
Network Working Group S. Josefsson
Internet-Draft SJD AB
Intended status: Informational I. Liusvaara
Expires: June 11, 2016 Independent
 December 9, 2015

 Edwards-curve Digital Signature Algorithm (EdDSA)
 draft-irtf-cfrg-eddsa-01

Abstract

 The elliptic curve signature scheme Edwards-curve Digital Signature
 Algorithm (EdDSA) is described. The algorithm is instantiated with
 recommended parameters for the Curve25519 and Curve448 curves. An
 example implementation and test vectors are provided.

 NOTE: Anything not about Ed25519 in this document is premature and
 there is at least one FIXME that makes some things unimplementable.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 11, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Josefsson & Liusvaara Expires June 11, 2016 [Page 1]

https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Notation and Conventions 4
 3. EdDSA Algorithm . 5
 3.1 . Encoding . 6
 3.2 . Keys . 6
 3.3 . Sign . 7
 3.4 . Verify . 7
 4. PureEdDSA, HashEdDSA and Naming 7
 5. EdDSA Instances . 8
 5.1 . Ed25519ph and Ed25519 8
 5.1.1 . Modular arithmetic 8
 5.1.2 . Encoding . 9
 5.1.3 . Decoding . 9
 5.1.4 . Point addition 10
 5.1.5 . Key Generation 10
 5.1.6 . Sign . 11
 5.1.7 . Verify . 12
 5.2 . Ed448ph and Ed448 . 12
 5.2.1 . Modular arithmetic 12
 5.2.2 . Encoding . 12
 5.2.3 . Decoding . 13
 5.2.4 . Point addition 13
 5.2.5 . Key Generation 14
 5.2.6 . Sign . 14
 5.2.7 . Verify . 15
 6. Ed25519 Python illustration 15
 7. Test Vectors . 20
 7.1 . Test Vectors for Ed25519 20
 7.2 . Test Vectors for Ed25519ph 23
 7.3 . Test Vectors for Ed448 23
 7.4 . Test Vectors for Ed448ph 23
 8. Acknowledgements . 23
 9. IANA Considerations . 23
 10. Security Considerations 23
 10.1 . Side-channel leaks 23
 10.2 . Mixing different prehashes 24
 10.3 . Signing large amounts of data at once 24
 11. References . 24
 11.1 . Normative References 25
 11.2 . Informative References 25
 Appendix A . Ed25519 Python Library 26
 Appendix B . Library driver 29

Josefsson & Liusvaara Expires June 11, 2016 [Page 2]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 Authors’ Addresses . 30

1. Introduction

 The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
 Schnorr’s signature system with (possibly Twisted) Edwards curves.
 EdDSA needs to be instantiated with certain parameters and this
 document describe some recommended variants.

 To facilitate adoption in the Internet community of EdDSA, this
 document describe the signature scheme in an implementation-oriented
 way, and provide sample code and test vectors.

 The advantages with EdDSA include:

 1. High-performance on a variety of platforms.

 2. Does not require the use of a unique random number for each
 signature.

 3. More resilient to side-channel attacks.

 4. Small public keys (32 or 57 bytes) and signatures (64 or 114
 bytes).

 5. The formulas are "strongly unified", i.e., they are valid for all
 points on the curve, with no exceptions. This obviates the need
 for EdDSA to perform expensive point validation on untrusted
 public values.

 6. Collision resilience, meaning that hash-function collisions do
 not break this system. (Only holds for PureEdDSA.)

 The original EdDSA paper [EDDSA] and the generalized version
 described in "EdDSA for more curves" [EDDSA2] provide further
 background. The [I-D.irtf-cfrg-curves] document discuss specific
 curves, including Curve25519 [CURVE25519] and Ed448-Goldilocks
 [ED448].

 Ed25519 is intended to operate at around the 128-bit security level,
 and Ed448 at around the 224-bit security level. A large quantum
 computer would be able to break both. Reasonable projections of the
 abilities of classical computers conclude that Ed25519 is perfectly
 safe. Ed448 is provided for those applications with relaxed
 performance requirements and where there is a desire to hedge against
 analytical attacks on elliptic curves.

Josefsson & Liusvaara Expires June 11, 2016 [Page 3]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

2. Notation and Conventions

 FIXME: make sure this is aligned with irtf-cfrg-curves

 The following notation is used throughout the document:

 GF(p) --- finite field with p elements

 x^y --- x multiplied by itself y times

 B --- generator of the group or subgroup of interest

 [n]B --- B added to itself n times.

 h_i --- the i’th bit of h

 a || b --- (bit-)string a concatenated with (bit-)string b

 a <= b --- a is less than or equal to b

 i+j --- sum of i and j

 i*j --- multiplication of i and j

 i x j --- cartesian product of i and j

 Use of parenthesis (i.e., ’(’ and ’)’) are used to group expressions,
 in order to avoid having the description depend on a binding order
 between operators.

 Bit strings are converted to octet strings by taking bits from left
 to right and packing those from least significant bit of each octet
 to most siginficant bit, and moving to the next octet when each octet
 fills up. The conversion from octet string to bit string is the
 reverse of this process. E.g. the 16-bit bit string:

 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

 Is converted into two octets x0 and x1 (in this order) as:

 x0 = b7*128+b6*64+b5*32+b4*16+b3*8+b2*4+b1*2+b0
 x1 = b15*128+b14*64+b13*32+b12*16+b11*8+b10*4+b9*2+b8

 Little-endian encoding into bits places bits from left to right from
 least significant to most significant. If combined with bit string
 to octet string conversion defined above, this results in little-
 endian encoding into octets (if length is not multiple of 8, the most
 significant bits of last octet remain unused).

Josefsson & Liusvaara Expires June 11, 2016 [Page 4]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

3. EdDSA Algorithm

 EdDSA is a digital signature system with eleven parameters.

 The generic EdDSA digital signature system with its eleven input
 parameters is not intended to be implemented directly. Chosing
 parameters is critical for secure and efficient operation. Instead,
 you would implement a particular parameter choice for EdDSA (such as
 Ed25519 or Ed448), sometimes slightly generalized to achieve code re-
 use to cover Ed25519 and Ed448.

 Therefore, a precise explanation of the generic EdDSA is thus not
 particularly useful for implementers. For background and
 completeness, a succinct description of the generic EdDSA algorithm
 is given here.

 The definition of some parameters, such as n and c, may help to
 explain some non-intuitive steps of the algorithm.

