with (bit-)string b

   a <= b --- a is less than or equal to b

   i+j --- sum of i and j

   i*j --- multiplication of i and j

   i x j --- cartesian product of i and j

   Use of parenthesis (i.e., ’(’ and ’)’) are used to group expressions,
   in order to avoid having the description depend on a binding order
   between operators.

   Bit strings are converted to octet strings by taking bits from left
   to right and packing those from least significant bit of each octet
   to most siginficant bit, and moving to the next octet when each octet
   fills up.  The conversion from octet string to bit string is the
   reverse of this process.  E.g. the 16-bit bit string:

         b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

   Is converted into two octets x0 and x1 (in this order) as:

         x0 = b7*128+b6*64+b5*32+b4*16+b3*8+b2*4+b1*2+b0
         x1 = b15*128+b14*64+b13*32+b12*16+b11*8+b10*4+b9*2+b8

   Little-endian encoding into bits places bits from left to right from
   least significant to most significant.  If combined with bit string
   to octet string conversion defined above, this results in little-
   endian encoding into octets (if length is not multiple of 8, the most
   significant bits of last octet remain unused).
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3.  EdDSA Algorithm

   EdDSA is a digital signature system with eleven parameters.

   The generic EdDSA digital signature system with its eleven input
   parameters is not intended to be implemented directly.  Chosing
   parameters is critical for secure and efficient operation.  Instead,
   you would implement a particular parameter choice for EdDSA (such as
   Ed25519 or Ed448), sometimes slightly generalized to achieve code re-
   use to cover Ed25519 and Ed448.

   Therefore, a precise explanation of the generic EdDSA is thus not
   particularly useful for implementers.  For background and
   completeness, a succinct description of the generic EdDSA algorithm
   is given here.

   The definition of some parameters, such as n and c, may help to
   explain some non-intuitive steps of the algorithm.

   This description closely follows [ EDDSA2].

   EdDSA has eleven parameters:

   1.   An odd prime power p.  EdDSA uses an elliptic curve over the
        finite field GF(p).

   2.   An integer b with 2^(b-1) > p.  EdDSA public keys have exactly b
        bits, and EdDSA signatures have exactly 2*b bits.  b is
        recommended to be multiple of 8, so public key and signature
        lengths are integral number of octets.

   3.   A (b-1)-bit encoding of elements of the finite field GF(p).

   4.   A cryptographic hash function H producing 2*b-bit output.
        Conservative hash functions are recommended and do not have much
        impact on the total cost of EdDSA.

   5.   An integer c that is 2 or 3.  Secret EdDSA scalars are multiples
        of 2^c.  The integer c is the base-2 logarithm of the so called
        cofactor.

   6.   An integer n with c <= n < b.  Secret EdDSA scalars have exactly
        n + 1 bits, with the top bit (the 2^n position) always set and
        the bottom c bits always cleared.

   7.   A nonzero square element a of GF(p).  The usual recommendation
        for best performance is a = -1 if p mod 4 = 1, and a = 1 if p
        mod 4 = 3.
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   8.   An element B != (0,1) of the set E = { (x,y) is a member of
        GF(p) x GF(p) such that a * x^2 + y^2 = 1 + d * x^2 * y^2 }.

   9.   An odd prime l such that [l]B = 0 and 2^c * l = #E.  The number
        #E (the number of points on the curve) is part of the standard
        data provided for an elliptic curve E.

   10.  A "prehash" function PH.  PureEdDSA means EdDSA where PH is the
        identity function, i.e., PH(M) = M.  HashEdDSA means EdDSA where
        PH generates a short output, no matter how long the message is;
        for example, PH(M) = SHA-512(M).

   Points on the curve form a group under addition, (x3, y3) = (x1, y1)
   + (x2, y2), with the formulas

             x1 * y2 + x2 * y1                y1 * y2 - a * x1 * x2
   x3 = --------------------------,   y3 = ---------------------------
         1 + d * x1 * x2 * y1 * y2          1 - d * x1 * x2 * y1 * y2

   The neutral element in the group is (0, 1).

   Unlike many other curves used for cryptographic applications, these
   formulas are "strongly unified": they are valid for all points on the
   curve, with no exceptions.  In particular, the denominators are non-
   zero for all input points.

   There are more efficient formulas, which are still strongly unified,
   which use homogeneous coordinates to avoid the expensive modulo p
   inversions.  See [ Faster-ECC ] and [ Edwards-revisited ].

3.1 .  Encoding

   An integer 0 < S < l - 1 is encoded in little-endian form as a b-bit
   string ENC(S).

   An element (x,y) of E is encoded as a b-bit string called ENC(x,y)
   which is the (b-1)-bit encoding of y concatenated with one bit that
   is 1 if x is negative and 0 if x is not negative.

   The encoding of GF(p) is used to define "negative" elements of GF(p):
   specifically, x is negative if the (b-1)-bit encoding of x is
   lexicographically larger than the (b-1)-bit encoding of -x.

3.2 .  Keys

   An EdDSA secret key is a b-bit string k.  Let the hash H(k) = (h_0,
   h_1, ..., h_(2b-1)) determine an integer s which is 2^n plus the sum
   of m = 2^i * h_i for all integer i, c <= i <= n.  Let s determine the
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   multiple A = [s]B.  The EdDSA public key is ENC(A).  The bits h_b,
   ..., h_(2b-1) is used below during signing.

