Hashing to Elliptic Curves
draft-irtf-cfrg-hash-to-curve-03

Abstract

This document specifies a number of algorithms that may be used to encode or hash an arbitrary string to a point on an Elliptic Curve.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 12, 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction ... 3
 1.1. Requirements 3
2. Background ... 3
 2.1. Terminology 5
 2.1.1. Encoding 5
 2.1.2. Serialization 5
 2.1.3. Random Oracle 6
3. Algorithm Recommendations 6
4. Utility Functions 7
5. Deterministic Encodings 8
 5.1. Interface 8
 5.2. Notation 8
 5.3. Encodings for Weierstrass curves 9
 5.3.1. Icart Method 9
 5.3.2. Shallue-Woestijne-Ulas Method 10
 5.3.3. Simplified SWU Method 13
 5.3.4. Boneh-Franklin Method 14
 5.3.5. Fouque-Tibouchi Method 16
 5.4. Encodings for Montgomery curves 19
 5.4.1. Elligator2 Method 19
6. Random Oracles 22
 6.1. Interface 22
7. Curve Transformations 22
8. Ciphersuites 22
9. IANA Considerations 24
10. Security Considerations 25
11. Acknowledgements 25
12. Contributors 25
13. Normative References 25
Appendix A. Related Work 28
 A.1. Probabilistic Encoding 28
 A.2. Naive Encoding 29
 A.3. Deterministic Encoding 29
 A.4. Supersingular Curves 30
 A.5. Twisted Variants 30
Appendix B. Try-and-Increment Method 30
Appendix C. Sample Code 31
 C.1. Icart Method 31
 C.2. Shallue-Woestijne-Ulas Method 32
 C.3. Simplified SWU Method 34
 C.4. Boneh-Franklin Method 34
 C.5. Fouque-Tibouchi Method 35
 C.6. Elligator2 Method 36
 C.7. hash2base 37
 C.7.1. Considerations 38
Appendix D. Test Vectors 39
1. Introduction

Many cryptographic protocols require a procedure which maps arbitrary input, e.g., passwords, to points on an elliptic curve (EC). Prominent examples include Simple Password Exponential Key Exchange [Jablon96], Password Authenticated Key Exchange [BMP00], Identity-Based Encryption [BF01] and Boneh-Lynn-Shacham signatures [BLS01].

Unfortunately for implementors, the precise mapping which is suitable for a given scheme is not necessarily included in the description of the protocol. Compounding this problem is the need to pick a suitable curve for the specific protocol.

This document aims to address this lapse by providing a thorough set of recommendations across a range of implementations, and curve types. We provide implementation and performance details for each mechanism, along with references to the security rationale behind each recommendation and guidance for applications not yet covered.

Each algorithm conforms to a common interface, i.e., it maps a bitstring \(\{0, 1\}^* \) to a point on an elliptic curve \(E \). For each variant, we describe the requirements for \(E \) to make it work. Sample code for each variant is presented in the appendix. Unless otherwise stated, all elliptic curve points are assumed to be represented as affine coordinates, i.e., \((x, y)\) points on a curve.

1.1. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Background

Here we give a brief definition of elliptic curves, with an emphasis on defining important parameters and their relation to encoding.
Let F be the finite field $GF(p^k)$. We say that F is a field of characteristic p. For most applications, F is a prime field, in which case $k=1$ and we will simply write $GF(p)$.

Elliptic curves can be represented by equations of different standard forms, including, but not limited to: Weierstrass, Montgomery, and Edwards. Each of these variants correspond to a different category of curve equation. For example, the short Weierstrass equation is $y^2 = x^3 + Ax + B$. Certain encoding functions may have requirements on the curve form, the characteristic of the field, and the parameters, such as A and B in the previous example.