 This description closely follows [EDDSA2].

 EdDSA has eleven parameters:

 1. An odd prime power p. EdDSA uses an elliptic curve over the
 finite field GF(p).

 2. An integer b with 2^(b-1) > p. EdDSA public keys have exactly b
 bits, and EdDSA signatures have exactly 2*b bits. b is
 recommended to be multiple of 8, so public key and signature
 lengths are integral number of octets.

 3. A (b-1)-bit encoding of elements of the finite field GF(p).

 4. A cryptographic hash function H producing 2*b-bit output.
 Conservative hash functions are recommended and do not have much
 impact on the total cost of EdDSA.

 5. An integer c that is 2 or 3. Secret EdDSA scalars are multiples
 of 2^c. The integer c is the base-2 logarithm of the so called
 cofactor.

 6. An integer n with c <= n < b. Secret EdDSA scalars have exactly
 n + 1 bits, with the top bit (the 2^n position) always set and
 the bottom c bits always cleared.

 7. A nonzero square element a of GF(p). The usual recommendation
 for best performance is a = -1 if p mod 4 = 1, and a = 1 if p
 mod 4 = 3.

Josefsson & Liusvaara Expires June 11, 2016 [Page 5]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 8. An element B != (0,1) of the set E = { (x,y) is a member of
 GF(p) x GF(p) such that a * x^2 + y^2 = 1 + d * x^2 * y^2 }.

 9. An odd prime l such that [l]B = 0 and 2^c * l = #E. The number
 #E (the number of points on the curve) is part of the standard
 data provided for an elliptic curve E.

 10. A "prehash" function PH. PureEdDSA means EdDSA where PH is the
 identity function, i.e., PH(M) = M. HashEdDSA means EdDSA where
 PH generates a short output, no matter how long the message is;
 for example, PH(M) = SHA-512(M).

 Points on the curve form a group under addition, (x3, y3) = (x1, y1)
 + (x2, y2), with the formulas

 x1 * y2 + x2 * y1 y1 * y2 - a * x1 * x2
 x3 = --------------------------, y3 = ---------------------------
 1 + d * x1 * x2 * y1 * y2 1 - d * x1 * x2 * y1 * y2

 The neutral element in the group is (0, 1).

 Unlike many other curves used for cryptographic applications, these
 formulas are "strongly unified": they are valid for all points on the
 curve, with no exceptions. In particular, the denominators are non-
 zero for all input points.

 There are more efficient formulas, which are still strongly unified,
 which use homogeneous coordinates to avoid the expensive modulo p
 inversions. See [Faster-ECC] and [Edwards-revisited].

3.1 . Encoding

 An integer 0 < S < l - 1 is encoded in little-endian form as a b-bit
 string ENC(S).

 An element (x,y) of E is encoded as a b-bit string called ENC(x,y)
 which is the (b-1)-bit encoding of y concatenated with one bit that
 is 1 if x is negative and 0 if x is not negative.

 The encoding of GF(p) is used to define "negative" elements of GF(p):
 specifically, x is negative if the (b-1)-bit encoding of x is
 lexicographically larger than the (b-1)-bit encoding of -x.

3.2 . Keys

 An EdDSA secret key is a b-bit string k. Let the hash H(k) = (h_0,
 h_1, ..., h_(2b-1)) determine an integer s which is 2^n plus the sum
 of m = 2^i * h_i for all integer i, c <= i <= n. Let s determine the

Josefsson & Liusvaara Expires June 11, 2016 [Page 6]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 multiple A = [s]B. The EdDSA public key is ENC(A). The bits h_b,
 ..., h_(2b-1) is used below during signing.

3.3 . Sign

 The EdDSA signature of a message M under a secret key k is defined as
 the PureEdDSA signature of PH(M). In other words, EdDSA simply uses
 PureEdDSA to sign PH(M).

 The PureEdDSA signature of a message M under a secret key k is the
 2*b-bit string ENC(R) || ENC(S). R and S are derived as follows.
 First define r = H(h_b, ... h_(2b-1), M) interpreting 2*b-bit strings
 in little-endian form as integers in {0, 1, ..., 2^(2*b) - 1}. Let R
 = [r]B and S = (r + H(ENC(R) || ENC(A) || P(M)) s) mod l. The s used
 here is from the previous section.

3.4 . Verify

 To verify a PureEdDSA signature ENC(R) || ENC(S) on a message M under
 a public key ENC(A), proceed as follows. Parse the inputs so that A
 and R is an element of E, and S is a member of the set {0, 1, ...,
 l-1 }. Compute h = H(ENC(R) || ENC(A) || M) and check the group
 equation [2^c * S] B = 2^c * R + [2^c * h] A in E. Verification is
 rejected if parsing fails or the group equation does not hold.

 EdDSA verification for a message M is defined as PureEdDSA
 verification for PH(M).

4. PureEdDSA, HashEdDSA and Naming

 One of the parameters of the EdDSA algorithm is the "prehash"
 function. This may be the identity function, resulting in an
 algorithm called PureEdDSA, or a collision-resistant hash function
 such as SHA-512, resulting in an algorithm called HashEdDSA.

 Chosing which variant to use depends on which property is deemed to
 be more important between 1) collision resilience, and 2) a single-
 pass interface for creating signatures. The collision resilience
 property means EdDSA is secure even if it is feasible to compute
 collisions for the hash function. The single-pass interface property
 means that only one pass over the input message is required to create
 a signature. PureEdDSA requires two passes over the input. Many
 existing APIs, protocols and environments assume digital signature
 algorithms only need one pass over the input, and may have API or
 bandwidth concerns supporting anything else.

 Note that single-pass verification is not possible with most uses of
 signatures, no matter which signature algorithm is chosen. This is

Josefsson & Liusvaara Expires June 11, 2016 [Page 7]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 because most of the time one can’t process the message until
 signature is validated, which needs a pass on the entire message.

 This document specify parameters resulting in the HashEdDSA variants
 Ed25519ph and Ed448ph, and the PureEdDSA variants Ed25519 and Ed448.

5. EdDSA Instances

 This section instantiate the general EdDSA algorithm for the
 Curve25519 and Ed448 curves, each for the PureEdDSA and HashEdDSA
 variants. Thus four different parameter sets are described.