3.3 .  Sign

   The EdDSA signature of a message M under a secret key k is defined as
   the PureEdDSA signature of PH(M).  In other words, EdDSA simply uses
   PureEdDSA to sign PH(M).

   The PureEdDSA signature of a message M under a secret key k is the
   2*b-bit string ENC(R) || ENC(S).  R and S are derived as follows.
   First define r = H(h_b, ... h_(2b-1), M) interpreting 2*b-bit strings
   in little-endian form as integers in {0, 1, ..., 2^(2*b) - 1}.  Let R
   = [r]B and S = (r + H(ENC(R) || ENC(A) || P(M)) s) mod l.  The s used
   here is from the previous section.

3.4 .  Verify

   To verify a PureEdDSA signature ENC(R) || ENC(S) on a message M under
   a public key ENC(A), proceed as follows.  Parse the inputs so that A
   and R is an element of E, and S is a member of the set {0, 1, ...,
   l-1 }.  Compute h = H(ENC(R) || ENC(A) || M) and check the group
   equation [2^c * S] B = 2^c * R + [2^c * h] A in E.  Verification is
   rejected if parsing fails or the group equation does not hold.

   EdDSA verification for a message M is defined as PureEdDSA
   verification for PH(M).

4.  PureEdDSA, HashEdDSA and Naming

   One of the parameters of the EdDSA algorithm is the "prehash"
   function.  This may be the identity function, resulting in an
   algorithm called PureEdDSA, or a collision-resistant hash function
   such as SHA-512, resulting in an algorithm called HashEdDSA.

   Chosing which variant to use depends on which property is deemed to
   be more important between 1) collision resilience, and 2) a single-
   pass interface for creating signatures.  The collision resilience
   property means EdDSA is secure even if it is feasible to compute
   collisions for the hash function.  The single-pass interface property
   means that only one pass over the input message is required to create
   a signature.  PureEdDSA requires two passes over the input.  Many
   existing APIs, protocols and environments assume digital signature
   algorithms only need one pass over the input, and may have API or
   bandwidth concerns supporting anything else.

   Note that single-pass verification is not possible with most uses of
   signatures, no matter which signature algorithm is chosen.  This is
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   because most of the time one can’t process the message until
   signature is validated, which needs a pass on the entire message.

   This document specify parameters resulting in the HashEdDSA variants
   Ed25519ph and Ed448ph, and the PureEdDSA variants Ed25519 and Ed448.

5.  EdDSA Instances

   This section instantiate the general EdDSA algorithm for the
   Curve25519 and Ed448 curves, each for the PureEdDSA and HashEdDSA
   variants.  Thus four different parameter sets are described.

5.1 .  Ed25519ph and Ed25519

   Ed25519 is PureEdDSA instantiated with: p as the prime 2^255-19,
   b=256, the 255-bit encoding of GF(p) being the little-endian encoding
   of {0, 1, ..., p-1}, H being SHA-512 [ RFC4634], c being 3, n being
   254, a being -1, d = -121665/121666 which is a member of GF(p), and B
   is the unique point (x, 4/5) in E for which x is "positive", which
   with the encoding used simply means that the least significant bit of
   x is 0, l is the prime 2^252 +
   27742317777372353535851937790883648493.

   Ed25519ph is the same but with PH being SHA-512 instead, i.e., the
   input is hashed using SHA-512 before signing with Ed25519.

   Written out explicitly, B is the point (15112221349535400772501151409
   588531511454012693041857206046113283949847762202, 4631683569492647816
   9428394003475163141307993866256225615783033603165251855960).

   The values for p, a, d, B and l follows from the "edwards25519"
   values in [ I-D.irtf-cfrg-curves ].

   The curve used is equivalent to Curve25519 [ CURVE25519], under a
   change of coordinates, which means that the difficulty of the
   discrete logarithm problem is the same as for Curve25519.

5.1.1 .  Modular arithmetic

   For advise on how to implement arithmetic modulo p = 2^255 - 19
   efficiently and securely, see Curve25519 [ CURVE25519].  For inversion
   modulo p, it is recommended to use the identity x^-1 = x^(p-2) (mod
   p).

   For point decoding or "decompression", square roots modulo p are
   needed.  They can be computed using the Tonelli-Shanks algorithm, or
   the special case for p = 5 (mod 8).  To find a square root of a,
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   first compute the candidate root x = a^((p+3)/8) (mod p).  Then there
   are three cases:

      x^2 = a (mod p).  Then x is a square root.

      x^2 = -a (mod p).  Then 2^((p-1)/4) x is a square root.

      a is not a square modulo p.

5.1.2 .  Encoding

   All values are coded as octet strings, and integers are coded using
   little endian convention.  I.e., a 32-octet string h h[0],...h[31]
   represents the integer h[0] + 2^8 h[1] + ... + 2^248 h[31].