An elliptic curve E is specified by its equation, and a finite field F. The curve E forms a group, whose elements correspond to those who satisfy the curve equation, with values taken from the field F. As a group, E has order n, which is the number of points on the curve. For security reasons, it is a strong requirement that all cryptographic operations take place in a prime order group. However, not all elliptic curves generate groups of prime order. In those cases, it is allowed to work with elliptic curves of order $n = qh$, where q is a large prime, and h is a short number known as the cofactor. Thus, we may wish an encoding that returns points on the subgroup of order q. Multiplying a point P on E by the cofactor h guarantees that hP is a point in the subgroup of order q.

Summary of quantities:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Order of finite field, $F = GF(p)$</td>
<td>Curve points need to be represented in terms of p. For prime power extension fields, we write $F = GF(p^k)$.</td>
</tr>
<tr>
<td>n</td>
<td>Number of curve points, $#E(F) = n$</td>
<td>For map to E, needs to produce n elements.</td>
</tr>
<tr>
<td>q</td>
<td>Order of the largest prime subgroup of E, $n = qh$</td>
<td>If n is not prime, may need mapping to q.</td>
</tr>
<tr>
<td>h</td>
<td>Cofactor</td>
<td>For mapping to subgroup, need to multiply by cofactor.</td>
</tr>
</tbody>
</table>
2.1. Terminology

In the following, we categorize the terminology for mapping bitstrings to points on elliptic curves.

2.1.1. Encoding

In practice, the input of a given cryptographic algorithm will be a bitstring of arbitrary length, denoted \(\{0, 1\}^* \). Hence, a concern for virtually all protocols involving elliptic curves is how to convert this input into a curve point. The general term "encoding" refers to the process of producing an elliptic curve point given as input a bitstring. In some protocols, the original message may also be recovered through a decoding procedure. An encoding may be deterministic or probabilistic, although the latter is problematic in potentially leaking plaintext information as a side-channel.

Suppose as the input to the encoding function we wish to use a fixed-length bitstring of length \(L \). Comparing sizes of the sets, \(2^L \) and \(n \), an encoding function cannot be both deterministic and bijective. We can instead use an injective encoding from \(\{0, 1\}^L \) to \(E \), with \(L < \log_2(n) - 1 \), which is a bijection over a subset of points in \(E \). This ensures that encoded plaintext messages can be recovered.

In practice, encodings are commonly injective and invertible. Invertible encodings map inputs to a subset of points on the curve. Informal encodings allow computation of input bitstrings given a point on the curve.

2.1.2. Serialization

A related issue is the conversion of an elliptic curve point to a bitstring. We refer to this process as "serialization", since it is typically used for compactly storing and transporting points, or for producing canonicalized outputs. Since a deserialization algorithm can often be used as a type of encoding algorithm, we also briefly document properties of these functions.

A straightforward serialization algorithm maps a point \((x, y)\) on \(E \) to a bitstring of length \(2\log(p) \), given that \(x, y \) are both elements in \(\text{GF}(p) \). However, since there are only \(n \) points in \(E \) (with \(n \) approximately equal to \(p \)), it is possible to serialize to a bitstring of length \(\log(n) \). For example, one common method is to store the x-coordinate and a single bit to determine whether the point is \((x, y)\) or \((x, -y)\), thus requiring \(\log(p)+1 \) bits. This method reduces storage, but adds computation, since the deserialization process must recover the y coordinate.
2.1.3. Random Oracle

It is often the case that the output of the encoding function Section 2.1.1 should be (a) distributed uniformly at random on the elliptic curve and (b) non-invertible. That is, there is no discernible relation existing between outputs that can be computed based on the inputs. Moreover, given such an encoding function F from bitstrings to points on the curve, as well as a single point y, it is computationally intractable to produce an input x that maps to a y via F. In practice, these requirement stem from needing a random oracle which outputs elliptic curve points: one way to construct this is by first taking a regular random oracle, operating entirely on bitstrings, and applying a suitable encoding function to the output.

This motivates the term "hashing to the curve", since cryptographic hash functions are typically modeled as random oracles. However, this still leaves open the question of what constitutes a suitable encoding method, which is a primary concern of this document.

A random oracle onto an elliptic curve can also be instantiated using direct constructions, however these tend to rely on many group operations and are less efficient than hash and encode methods.