5.1 . Ed25519ph and Ed25519

 Ed25519 is PureEdDSA instantiated with: p as the prime 2^255-19,
 b=256, the 255-bit encoding of GF(p) being the little-endian encoding
 of {0, 1, ..., p-1}, H being SHA-512 [RFC4634], c being 3, n being
 254, a being -1, d = -121665/121666 which is a member of GF(p), and B
 is the unique point (x, 4/5) in E for which x is "positive", which
 with the encoding used simply means that the least significant bit of
 x is 0, l is the prime 2^252 +
 27742317777372353535851937790883648493.

 Ed25519ph is the same but with PH being SHA-512 instead, i.e., the
 input is hashed using SHA-512 before signing with Ed25519.

 Written out explicitly, B is the point (15112221349535400772501151409
 588531511454012693041857206046113283949847762202, 4631683569492647816
 9428394003475163141307993866256225615783033603165251855960).

 The values for p, a, d, B and l follows from the "edwards25519"
 values in [I-D.irtf-cfrg-curves].

 The curve used is equivalent to Curve25519 [CURVE25519], under a
 change of coordinates, which means that the difficulty of the
 discrete logarithm problem is the same as for Curve25519.

5.1.1 . Modular arithmetic

 For advise on how to implement arithmetic modulo p = 2^255 - 19
 efficiently and securely, see Curve25519 [CURVE25519]. For inversion
 modulo p, it is recommended to use the identity x^-1 = x^(p-2) (mod
 p).

 For point decoding or "decompression", square roots modulo p are
 needed. They can be computed using the Tonelli-Shanks algorithm, or
 the special case for p = 5 (mod 8). To find a square root of a,

Josefsson & Liusvaara Expires June 11, 2016 [Page 8]

https://tools.ietf.org/pdf/rfc4634

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 first compute the candidate root x = a^((p+3)/8) (mod p). Then there
 are three cases:

 x^2 = a (mod p). Then x is a square root.

 x^2 = -a (mod p). Then 2^((p-1)/4) x is a square root.

 a is not a square modulo p.

5.1.2 . Encoding

 All values are coded as octet strings, and integers are coded using
 little endian convention. I.e., a 32-octet string h h[0],...h[31]
 represents the integer h[0] + 2^8 h[1] + ... + 2^248 h[31].

 A curve point (x,y), with coordinates in the range 0 <= x,y < p, is
 coded as follows. First encode the y-coordinate as a little-endian
 string of 32 octets. The most significant bit of the final octet is
 always zero. To form the encoding of the point, copy the least
 significant bit of the x-coordinate to the most significant bit of
 the final octet.

5.1.3 . Decoding

 Decoding a point, given as a 32-octet string, is a little more
 complicated.

 1. First interpret the string as an integer in little-endian
 representation. Bit 255 of this number is the least significant
 bit of the x-coordinate, and denote this value x_0. The
 y-coordinate is recovered simply by clearing this bit. If the
 resulting value is >= p, decoding fails.

 2. To recover the x coordinate, the curve equation implies x^2 =
 (y^2 - 1) / (d y^2 + 1) (mod p). The denominator is always
 nonzero mod p. Let u = y^2 - 1 and v = d y^2 + 1. To compute
 the square root of (u/v), the first step is to compute the
 candidate root x = (u/v)^((p+3)/8). This can be done using the
 following trick, to use a single modular powering for both the
 inversion of v and the square root:

 (p+3)/8 3 (p-5)/8
 x = (u/v) = u v (u v^7) (mod p)

 3. Again, there are three cases:

 1. If v x^2 = u (mod p), x is a square root.

Josefsson & Liusvaara Expires June 11, 2016 [Page 9]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 2. If v x^2 = -u (mod p), set x <-- x 2^((p-1)/4), which is a
 square root.

 3. Otherwise, no square root exists modulo p, and decoding
 fails.

 4. Finally, use the x_0 bit to select the right square root. If x =
 0, and x_0 = 1, decoding fails. Otherwise, if x_0 != x mod 2,
 set x <-- p - x. Return the decoded point (x,y).

5.1.4 . Point addition

 For point addition, the following method is recommended. A point
 (x,y) is represented in extended homogeneous coordinates (X, Y, Z,
 T), with x = X/Z, y = Y/Z, x y = T/Z.

 The following formulas for adding two points, (x3,y3) =
 (x1,y1)+(x2,y2) are described in [Edwards-revisited], section 3.1.
 They are strongly unified, i.e., they work for any pair of valid
 input points.

 A = (Y1-X1)*(Y2-X2)
 B = (Y1+X1)*(Y2+X2)
 C = T1*2*d*T2
 D = Z1*2*Z2
 E = B-A
 F = D-C
 G = D+C
 H = B+A
 X3 = E*F
 Y3 = G*H
 T3 = E*H
 Z3 = F*G

5.1.5 . Key Generation

 The secret is 32 octets (256 bits, corresponding to b) of
 cryptographically-secure random data. See [RFC4086] for a discussion
 about randomness.

 The 32-byte public key is generated by the following steps.

 1. Hash the 32-byte secret using SHA-512, storing the digest in a
 64-octet large buffer, denoted h. Only the lower 32 bytes are
 used for generating the public key.

Josefsson & Liusvaara Expires June 11, 2016 [Page 10]

https://tools.ietf.org/pdf/rfc4086

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 2. Prune the buffer: The lowest 3 bits of the first octet are
 cleared, the highest bit of the last octet is cleared, and second
 highest bit of the last octet is set.

 3. Interpret the buffer as the little-endian integer, forming a
 secret scalar a. Perform a fixed-base scalar multiplication
 [a]B.

 4. The public key A is the encoding of the point [a]B. First encode
 the y coordinate (in the range 0 <= y < p) as a little-endian
 string of 32 octets. The most significant bit of the final octet
 is always zero. To form the encoding of the point [a]B, copy the
 least significant bit of the x coordinate to the most significant
 bit of the final octet. The result is the public key.

5.1.6 . Sign

 The inputs to the signing procedure is the secret key, a 32-octet
 string, and a message M of arbitrary size.

 1. Hash the secret key, 32-octets, using SHA-512. Let h denote the
 resulting digest. Construct the secret scalar a from the first
 half of the digest, and the corresponding public key A, as
 described in the previous section. Let prefix denote the second
 half of the hash digest, h[32],...,h[63].

 2. Compute SHA-512(prefix || M), where M is the message to be
 signed. Interpret the 64-octet digest as a little-endian integer
 r.

 3. Compute the point [r]B. For efficiency, do this by first
 reducing r modulo l, the group order of B. Let the string R be
 the encoding of this point.