   A curve point (x,y), with coordinates in the range 0 <= x,y < p, is
   coded as follows.  First encode the y-coordinate as a little-endian
   string of 32 octets.  The most significant bit of the final octet is
   always zero.  To form the encoding of the point, copy the least
   significant bit of the x-coordinate to the most significant bit of
   the final octet.

5.1.3 .  Decoding

   Decoding a point, given as a 32-octet string, is a little more
   complicated.

   1.  First interpret the string as an integer in little-endian
       representation.  Bit 255 of this number is the least significant
       bit of the x-coordinate, and denote this value x_0.  The
       y-coordinate is recovered simply by clearing this bit.  If the
       resulting value is >= p, decoding fails.

   2.  To recover the x coordinate, the curve equation implies x^2 =
       (y^2 - 1) / (d y^2 + 1) (mod p).  The denominator is always
       nonzero mod p.  Let u = y^2 - 1 and v = d y^2 + 1.  To compute
       the square root of (u/v), the first step is to compute the
       candidate root x = (u/v)^((p+3)/8).  This can be done using the
       following trick, to use a single modular powering for both the
       inversion of v and the square root:

                      (p+3)/8      3        (p-5)/8
             x = (u/v)        = u v  (u v^7)         (mod p)

   3.  Again, there are three cases:

       1.  If v x^2 = u (mod p), x is a square root.
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       2.  If v x^2 = -u (mod p), set x <-- x 2^((p-1)/4), which is a
           square root.

       3.  Otherwise, no square root exists modulo p, and decoding
           fails.

   4.  Finally, use the x_0 bit to select the right square root.  If x =
       0, and x_0 = 1, decoding fails.  Otherwise, if x_0 != x mod 2,
       set x <-- p - x.  Return the decoded point (x,y).

5.1.4 .  Point addition

   For point addition, the following method is recommended.  A point
   (x,y) is represented in extended homogeneous coordinates (X, Y, Z,
   T), with x = X/Z, y = Y/Z, x y = T/Z.

   The following formulas for adding two points, (x3,y3) =
   (x1,y1)+(x2,y2) are described in [ Edwards-revisited ], section 3.1.
   They are strongly unified, i.e., they work for any pair of valid
   input points.

             A = (Y1-X1)*(Y2-X2)
             B = (Y1+X1)*(Y2+X2)
             C = T1*2*d*T2
             D = Z1*2*Z2
             E = B-A
             F = D-C
             G = D+C
             H = B+A
             X3 = E*F
             Y3 = G*H
             T3 = E*H
             Z3 = F*G

5.1.5 .  Key Generation

   The secret is 32 octets (256 bits, corresponding to b) of
   cryptographically-secure random data.  See [ RFC4086] for a discussion
   about randomness.

   The 32-byte public key is generated by the following steps.

   1.  Hash the 32-byte secret using SHA-512, storing the digest in a
       64-octet large buffer, denoted h.  Only the lower 32 bytes are
       used for generating the public key.
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   2.  Prune the buffer: The lowest 3 bits of the first octet are
       cleared, the highest bit of the last octet is cleared, and second
       highest bit of the last octet is set.

   3.  Interpret the buffer as the little-endian integer, forming a
       secret scalar a.  Perform a fixed-base scalar multiplication
       [a]B.

   4.  The public key A is the encoding of the point [a]B.  First encode
       the y coordinate (in the range 0 <= y < p) as a little-endian
       string of 32 octets.  The most significant bit of the final octet
       is always zero.  To form the encoding of the point [a]B, copy the
       least significant bit of the x coordinate to the most significant
       bit of the final octet.  The result is the public key.

5.1.6 .  Sign

   The inputs to the signing procedure is the secret key, a 32-octet
   string, and a message M of arbitrary size.

   1.  Hash the secret key, 32-octets, using SHA-512.  Let h denote the
       resulting digest.  Construct the secret scalar a from the first
       half of the digest, and the corresponding public key A, as
       described in the previous section.  Let prefix denote the second
       half of the hash digest, h[32],...,h[63].

   2.  Compute SHA-512(prefix || M), where M is the message to be
       signed.  Interpret the 64-octet digest as a little-endian integer
       r.

   3.  Compute the point [r]B.  For efficiency, do this by first
       reducing r modulo l, the group order of B.  Let the string R be
       the encoding of this point.

   4.  Compute SHA512(R || A || M), and interpret the 64-octet digest as
       a little-endian integer k.

   5.  Compute S = (r + k * a) mod l.  For efficiency, again reduce k
       modulo l first.

   6.  Form the signature of the concatenation of R (32 octets) and the
       little-endian encoding of S (32 octets, three most significant
       bits of the final octet are always zero).
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5.1.7 .  Verify

   1.  To verify a signature on a message M, first split the signature
       into two 32-octet halves.  Decode the first half as a point R,
       and the second half as an integer S, in the range 0 <= s < l.  If
       the decoding fails, the signature is invalid.

   2.  Compute SHA512(R || A || M), and interpret the 64-octet digest as
       a little-endian integer k.

   3.  Check the group equation [8][S]B = [8]R + [8][k]A.  It’s
       sufficient, but not required, to instead check [S]B = R + [k]A.