 4. Compute SHA512(R || A || M), and interpret the 64-octet digest as
 a little-endian integer k.

 5. Compute S = (r + k * a) mod l. For efficiency, again reduce k
 modulo l first.

 6. Form the signature of the concatenation of R (32 octets) and the
 little-endian encoding of S (32 octets, three most significant
 bits of the final octet are always zero).

Josefsson & Liusvaara Expires June 11, 2016 [Page 11]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

5.1.7 . Verify

 1. To verify a signature on a message M, first split the signature
 into two 32-octet halves. Decode the first half as a point R,
 and the second half as an integer S, in the range 0 <= s < l. If
 the decoding fails, the signature is invalid.

 2. Compute SHA512(R || A || M), and interpret the 64-octet digest as
 a little-endian integer k.

 3. Check the group equation [8][S]B = [8]R + [8][k]A. It’s
 sufficient, but not required, to instead check [S]B = R + [k]A.

5.2 . Ed448ph and Ed448

 Ed448 is PureEdDSA instantiated with p as the prime 2^448 - 2^224 -
 1, b=456, the 455-bit encoding of GF(2^448-2^224-1) is the usual
 little-endian encoding of {0, 1, ..., 2^448 - 2^224 - 2}, H is
 [FIXME: needs 912-bit hash], c being 2, n being 448, a being 1, d
 being - 39081, B is (X(P), Y(P)), and l is the prime 2^446 -
 13818066809895115352007386748515426880336692474882178609894547503885.

 Ed448ph is the same but with P being SHA-512 instead, i.e., the input
 is hashed using SHA-512 before signing with Ed448.

 The values of p, a, d, X(p), Y(p), and l are taken from curve named
 "edwards448" in [I-D.irtf-cfrg-curves].

 The curve is equivalent to Ed448-Goldilocks under change of
 basepoint, which preserves difficulty of the discrete logarithm.

5.2.1 . Modular arithmetic

 For advise on how to implement arithmetic modulo p = 2^448 - 2^224 -
 1 efficiently and securely, see [ED448]. For inversion modulo p, it
 is recommended to use the identity x^-1 = x^(p-2) (mod p).

 For point decoding or "decompression", square roots modulo p are
 needed. They can be computed by first computing candidate root x = a
 ^ (p+1)/4 (mod p) and then checking if x^2 = a. If it is, then x is
 square root of a.

5.2.2 . Encoding

 All values are coded as octet strings, and integers are coded using
 little endian convention. I.e., a 57-octet string h h[0],...h[56]
 represents the integer h[0] + 2^8 h[1] + ... + 2^448 h[56].

Josefsson & Liusvaara Expires June 11, 2016 [Page 12]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 A curve point (x,y), with coordinates in the range 0 <= x,y < p, is
 coded as follows. First encode the y-coordinate as a little-endian
 string of 57 octets. The final octet is always zero. To form the
 encoding of the point, copy the least significant bit of the
 x-coordinate to the most significant bit of the final octet.

5.2.3 . Decoding

 Decoding a point, given as a 57-octet string, is a little more
 complicated.

 1. First interpret the string as an integer in little-endian
 representation. Bit 455 of this number is the least significant
 bit of the x-coordinate, and denote this value x_0. The
 y-coordinate is recovered simply by clearing this bit. If the
 resulting value is >= p, decoding fails.

 2. To recover the x coordinate, the curve equation implies x^2 =
 (y^2 - 1) / (d y^2 - 1) (mod p). The denominator is always
 nonzero mod p. Let u = y^2 - 1 and v = d y^2 - 1. To compute
 the square root of (u/v), the first step is to compute the
 candidate root x = (u/v)^((p+1)/4). This can be done using the
 following trick, to use a single modular powering for both the
 inversion of v and the square root:

 (p+1)/4 3 (p-3)/4
 x = (u/v) = u v (u^5 v^3) (mod p)

 3. If v * x^2 = u, the recovered x coordinate is x. Otherwise no
 square root exists, and the decoding fails.

 4. Finally, use the x_0 bit to select the right square root. If x =
 0, and x_0 = 1, decoding fails. Otherwise, if x_0 != x mod 2,
 set x <-- p - x. Return the decoded point (x,y).

5.2.4 . Point addition

 For point addition, the following method is recommended. A point
 (x,y) is represented in projective coordinates (X, Y, Z), with x = X/
 Z, y = Y/Z.

 The following formulas for adding two points, (x3,y3) =
 (x1,y1)+(x2,y2) are described in [FIXME: Add reference]. They are
 strongly unified, i.e., they work for any pair of valid input points.

Josefsson & Liusvaara Expires June 11, 2016 [Page 13]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 A = Z1*Z2
 B = A^2
 C = X1*X2
 D = Y1*Y2
 E = d*C*D
 F = B-E
 G = B+E
 H = (X1+X2)*(Y1+Y2)
 X3 = A*G*(H-C-D)
 Y3 = A*G*(D-C)
 Z3 = F*G

5.2.5 . Key Generation

 The secret is 57 octets (456 bits, corresponding to b) of
 cryptographically-secure random data. See [RFC4086] for a discussion
 about randomness.

 The 57-byte public key is generated by the following steps.

 1. Hash the 57-byte secret using FIXME-HASH, storing the digest in a
 114-octet large buffer, denoted h. Only the lower 57 bytes are
 used for generating the public key.

 2. Prune the buffer: The two least significant bits of the first
 octet are cleared, all 8 bits the last octet are cleared, and the
 highest bit of the second to last octet is set.

 3. Interpret the buffer as the little-endian integer, forming a
 secret scalar a. Perform a known-base-point scalar
 multiplication [a]B.

 4. The public key A is the encoding of the point [a]B. First encode
 the y coordinate (in the range 0 <= y < p) as a little-endian
 string of 57 octets. The most significant bit of the final octet
 is always zero. To form the encoding of the point [a]B, copy the
 least significant bit of the x coordinate to the most significant
 bit of the final octet. The result is the public key.

5.2.6 . Sign

 The inputs to the signing procedure is the secret key, a 32-octet
 string, and a message M of arbitrary size.

 1. Hash the secret key, 57-octets, using FIXME-HASH. Let h denote
 the resulting digest. Construct the secret scalar a from the
 first half of the digest, and the corresponding public key A, as

Josefsson & Liusvaara Expires June 11, 2016 [Page 14]

https://tools.ietf.org/pdf/rfc4086

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 described in the previous section. Let prefix denote the second
 half of the hash digest, h[57],...,h[113].