5.2 .  Ed448ph and Ed448

   Ed448 is PureEdDSA instantiated with p as the prime 2^448 - 2^224 -
   1, b=456, the 455-bit encoding of GF(2^448-2^224-1) is the usual
   little-endian encoding of {0, 1, ..., 2^448 - 2^224 - 2}, H is
   [FIXME: needs 912-bit hash], c being 2, n being 448, a being 1, d
   being - 39081, B is (X(P), Y(P)), and l is the prime 2^446 -
   13818066809895115352007386748515426880336692474882178609894547503885.

   Ed448ph is the same but with P being SHA-512 instead, i.e., the input
   is hashed using SHA-512 before signing with Ed448.

   The values of p, a, d, X(p), Y(p), and l are taken from curve named
   "edwards448" in [ I-D.irtf-cfrg-curves ].

   The curve is equivalent to Ed448-Goldilocks under change of
   basepoint, which preserves difficulty of the discrete logarithm.

5.2.1 .  Modular arithmetic

   For advise on how to implement arithmetic modulo p = 2^448 - 2^224 -
   1 efficiently and securely, see [ ED448].  For inversion modulo p, it
   is recommended to use the identity x^-1 = x^(p-2) (mod p).

   For point decoding or "decompression", square roots modulo p are
   needed.  They can be computed by first computing candidate root x = a
   ^ (p+1)/4 (mod p) and then checking if x^2 = a.  If it is, then x is
   square root of a.

5.2.2 .  Encoding

   All values are coded as octet strings, and integers are coded using
   little endian convention.  I.e., a 57-octet string h h[0],...h[56]
   represents the integer h[0] + 2^8 h[1] + ... + 2^448 h[56].
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   A curve point (x,y), with coordinates in the range 0 <= x,y < p, is
   coded as follows.  First encode the y-coordinate as a little-endian
   string of 57 octets.  The final octet is always zero.  To form the
   encoding of the point, copy the least significant bit of the
   x-coordinate to the most significant bit of the final octet.

5.2.3 .  Decoding

   Decoding a point, given as a 57-octet string, is a little more
   complicated.

   1.  First interpret the string as an integer in little-endian
       representation.  Bit 455 of this number is the least significant
       bit of the x-coordinate, and denote this value x_0.  The
       y-coordinate is recovered simply by clearing this bit.  If the
       resulting value is >= p, decoding fails.

   2.  To recover the x coordinate, the curve equation implies x^2 =
       (y^2 - 1) / (d y^2 - 1) (mod p).  The denominator is always
       nonzero mod p.  Let u = y^2 - 1 and v = d y^2 - 1.  To compute
       the square root of (u/v), the first step is to compute the
       candidate root x = (u/v)^((p+1)/4).  This can be done using the
       following trick, to use a single modular powering for both the
       inversion of v and the square root:

                      (p+1)/4    3            (p-3)/4
             x = (u/v)        = u  v (u^5 v^3)         (mod p)

   3.  If v * x^2 = u, the recovered x coordinate is x.  Otherwise no
       square root exists, and the decoding fails.

   4.  Finally, use the x_0 bit to select the right square root.  If x =
       0, and x_0 = 1, decoding fails.  Otherwise, if x_0 != x mod 2,
       set x <-- p - x.  Return the decoded point (x,y).

5.2.4 .  Point addition

   For point addition, the following method is recommended.  A point
   (x,y) is represented in projective coordinates (X, Y, Z), with x = X/
   Z, y = Y/Z.

   The following formulas for adding two points, (x3,y3) =
   (x1,y1)+(x2,y2) are described in [FIXME: Add reference].  They are
   strongly unified, i.e., they work for any pair of valid input points.
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             A = Z1*Z2
             B = A^2
             C = X1*X2
             D = Y1*Y2
             E = d*C*D
             F = B-E
             G = B+E
             H = (X1+X2)*(Y1+Y2)
             X3 = A*G*(H-C-D)
             Y3 = A*G*(D-C)
             Z3 = F*G

5.2.5 .  Key Generation

   The secret is 57 octets (456 bits, corresponding to b) of
   cryptographically-secure random data.  See [ RFC4086] for a discussion
   about randomness.

   The 57-byte public key is generated by the following steps.

   1.  Hash the 57-byte secret using FIXME-HASH, storing the digest in a
       114-octet large buffer, denoted h.  Only the lower 57 bytes are
       used for generating the public key.

   2.  Prune the buffer: The two least significant bits of the first
       octet are cleared, all 8 bits the last octet are cleared, and the
       highest bit of the second to last octet is set.

   3.  Interpret the buffer as the little-endian integer, forming a
       secret scalar a.  Perform a known-base-point scalar
       multiplication [a]B.

   4.  The public key A is the encoding of the point [a]B.  First encode
       the y coordinate (in the range 0 <= y < p) as a little-endian
       string of 57 octets.  The most significant bit of the final octet
       is always zero.  To form the encoding of the point [a]B, copy the
       least significant bit of the x coordinate to the most significant
       bit of the final octet.  The result is the public key.

5.2.6 .  Sign

   The inputs to the signing procedure is the secret key, a 32-octet
   string, and a message M of arbitrary size.

   1.  Hash the secret key, 57-octets, using FIXME-HASH.  Let h denote
       the resulting digest.  Construct the secret scalar a from the
       first half of the digest, and the corresponding public key A, as
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       described in the previous section.  Let prefix denote the second
       half of the hash digest, h[57],...,h[113].

   2.  Compute FIXME-HASH(prefix || M), where M is the message to be
       signed.  Interpret the 114-octet digest as a little- endian
       integer r.

   3.  Compute the point [r]B.  For efficiency, do this by first
       reducing r modulo l, the group order of B.  Let the string R be
       the encoding of this point.

   4.  Compute FIXME-HASH(R || A || M), and interpret the 114- octet
       digest as a little-endian integer k.

   5.  Compute S = (r + k * a) mod l.  For efficiency, again reduce k
       modulo l first.

   6.  Form the signature of the concatenation of R (57 octets) and the
       little-endian encoding of S (57 octets, ten most significant bits
       of the final octets always zero).

5.2.7 .  Verify

   1.  To verify a signature on a message M, first split the signature
       into two 57-octet halves.  Decode the first half as a point R,
       and the second half as an integer S, in the range 0 <= s < l.  If
       the decoding fails, the signature is invalid.

   2.  Compute FIXME-HASH(R || A || M), and interpret the 114-octet
       digest as a little-endian integer k.

   3.  Check the group equation [4][S]B = [4]R + [4][k]A.  It’s
       sufficient, but not required, to instead check [S]B = R + [k]A.

6.  Ed25519 Python illustration

   The rest of this section describes how Ed25519 can be implemented in
   Python (version 3.2 or later) for illustration.  See appendix A  for
   the complete implementation and appendix B  for a test-driver to run
   it through some test vectors.

   Note that this code is not intended for production as it is not
   proven to be correct for all inputs, nor does it protect against
   side-channel attacks.  The purpose is to illustrate the algorithm to
   help implementers with their own implementation.

   First some preliminaries that will be needed.
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   import hashlib

   def sha512(s):
       return hashlib.sha512(s).digest()

   # Base field Z_p
   p = 2**255 - 19

   def modp_inv(x):
       return pow(x, p-2, p)

   # Curve constant
   d = -121665 * modp_inv(121666) % p

   # Group order
   q = 2**252 + 27742317777372353535851937790883648493

   def sha512_modq(s):
       return int.from_bytes(sha512(s), "little") % q

   Then follows functions to perform point operations.
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# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z

def point_add(P, Q):
    A = (P[1]-P[0])*(Q[1]-Q[0]) % p
    B = (P[1]+P[0])*(Q[1]+Q[0]) % p
    C = 2 * P[3] * Q[3] * d % p
    D = 2 * P[2] * Q[2] % p
    E = B-A
    F = D-C
    G = D+C
    H = B+A
    return (E*F, G*H, F*G, E*H)

# Computes Q = s * Q
def point_mul(s, P):
    Q = (0, 1, 1, 0)  # Neutral element
    while s > 0:
        # Is there any bit-set predicate?
        if s & 1:
            Q = point_add(Q, P)
        P = point_add(P, P)
        s >>= 1
    return Q

def point_equal(P, Q):
    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1
    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
        return False
    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
        return False
    return True

   Now follows functions for point compression.
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# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)

# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
    x2 = (y*y-1) * modp_inv(d*y*y+1)
    if x2 == 0:
        if sign:
            return None
        else:
            return 0

    # Compute square root of x2
    x = pow(x2, (p+3) // 8, p)
    if (x*x - x2) % p != 0:
        x = x * modp_sqrt_m1 % p
    if (x*x - x2) % p != 0:
        return None

    if (x & 1) != sign:
        x = p - x
    return x

# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)

def point_compress(P):
    zinv = modp_inv(P[2])
    x = P[0] * zinv % p
    y = P[1] * zinv % p
    return int.to_bytes(y | ((x & 1) << 255), 32, "little")

def point_decompress(s):
    if len(s) != 32:
        raise Exception("Invalid input length for decompression")
    y = int.from_bytes(s, "little")
    sign = y >> 255
    y &= (1 << 255) - 1

    x = recover_x(y, sign)
    if x is None:
        return None
    else:
        return (x, y, 1, x*y % p)
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   These are functions for manipulating the secret.

   def secret_expand(secret):
       if len(secret) != 32:
           raise Exception("Bad size of private key")
       h = sha512(secret)
       a = int.from_bytes(h[:32], "little")
       a &= (1 << 254) - 8
       a |= (1 << 254)
       return (a, h[32:])

   def secret_to_public(secret):
       (a, dummy) = secret_expand(secret)
       return point_compress(point_mul(a, G))

   The signature function works as below.

   def sign(secret, msg):
       a, prefix = secret_expand(secret)
       A = point_compress(point_mul(a, G))
       r = sha512_modq(prefix + msg)
       R = point_mul(r, G)
       Rs = point_compress(R)
       h = sha512_modq(Rs + A + msg)
       s = (r + h * a) % q
       return Rs + int.to_bytes(s, 32, "little")

   And finally the verification function.

   def verify(public, msg, signature):
       if len(public) != 32:
           raise Exception("Bad public-key length")
       if len(signature) != 64:
           Exception("Bad signature length")
       A = point_decompress(public)
       if not A:
           return False
       Rs = signature[:32]
       R = point_decompress(Rs)
       if not R:
           return False
       s = int.from_bytes(signature[32:], "little")
       h = sha512_modq(Rs + public + msg)
       sB = point_mul(s, G)
       hA = point_mul(h, A)
       return point_equal(sB, point_add(R, hA))
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7.  Test Vectors

   This section contains test vectors for Ed25519ph, Ed448ph, Ed25519
   and Ed448.