 2. Compute FIXME-HASH(prefix || M), where M is the message to be
 signed. Interpret the 114-octet digest as a little- endian
 integer r.

 3. Compute the point [r]B. For efficiency, do this by first
 reducing r modulo l, the group order of B. Let the string R be
 the encoding of this point.

 4. Compute FIXME-HASH(R || A || M), and interpret the 114- octet
 digest as a little-endian integer k.

 5. Compute S = (r + k * a) mod l. For efficiency, again reduce k
 modulo l first.

 6. Form the signature of the concatenation of R (57 octets) and the
 little-endian encoding of S (57 octets, ten most significant bits
 of the final octets always zero).

5.2.7 . Verify

 1. To verify a signature on a message M, first split the signature
 into two 57-octet halves. Decode the first half as a point R,
 and the second half as an integer S, in the range 0 <= s < l. If
 the decoding fails, the signature is invalid.

 2. Compute FIXME-HASH(R || A || M), and interpret the 114-octet
 digest as a little-endian integer k.

 3. Check the group equation [4][S]B = [4]R + [4][k]A. It’s
 sufficient, but not required, to instead check [S]B = R + [k]A.

6. Ed25519 Python illustration

 The rest of this section describes how Ed25519 can be implemented in
 Python (version 3.2 or later) for illustration. See appendix A for
 the complete implementation and appendix B for a test-driver to run
 it through some test vectors.

 Note that this code is not intended for production as it is not
 proven to be correct for all inputs, nor does it protect against
 side-channel attacks. The purpose is to illustrate the algorithm to
 help implementers with their own implementation.

 First some preliminaries that will be needed.

Josefsson & Liusvaara Expires June 11, 2016 [Page 15]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 import hashlib

 def sha512(s):
 return hashlib.sha512(s).digest()

 # Base field Z_p
 p = 2**255 - 19

 def modp_inv(x):
 return pow(x, p-2, p)

 # Curve constant
 d = -121665 * modp_inv(121666) % p

 # Group order
 q = 2**252 + 27742317777372353535851937790883648493

 def sha512_modq(s):
 return int.from_bytes(sha512(s), "little") % q

 Then follows functions to perform point operations.

Josefsson & Liusvaara Expires June 11, 2016 [Page 16]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

Points are represented as tuples (X, Y, Z, T) of extended coordinates,
with x = X/Z, y = Y/Z, x*y = T/Z

def point_add(P, Q):
 A = (P[1]-P[0])*(Q[1]-Q[0]) % p
 B = (P[1]+P[0])*(Q[1]+Q[0]) % p
 C = 2 * P[3] * Q[3] * d % p
 D = 2 * P[2] * Q[2] % p
 E = B-A
 F = D-C
 G = D+C
 H = B+A
 return (E*F, G*H, F*G, E*H)

Computes Q = s * Q
def point_mul(s, P):
 Q = (0, 1, 1, 0) # Neutral element
 while s > 0:
 # Is there any bit-set predicate?
 if s & 1:
 Q = point_add(Q, P)
 P = point_add(P, P)
 s >>= 1
 return Q

def point_equal(P, Q):
 # x1 / z1 == x2 / z2 <==> x1 * z2 == x2 * z1
 if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
 return False
 if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
 return False
 return True

 Now follows functions for point compression.

Josefsson & Liusvaara Expires June 11, 2016 [Page 17]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)

Compute corresponding x coordinate, with low bit corresponding to sign,
or return None on failure
def recover_x(y, sign):
 x2 = (y*y-1) * modp_inv(d*y*y+1)
 if x2 == 0:
 if sign:
 return None
 else:
 return 0

 # Compute square root of x2
 x = pow(x2, (p+3) // 8, p)
 if (x*x - x2) % p != 0:
 x = x * modp_sqrt_m1 % p
 if (x*x - x2) % p != 0:
 return None

 if (x & 1) != sign:
 x = p - x
 return x

Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)

def point_compress(P):
 zinv = modp_inv(P[2])
 x = P[0] * zinv % p
 y = P[1] * zinv % p
 return int.to_bytes(y | ((x & 1) << 255), 32, "little")

def point_decompress(s):
 if len(s) != 32:
 raise Exception("Invalid input length for decompression")
 y = int.from_bytes(s, "little")
 sign = y >> 255
 y &= (1 << 255) - 1

 x = recover_x(y, sign)
 if x is None:
 return None
 else:
 return (x, y, 1, x*y % p)

Josefsson & Liusvaara Expires June 11, 2016 [Page 18]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 These are functions for manipulating the secret.

 def secret_expand(secret):
 if len(secret) != 32:
 raise Exception("Bad size of private key")
 h = sha512(secret)
 a = int.from_bytes(h[:32], "little")
 a &= (1 << 254) - 8
 a |= (1 << 254)
 return (a, h[32:])

 def secret_to_public(secret):
 (a, dummy) = secret_expand(secret)
 return point_compress(point_mul(a, G))

 The signature function works as below.

 def sign(secret, msg):
 a, prefix = secret_expand(secret)
 A = point_compress(point_mul(a, G))
 r = sha512_modq(prefix + msg)
 R = point_mul(r, G)
 Rs = point_compress(R)
 h = sha512_modq(Rs + A + msg)
 s = (r + h * a) % q
 return Rs + int.to_bytes(s, 32, "little")

 And finally the verification function.

 def verify(public, msg, signature):
 if len(public) != 32:
 raise Exception("Bad public-key length")
 if len(signature) != 64:
 Exception("Bad signature length")
 A = point_decompress(public)
 if not A:
 return False
 Rs = signature[:32]
 R = point_decompress(Rs)
 if not R:
 return False
 s = int.from_bytes(signature[32:], "little")
 h = sha512_modq(Rs + public + msg)
 sB = point_mul(s, G)
 hA = point_mul(h, A)
 return point_equal(sB, point_add(R, hA))

Josefsson & Liusvaara Expires June 11, 2016 [Page 19]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

7. Test Vectors

 This section contains test vectors for Ed25519ph, Ed448ph, Ed25519
 and Ed448.

 Each section contains sequence of test vectors. The octets are hex
 encoded and whitespace is inserted for readability Ed25519 and
 Ed25519ph private and public keys 32 octets, signatures are 64
 octets. Ed448 and Ed448ph private and public keys are 57 octets,
 signatures are 114 octets. Messages are of arbitrary length.