   Each section contains sequence of test vectors.  The octets are hex
   encoded and whitespace is inserted for readability Ed25519 and
   Ed25519ph private and public keys 32 octets, signatures are 64
   octets.  Ed448 and Ed448ph private and public keys are 57 octets,
   signatures are 114 octets.  Messages are of arbitrary length.

7.1 .  Test Vectors for Ed25519

   These test vectors are taken from [ ED25519-TEST-VECTORS] (but we
   removed the public key as a suffix of the secret key, and removed the
   message from the signature) and [ ED25519-LIBGCRYPT-TEST-VECTORS].

   -----TEST 1
   SECRET KEY:
   9d61b19deffd5a60ba844af492ec2cc4
   4449c5697b326919703bac031cae7f60

   PUBLIC KEY:
   d75a980182b10ab7d54bfed3c964073a
   0ee172f3daa62325af021a68f707511a

   MESSAGE (length 0 bytes):

   SIGNATURE:
   e5564300c360ac729086e2cc806e828a
   84877f1eb8e5d974d873e06522490155
   5fb8821590a33bacc61e39701cf9b46b
   d25bf5f0595bbe24655141438e7a100b

   -----TEST 2
   SECRET KEY:
   4ccd089b28ff96da9db6c346ec114e0f
   5b8a319f35aba624da8cf6ed4fb8a6fb

   PUBLIC KEY:
   3d4017c3e843895a92b70aa74d1b7ebc
   9c982ccf2ec4968cc0cd55f12af4660c

   MESSAGE (length 1 byte):
   72

   SIGNATURE:
   92a009a9f0d4cab8720e820b5f642540
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   a2b27b5416503f8fb3762223ebdb69da
   085ac1e43e15996e458f3613d0f11d8c
   387b2eaeb4302aeeb00d291612bb0c00

   -----TEST 3
   SECRET KEY:
   c5aa8df43f9f837bedb7442f31dcb7b1
   66d38535076f094b85ce3a2e0b4458f7

   PUBLIC KEY:
   fc51cd8e6218a1a38da47ed00230f058
   0816ed13ba3303ac5deb911548908025

   MESSAGE (length 2 bytes):
   af82

   SIGNATURE:
   6291d657deec24024827e69c3abe01a3
   0ce548a284743a445e3680d7db5ac3ac
   18ff9b538d16f290ae67f760984dc659
   4a7c15e9716ed28dc027beceea1ec40a

   -----TEST 1024
   SECRET KEY:
   f5e5767cf153319517630f226876b86c
   8160cc583bc013744c6bf255f5cc0ee5

   PUBLIC KEY:
   278117fc144c72340f67d0f2316e8386
   ceffbf2b2428c9c51fef7c597f1d426e

   MESSAGE (length 1023 bytes):
   08b8b2b733424243760fe426a4b54908
   632110a66c2f6591eabd3345e3e4eb98
   fa6e264bf09efe12ee50f8f54e9f77b1
   e355f6c50544e23fb1433ddf73be84d8
   79de7c0046dc4996d9e773f4bc9efe57
   38829adb26c81b37c93a1b270b20329d
   658675fc6ea534e0810a4432826bf58c
   941efb65d57a338bbd2e26640f89ffbc
   1a858efcb8550ee3a5e1998bd177e93a
   7363c344fe6b199ee5d02e82d522c4fe
   ba15452f80288a821a579116ec6dad2b
   3b310da903401aa62100ab5d1a36553e
   06203b33890cc9b832f79ef80560ccb9
   a39ce767967ed628c6ad573cb116dbef
   efd75499da96bd68a8a97b928a8bbc10
   3b6621fcde2beca1231d206be6cd9ec7

Josefsson & Liusvaara     Expires June 11, 2016                [Page 21]