7.1 . Test Vectors for Ed25519

 These test vectors are taken from [ED25519-TEST-VECTORS] (but we
 removed the public key as a suffix of the secret key, and removed the
 message from the signature) and [ED25519-LIBGCRYPT-TEST-VECTORS].

 -----TEST 1
 SECRET KEY:
 9d61b19deffd5a60ba844af492ec2cc4
 4449c5697b326919703bac031cae7f60

 PUBLIC KEY:
 d75a980182b10ab7d54bfed3c964073a
 0ee172f3daa62325af021a68f707511a

 MESSAGE (length 0 bytes):

 SIGNATURE:
 e5564300c360ac729086e2cc806e828a
 84877f1eb8e5d974d873e06522490155
 5fb8821590a33bacc61e39701cf9b46b
 d25bf5f0595bbe24655141438e7a100b

 -----TEST 2
 SECRET KEY:
 4ccd089b28ff96da9db6c346ec114e0f
 5b8a319f35aba624da8cf6ed4fb8a6fb

 PUBLIC KEY:
 3d4017c3e843895a92b70aa74d1b7ebc
 9c982ccf2ec4968cc0cd55f12af4660c

 MESSAGE (length 1 byte):
 72

 SIGNATURE:
 92a009a9f0d4cab8720e820b5f642540

Josefsson & Liusvaara Expires June 11, 2016 [Page 20]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 a2b27b5416503f8fb3762223ebdb69da
 085ac1e43e15996e458f3613d0f11d8c
 387b2eaeb4302aeeb00d291612bb0c00

 -----TEST 3
 SECRET KEY:
 c5aa8df43f9f837bedb7442f31dcb7b1
 66d38535076f094b85ce3a2e0b4458f7

 PUBLIC KEY:
 fc51cd8e6218a1a38da47ed00230f058
 0816ed13ba3303ac5deb911548908025

 MESSAGE (length 2 bytes):
 af82

 SIGNATURE:
 6291d657deec24024827e69c3abe01a3
 0ce548a284743a445e3680d7db5ac3ac
 18ff9b538d16f290ae67f760984dc659
 4a7c15e9716ed28dc027beceea1ec40a

 -----TEST 1024
 SECRET KEY:
 f5e5767cf153319517630f226876b86c
 8160cc583bc013744c6bf255f5cc0ee5

 PUBLIC KEY:
 278117fc144c72340f67d0f2316e8386
 ceffbf2b2428c9c51fef7c597f1d426e

 MESSAGE (length 1023 bytes):
 08b8b2b733424243760fe426a4b54908
 632110a66c2f6591eabd3345e3e4eb98
 fa6e264bf09efe12ee50f8f54e9f77b1
 e355f6c50544e23fb1433ddf73be84d8
 79de7c0046dc4996d9e773f4bc9efe57
 38829adb26c81b37c93a1b270b20329d
 658675fc6ea534e0810a4432826bf58c
 941efb65d57a338bbd2e26640f89ffbc
 1a858efcb8550ee3a5e1998bd177e93a
 7363c344fe6b199ee5d02e82d522c4fe
 ba15452f80288a821a579116ec6dad2b
 3b310da903401aa62100ab5d1a36553e
 06203b33890cc9b832f79ef80560ccb9
 a39ce767967ed628c6ad573cb116dbef
 efd75499da96bd68a8a97b928a8bbc10
 3b6621fcde2beca1231d206be6cd9ec7

Josefsson & Liusvaara Expires June 11, 2016 [Page 21]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 aff6f6c94fcd7204ed3455c68c83f4a4
 1da4af2b74ef5c53f1d8ac70bdcb7ed1
 85ce81bd84359d44254d95629e9855a9
 4a7c1958d1f8ada5d0532ed8a5aa3fb2
 d17ba70eb6248e594e1a2297acbbb39d
 502f1a8c6eb6f1ce22b3de1a1f40cc24
 554119a831a9aad6079cad88425de6bd
 e1a9187ebb6092cf67bf2b13fd65f270
 88d78b7e883c8759d2c4f5c65adb7553
 878ad575f9fad878e80a0c9ba63bcbcc
 2732e69485bbc9c90bfbd62481d9089b
 eccf80cfe2df16a2cf65bd92dd597b07
 07e0917af48bbb75fed413d238f5555a
 7a569d80c3414a8d0859dc65a46128ba
 b27af87a71314f318c782b23ebfe808b
 82b0ce26401d2e22f04d83d1255dc51a
 ddd3b75a2b1ae0784504df543af8969b
 e3ea7082ff7fc9888c144da2af58429e
 c96031dbcad3dad9af0dcbaaaf268cb8
 fcffead94f3c7ca495e056a9b47acdb7
 51fb73e666c6c655ade8297297d07ad1
 ba5e43f1bca32301651339e22904cc8c
 42f58c30c04aafdb038dda0847dd988d
 cda6f3bfd15c4b4c4525004aa06eeff8
 ca61783aacec57fb3d1f92b0fe2fd1a8
 5f6724517b65e614ad6808d6f6ee34df
 f7310fdc82aebfd904b01e1dc54b2927
 094b2db68d6f903b68401adebf5a7e08
 d78ff4ef5d63653a65040cf9bfd4aca7
 984a74d37145986780fc0b16ac451649
 de6188a7dbdf191f64b5fc5e2ab47b57
 f7f7276cd419c17a3ca8e1b939ae49e4
 88acba6b965610b5480109c8b17b80e1
 b7b750dfc7598d5d5011fd2dcc5600a3
 2ef5b52a1ecc820e308aa342721aac09
 43bf6686b64b2579376504ccc493d97e
 6aed3fb0f9cd71a43dd497f01f17c0e2
 cb3797aa2a2f256656168e6c496afc5f
 b93246f6b1116398a346f1a641f3b041
 e989f7914f90cc2c7fff357876e506b5
 0d334ba77c225bc307ba537152f3f161
 0e4eafe595f6d9d90d11faa933a15ef1
 369546868a7f3a45a96768d40fd9d034
 12c091c6315cf4fde7cb68606937380d
 b2eaaa707b4c4185c32eddcdd306705e
 4dc1ffc872eeee475a64dfac86aba41c
 0618983f8741c5ef68d3a101e8a3b8ca
 c60c905c15fc910840b94c00a0b9d0

Josefsson & Liusvaara Expires June 11, 2016 [Page 22]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 SIGNATURE:
 0aab4c900501b3e24d7cdf4663326a3a
 87df5e4843b2cbdb67cbf6e460fec350
 aa5371b1508f9f4528ecea23c436d94b
 5e8fcd4f681e30a6ac00a9704a188a03

7.2 . Test Vectors for Ed25519ph

 TODO

7.3 . Test Vectors for Ed448

 TODO

7.4 . Test Vectors for Ed448ph

 TODO

8. Acknowledgements

 EdDSA and Ed25519 was initially described in a paper due to Daniel J.
 Bernstein, Niels Duif, Tanja Lange, Peter Schwabe and Bo-Yin Yang.
 The Ed448 curves is due to Mike Hamburg.

 This draft is based on an earlier draft co-authored by Niels Moeller.

 Feedback on this document was received from Werner Koch, Damien
 Miller, Bob Bradley, Franck Rondepierre, Alexey Melnikov, Kenny
 Paterson, and Robert Edmonds.

 The Ed25519 test vectors were double checked by Bob Bradley using 3
 separate implementations (one based on TweetNaCl and 2 different
 implementations based on code from SUPERCOP).

9. IANA Considerations

 None.

10. Security Considerations

10.1 . Side-channel leaks

 For implementations performing signatures, secrecy of the key is
 fundamental. It is possible to protect against some side-channel
 attacks by ensuring that the implementation executes exactly the same
 sequence of instructions and performs exactly the same memory
 accesses, for any value of the secret key.

Josefsson & Liusvaara Expires June 11, 2016 [Page 23]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 To make an implementation side-channel silent in this way, the modulo
 p arithmetic must not use any data-dependent branches, e.g., related
 to carry propagation. Side channel-silent point addition is
 straight-forward, thanks to the unified formulas.

 Scalar multiplication, multiplying a point by an integer, needs some
 additional effort to implement in a side-channel silent manner. One
 simple approach is to implement a side-channel silent conditional
 assignment, and use together with the binary algorithm to examine one
 bit of the integer at a time.

 Note that the example implementations in this document do not attempt
 to be side-channel silent.

10.2 . Mixing different prehashes

 Using the same key with different prehashes is a bad idea. The most
 obvious problem is that identity transform can produce message values
 colliding with hashes of interesting messages (or vice versa).
 Additionally, even if it is infeasible to find collisions in two hash
 functions, there is nothing guaranteeing that finding collisions
 between hashes is infeasible.

 For these reasons, the same private key MUST NOT be used for multiple
 algorithms (including prehashes) without protocol preventing messages
 output by different prehash algorithms from colliding.

10.3 . Signing large amounts of data at once

 Avoid signing large amounts of data at once (where "large" depends on
 expected verifier). In practicular, unless the underlying protocol
 does not require it, the receiver MUST buffer the entire message (or
 enough information to reconstruct it, e.g. compressed or encrypted
 version) to be verified.

 This is needed becuse most of the time, it is unsafe to process
 unverified data, and verifying the signature makes a pass through
 whole message, causing ultimately at least two passes through.

 As API consideration, this means that any IUF verification interface
 is prone to misuse.

11. References

Josefsson & Liusvaara Expires June 11, 2016 [Page 24]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

11.1 . Normative References

 [RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", RFC 4634 , July 2006.

 [I-D.irtf-cfrg-curves]
 Langley, A. and M. Hamburg, "Elliptic Curves for
 Security", draft-irtf-cfrg-curves-10 (work in progress),
 October 2015.

11.2 . Informative References

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106 , RFC 4086 , June 2005.

 [EDDSA] Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
 Yang, "High-speed high-security signatures", WWW
 http://ed25519.cr.yp.to/ed25519-20110926.pdf , September
 2011.

 [EDDSA2] Bernstein, D., Josefsson, S., Lange, T., Schwabe, P., and
 B. Yang, "EdDSA for more curves", WWW
 http://ed25519.cr.yp.to/eddsa-20150704.pdf , July 2015.

 [Faster-ECC]
 Bernstein, D. and T. Lange, "Faster addition and doubling
 on elliptic curves", WWW http://eprint.iacr.org/2007/286 ,
 July 2007.

 [Edwards-revisited]
 Hisil, H., Wong, K., Carter, G., and E. Dawson, "Twisted
 Edwards Curves Revisited", WWW
 http://eprint.iacr.org/2008/522 , December 2008.

 [CURVE25519]
 Bernstein, D., "Curve25519: new Diffie-Hellman speed
 records", WWW http://cr.yp.to/ecdh.html , February 2006.

 [ED448] Hamburg, M., "Ed448-Goldilocks, a new elliptic curve", WWW
 http://eprint.iacr.org/2015/625 , June 2015.

 [ED25519-TEST-VECTORS]
 Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
 Yang, "Ed25519 test vectors", WWW
 http://ed25519.cr.yp.to/python/sign.input , July 2011.

Josefsson & Liusvaara Expires June 11, 2016 [Page 25]

https://tools.ietf.org/pdf/rfc4634
https://tools.ietf.org/pdf/draft-irtf-cfrg-curves-10
https://tools.ietf.org/pdf/bcp106
https://tools.ietf.org/pdf/rfc4086
http://ed25519.cr.yp.to/ed25519-20110926.pdf
http://ed25519.cr.yp.to/eddsa-20150704.pdf
http://eprint.iacr.org/2007/286
http://eprint.iacr.org/2008/522
http://cr.yp.to/ecdh.html
http://eprint.iacr.org/2015/625
http://ed25519.cr.yp.to/python/sign.input

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 [ED25519-LIBGCRYPT-TEST-VECTORS]
 Koch, W., "Ed25519 Libgcrypt test vectors", WWW
 http://git.gnupg.org/cgi-
 bin/gitweb.cgi?p=libgcrypt .git;a=blob;f=tests/t-ed25519.in
 p;h=e13566f826321eece65e02c593bc7d885b3dbe23;hb=refs/
 heads/master, July 2014.

Appendix A . Ed25519 Python Library

 Below is an example implementation of Ed25519 written in Python,
 version 3.2 or higher is required.