 
Internet-Draft          EdDSA: Ed25519 and Ed448           December 2015

   aff6f6c94fcd7204ed3455c68c83f4a4
   1da4af2b74ef5c53f1d8ac70bdcb7ed1
   85ce81bd84359d44254d95629e9855a9
   4a7c1958d1f8ada5d0532ed8a5aa3fb2
   d17ba70eb6248e594e1a2297acbbb39d
   502f1a8c6eb6f1ce22b3de1a1f40cc24
   554119a831a9aad6079cad88425de6bd
   e1a9187ebb6092cf67bf2b13fd65f270
   88d78b7e883c8759d2c4f5c65adb7553
   878ad575f9fad878e80a0c9ba63bcbcc
   2732e69485bbc9c90bfbd62481d9089b
   eccf80cfe2df16a2cf65bd92dd597b07
   07e0917af48bbb75fed413d238f5555a
   7a569d80c3414a8d0859dc65a46128ba
   b27af87a71314f318c782b23ebfe808b
   82b0ce26401d2e22f04d83d1255dc51a
   ddd3b75a2b1ae0784504df543af8969b
   e3ea7082ff7fc9888c144da2af58429e
   c96031dbcad3dad9af0dcbaaaf268cb8
   fcffead94f3c7ca495e056a9b47acdb7
   51fb73e666c6c655ade8297297d07ad1
   ba5e43f1bca32301651339e22904cc8c
   42f58c30c04aafdb038dda0847dd988d
   cda6f3bfd15c4b4c4525004aa06eeff8
   ca61783aacec57fb3d1f92b0fe2fd1a8
   5f6724517b65e614ad6808d6f6ee34df
   f7310fdc82aebfd904b01e1dc54b2927
   094b2db68d6f903b68401adebf5a7e08
   d78ff4ef5d63653a65040cf9bfd4aca7
   984a74d37145986780fc0b16ac451649
   de6188a7dbdf191f64b5fc5e2ab47b57
   f7f7276cd419c17a3ca8e1b939ae49e4
   88acba6b965610b5480109c8b17b80e1
   b7b750dfc7598d5d5011fd2dcc5600a3
   2ef5b52a1ecc820e308aa342721aac09
   43bf6686b64b2579376504ccc493d97e
   6aed3fb0f9cd71a43dd497f01f17c0e2
   cb3797aa2a2f256656168e6c496afc5f
   b93246f6b1116398a346f1a641f3b041
   e989f7914f90cc2c7fff357876e506b5
   0d334ba77c225bc307ba537152f3f161
   0e4eafe595f6d9d90d11faa933a15ef1
   369546868a7f3a45a96768d40fd9d034
   12c091c6315cf4fde7cb68606937380d
   b2eaaa707b4c4185c32eddcdd306705e
   4dc1ffc872eeee475a64dfac86aba41c
   0618983f8741c5ef68d3a101e8a3b8ca
   c60c905c15fc910840b94c00a0b9d0
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   SIGNATURE:
   0aab4c900501b3e24d7cdf4663326a3a
   87df5e4843b2cbdb67cbf6e460fec350
   aa5371b1508f9f4528ecea23c436d94b
   5e8fcd4f681e30a6ac00a9704a188a03
   -----

7.2 .  Test Vectors for Ed25519ph

   TODO

7.3 .  Test Vectors for Ed448

   TODO

7.4 .  Test Vectors for Ed448ph

   TODO
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9.  IANA Considerations

   None.

10.  Security Considerations

10.1 .  Side-channel leaks

   For implementations performing signatures, secrecy of the key is
   fundamental.  It is possible to protect against some side-channel
   attacks by ensuring that the implementation executes exactly the same
   sequence of instructions and performs exactly the same memory
   accesses, for any value of the secret key.

Josefsson & Liusvaara     Expires June 11, 2016                [Page 23]



 
Internet-Draft          EdDSA: Ed25519 and Ed448           December 2015

   To make an implementation side-channel silent in this way, the modulo
   p arithmetic must not use any data-dependent branches, e.g., related
   to carry propagation.  Side channel-silent point addition is
   straight-forward, thanks to the unified formulas.

   Scalar multiplication, multiplying a point by an integer, needs some
   additional effort to implement in a side-channel silent manner.  One
   simple approach is to implement a side-channel silent conditional
   assignment, and use together with the binary algorithm to examine one
   bit of the integer at a time.

   Note that the example implementations in this document do not attempt
   to be side-channel silent.

10.2 .  Mixing different prehashes

   Using the same key with different prehashes is a bad idea.  The most
   obvious problem is that identity transform can produce message values
   colliding with hashes of interesting messages (or vice versa).
   Additionally, even if it is infeasible to find collisions in two hash
   functions, there is nothing guaranteeing that finding collisions
   between hashes is infeasible.

   For these reasons, the same private key MUST NOT be used for multiple
   algorithms (including prehashes) without protocol preventing messages
   output by different prehash algorithms from colliding.

10.3 .  Signing large amounts of data at once

   Avoid signing large amounts of data at once (where "large" depends on
   expected verifier).  In practicular, unless the underlying protocol
   does not require it, the receiver MUST buffer the entire message (or
   enough information to reconstruct it, e.g. compressed or encrypted
   version) to be verified.

   This is needed becuse most of the time, it is unsafe to process
   unverified data, and verifying the signature makes a pass through
   whole message, causing ultimately at least two passes through.

   As API consideration, this means that any IUF verification interface
   is prone to misuse.
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Appendix A .  Ed25519 Python Library

   Below is an example implementation of Ed25519 written in Python,
   version 3.2 or higher is required.