Loosely based on the public domain code at
http://ed25519.cr.yp.to/software.html
#
Needs python-3.2

import hashlib

def sha512(s):
 return hashlib.sha512(s).digest()

Base field Z_p
p = 2**255 - 19

def modp_inv(x):
 return pow(x, p-2, p)

Curve constant
d = -121665 * modp_inv(121666) % p

Group order
q = 2**252 + 27742317777372353535851937790883648493

def sha512_modq(s):
 return int.from_bytes(sha512(s), "little") % q

Points are represented as tuples (X, Y, Z, T) of extended coordinates,
with x = X/Z, y = Y/Z, x*y = T/Z

def point_add(P, Q):
 A = (P[1]-P[0])*(Q[1]-Q[0]) % p
 B = (P[1]+P[0])*(Q[1]+Q[0]) % p
 C = 2 * P[3] * Q[3] * d % p

Josefsson & Liusvaara Expires June 11, 2016 [Page 26]

http://git.gnupg.org/cgi-bin/gitweb.cgi?p=libgcrypt
http://git.gnupg.org/cgi-bin/gitweb.cgi?p=libgcrypt
http://ed25519.cr.yp.to/software.html

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 D = 2 * P[2] * Q[2] % p
 E = B-A
 F = D-C
 G = D+C
 H = B+A
 return (E*F, G*H, F*G, E*H)

Computes Q = s * Q
def point_mul(s, P):
 Q = (0, 1, 1, 0) # Neutral element
 while s > 0:
 # Is there any bit-set predicate?
 if s & 1:
 Q = point_add(Q, P)
 P = point_add(P, P)
 s >>= 1
 return Q

def point_equal(P, Q):
 # x1 / z1 == x2 / z2 <==> x1 * z2 == x2 * z1
 if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
 return False
 if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
 return False
 return True

Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)

Compute corresponding x coordinate, with low bit corresponding to sign,
or return None on failure
def recover_x(y, sign):
 x2 = (y*y-1) * modp_inv(d*y*y+1)
 if x2 == 0:
 if sign:
 return None
 else:
 return 0

 # Compute square root of x2
 x = pow(x2, (p+3) // 8, p)
 if (x*x - x2) % p != 0:
 x = x * modp_sqrt_m1 % p
 if (x*x - x2) % p != 0:
 return None

Josefsson & Liusvaara Expires June 11, 2016 [Page 27]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 if (x & 1) != sign:
 x = p - x
 return x

Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)

def point_compress(P):
 zinv = modp_inv(P[2])
 x = P[0] * zinv % p
 y = P[1] * zinv % p
 return int.to_bytes(y | ((x & 1) << 255), 32, "little")

def point_decompress(s):
 if len(s) != 32:
 raise Exception("Invalid input length for decompression")
 y = int.from_bytes(s, "little")
 sign = y >> 255
 y &= (1 << 255) - 1

 x = recover_x(y, sign)
 if x is None:
 return None
 else:
 return (x, y, 1, x*y % p)

def secret_expand(secret):
 if len(secret) != 32:
 raise Exception("Bad size of private key")
 h = sha512(secret)
 a = int.from_bytes(h[:32], "little")
 a &= (1 << 254) - 8
 a |= (1 << 254)
 return (a, h[32:])

def secret_to_public(secret):
 (a, dummy) = secret_expand(secret)
 return point_compress(point_mul(a, G))

def sign(secret, msg):
 a, prefix = secret_expand(secret)

Josefsson & Liusvaara Expires June 11, 2016 [Page 28]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 A = point_compress(point_mul(a, G))
 r = sha512_modq(prefix + msg)
 R = point_mul(r, G)
 Rs = point_compress(R)
 h = sha512_modq(Rs + A + msg)
 s = (r + h * a) % q
 return Rs + int.to_bytes(s, 32, "little")

def verify(public, msg, signature):
 if len(public) != 32:
 raise Exception("Bad public-key length")
 if len(signature) != 64:
 Exception("Bad signature length")
 A = point_decompress(public)
 if not A:
 return False
 Rs = signature[:32]
 R = point_decompress(Rs)
 if not R:
 return False
 s = int.from_bytes(signature[32:], "little")
 h = sha512_modq(Rs + public + msg)
 sB = point_mul(s, G)
 hA = point_mul(h, A)
 return point_equal(sB, point_add(R, hA))

Appendix B . Library driver

 Below is a command-line tool that uses the library above to perform
 computations, for interactive use or for self-checking.

 import sys
 import binascii

 from ed25519 import *

 def point_valid(P):
 zinv = modp_inv(P[2])
 x = P[0] * zinv % p
 y = P[1] * zinv % p
 assert (x*y - P[3]*zinv) % p == 0
 return (-x*x + y*y - 1 - d*x*x*y*y) % p == 0

 assert point_valid(G)
 Z = (0, 1, 1, 0)
 assert point_valid(Z)

Josefsson & Liusvaara Expires June 11, 2016 [Page 29]

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 assert point_equal(Z, point_add(Z, Z))
 assert point_equal(G, point_add(Z, G))
 assert point_equal(Z, point_mul(0, G))
 assert point_equal(G, point_mul(1, G))
 assert point_equal(point_add(G, G), point_mul(2, G))
 for i in range(0, 100):
 assert point_valid(point_mul(i, G))
 assert point_equal(Z, point_mul(q, G))

 def munge_string(s, pos, change):
 return (s[:pos] +
 int.to_bytes(s[pos] ^ change, 1, "little") +
 s[pos+1:])

 # Read a file in the format of
 # http://ed25519.cr.yp.to/python/sign.input
 lineno = 0
 while True:
 line = sys.stdin.readline()
 if not line:
 break
 lineno = lineno + 1
 print(lineno)
 fields = line.split(":")
 secret = (binascii.unhexlify(fields[0]))[:32]
 public = binascii.unhexlify(fields[1])
 msg = binascii.unhexlify(fields[2])
 signature = binascii.unhexlify(fields[3])[:64]

 assert public == secret_to_public(secret)
 assert signature == sign(secret, msg)
 assert verify(public, msg, signature)
 if len(msg) == 0:
 bad_msg = b"x"
 else:
 bad_msg = munge_string(msg, len(msg) // 3, 4)
 assert not verify(public, bad_msg, signature)
 bad_signature = munge_string(signature, 20, 8)
 assert not verify(public, msg, bad_signature)
 bad_signature = munge_string(signature, 40, 16)
 assert not verify(public, msg, bad_signature)

Authors’ Addresses

Josefsson & Liusvaara Expires June 11, 2016 [Page 30]

http://ed25519.cr.yp.to/python/sign.input

Internet-Draft EdDSA: Ed25519 and Ed448 December 2015

 Simon Josefsson
 SJD AB

 Email: simon@josefsson.org
 URI: http://josefsson.org/

 Ilari Liusvaara
 Independent

 Email: ilariliusvaara@welho.com

Josefsson & Liusvaara Expires June 11, 2016 [Page 31]

http://josefsson.org/