# Loosely based on the public domain code at
# http://ed25519.cr.yp.to/software.html
#
# Needs python-3.2

import hashlib

def sha512(s):
    return hashlib.sha512(s).digest()

# Base field Z_p
p = 2**255 - 19

def modp_inv(x):
    return pow(x, p-2, p)

# Curve constant
d = -121665 * modp_inv(121666) % p

# Group order
q = 2**252 + 27742317777372353535851937790883648493

def sha512_modq(s):
    return int.from_bytes(sha512(s), "little") % q

# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z

def point_add(P, Q):
    A = (P[1]-P[0])*(Q[1]-Q[0]) % p
    B = (P[1]+P[0])*(Q[1]+Q[0]) % p
    C = 2 * P[3] * Q[3] * d % p
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    D = 2 * P[2] * Q[2] % p
    E = B-A
    F = D-C
    G = D+C
    H = B+A
    return (E*F, G*H, F*G, E*H)

# Computes Q = s * Q
def point_mul(s, P):
    Q = (0, 1, 1, 0)  # Neutral element
    while s > 0:
        # Is there any bit-set predicate?
        if s & 1:
            Q = point_add(Q, P)
        P = point_add(P, P)
        s >>= 1
    return Q

def point_equal(P, Q):
    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1
    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
        return False
    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
        return False
    return True

# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)

# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
    x2 = (y*y-1) * modp_inv(d*y*y+1)
    if x2 == 0:
        if sign:
            return None
        else:
            return 0

    # Compute square root of x2
    x = pow(x2, (p+3) // 8, p)
    if (x*x - x2) % p != 0:
        x = x * modp_sqrt_m1 % p
    if (x*x - x2) % p != 0:
        return None
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    if (x & 1) != sign:
        x = p - x
    return x

# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)

def point_compress(P):
    zinv = modp_inv(P[2])
    x = P[0] * zinv % p
    y = P[1] * zinv % p
    return int.to_bytes(y | ((x & 1) << 255), 32, "little")

def point_decompress(s):
    if len(s) != 32:
        raise Exception("Invalid input length for decompression")
    y = int.from_bytes(s, "little")
    sign = y >> 255
    y &= (1 << 255) - 1

    x = recover_x(y, sign)
    if x is None:
        return None
    else:
        return (x, y, 1, x*y % p)

def secret_expand(secret):
    if len(secret) != 32:
        raise Exception("Bad size of private key")
    h = sha512(secret)
    a = int.from_bytes(h[:32], "little")
    a &= (1 << 254) - 8
    a |= (1 << 254)
    return (a, h[32:])

def secret_to_public(secret):
    (a, dummy) = secret_expand(secret)
    return point_compress(point_mul(a, G))

def sign(secret, msg):
    a, prefix = secret_expand(secret)
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    A = point_compress(point_mul(a, G))
    r = sha512_modq(prefix + msg)
    R = point_mul(r, G)
    Rs = point_compress(R)
    h = sha512_modq(Rs + A + msg)
    s = (r + h * a) % q
    return Rs + int.to_bytes(s, 32, "little")

def verify(public, msg, signature):
    if len(public) != 32:
        raise Exception("Bad public-key length")
    if len(signature) != 64:
        Exception("Bad signature length")
    A = point_decompress(public)
    if not A:
        return False
    Rs = signature[:32]
    R = point_decompress(Rs)
    if not R:
        return False
    s = int.from_bytes(signature[32:], "little")
    h = sha512_modq(Rs + public + msg)
    sB = point_mul(s, G)
    hA = point_mul(h, A)
    return point_equal(sB, point_add(R, hA))

Appendix B .  Library driver

   Below is a command-line tool that uses the library above to perform
   computations, for interactive use or for self-checking.

   import sys
   import binascii

   from ed25519 import *

   def point_valid(P):
       zinv = modp_inv(P[2])
       x = P[0] * zinv % p
       y = P[1] * zinv % p
       assert (x*y - P[3]*zinv) % p == 0
       return (-x*x + y*y - 1 - d*x*x*y*y) % p == 0

   assert point_valid(G)
   Z = (0, 1, 1, 0)
   assert point_valid(Z)
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   assert point_equal(Z, point_add(Z, Z))
   assert point_equal(G, point_add(Z, G))
   assert point_equal(Z, point_mul(0, G))
   assert point_equal(G, point_mul(1, G))
   assert point_equal(point_add(G, G), point_mul(2, G))
   for i in range(0, 100):
       assert point_valid(point_mul(i, G))
   assert point_equal(Z, point_mul(q, G))

   def munge_string(s, pos, change):
       return (s[:pos] +
               int.to_bytes(s[pos] ^ change, 1, "little") +
               s[pos+1:])

   # Read a file in the format of
   # http://ed25519.cr.yp.to/python/sign.input
   lineno = 0
   while True:
       line = sys.stdin.readline()
       if not line:
           break
       lineno = lineno + 1
       print(lineno)
       fields = line.split(":")
       secret = (binascii.unhexlify(fields[0]))[:32]
       public = binascii.unhexlify(fields[1])
       msg = binascii.unhexlify(fields[2])
       signature = binascii.unhexlify(fields[3])[:64]

       assert public == secret_to_public(secret)
       assert signature == sign(secret, msg)
       assert verify(public, msg, signature)
       if len(msg) == 0:
           bad_msg = b"x"
       else:
           bad_msg = munge_string(msg, len(msg) // 3, 4)
       assert not verify(public, bad_msg, signature)
       bad_signature = munge_string(signature, 20, 8)
       assert not verify(public, msg, bad_signature)
       bad_signature = munge_string(signature, 40, 16)
       assert not verify(public, msg, bad_signature)
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