3. Algorithm Recommendations

In practice, two types of mappings are common: (1) Injective encodings, as can be used to construct a PRF as $F(k, m) = k \cdot H(m)$, and (2) Random Oracles, as required by PAKEs [BMP00], BLS [BLS01], and IBE [BF01]. (Some applications, such as IBE, have additional requirements, such as a Supersingular, pairing-friendly curve.)

The following table lists recommended algorithms for different curves and mappings. To select a suitable algorithm, choose the mapping associated with the target curve. For example, Elligator2 is the recommended injective encoding function for Curve25519, whereas Simple SWU is the recommended injective encoding for P-256. Similarly, the FFSTV Random Oracle construction described in Section 6 composed with Elligator2 should be used for Random Oracle mappings to Curve25519. When the required mapping is not clear, applications SHOULD use a Random Oracle.
4. Utility Functions

Algorithms in this document make use of utility functions described below.

- **hash2base(x)**. This method is parametrized by \(p \) and \(H \), where \(p \) is the prime order of the base field \(\mathbb{F}_p \), and \(H \) is a cryptographic hash function which outputs at least \(\lfloor \log_2(p) \rfloor + 1 \) bits. The function first hashes \(x \), converts the result to an integer, and reduces modulo \(p \) to give an element of \(\mathbb{F}_p \). We provide a more detailed algorithm in Appendix C.7.

- **CMOV(a, b, c)**: If \(c = 1 \), return \(a \), else return \(b \).

 Common software implementations of constant-time selects assume \(c = 1 \) or \(c = 0 \). CMOV may be implemented by computing the desired selector (0 or 1) by ORing all bits of \(c \) together. The end result will be either 0 if all bits of \(c \) are zero, or 1 if at least one bit of \(c \) is 1.

- **CTEQ(a, b)**: Returns \(a == b \). Inputs \(a \) and \(b \) must be the same length (as bytestrings) and the comparison must be implemented in constant time.

- **Legendre(x, p)**: \(x^{(p-1)/2} \). The Legendre symbol computes whether the value \(x \) is a "quadratic residue" modulo \(p \), and takes values 1, -1, 0, for when \(x \) is a residue, non-residue, or zero, respectively. Due to Euler’s criterion, this can be computed in constant time, with respect to a fixed \(p \), using the equation \(x^{(p-1)/2} \). For clarity, we will generally prefer using the formula directly, and annotate the usage with this definition.
sqrt(x, p): Computing square roots should be done in constant time where possible.

When $p = 3 \pmod{4}$, the square root can be computed as $\sqrt{x, p} := x^{(p+1)/4}$. This applies to P256, P384, and Curve448.

When $p = 5 \pmod{8}$, the square root can be computed by the following algorithm, in which $\sqrt{-1}$ is a field element and can be precomputed. This applies to Curve25519.

\[
\begin{align*}
\sqrt{x, p} & := \begin{cases}
 x^{(p+3)/8} & \text{if } x^{(p+3)/4} = x \\
 \sqrt{-1} \times x^{(p+3)/8} & \text{otherwise}
\end{cases}
\end{align*}
\]

The above two conditions hold for most practically used curves, due to the simplicity of the square root function. For others, a suitable constant-time Tonelli-Shanks variant should be used as in [Schoof85].

5. Deterministic Encodings

5.1. Interface

The generic interface for deterministic encoding functions to elliptic curves is as follows:

map2curve(alpha)

where alpha is a message to encode on a curve.

5.2. Notation

As a rough style guide for the following, we use (x, y) to be the output coordinates of the encoding method. Indexed values are used when the algorithm will choose between candidate values. For example, the SWU algorithm computes three candidates (x_1, y_1), (x_2, y_2), (x_3, y_3), from which the final (x, y) output is chosen via constant time comparison operations.

We use u, v to denote the values in F_p output from hash2base, and use as initial values in the encoding.

We use t_1, t_2, \ldots, as reusable temporary variables. For notable variables, we will use a distinct name, for ease of debugging purposes when correlating with test vectors.

The code presented here corresponds to the example Sage [SAGE] code found at [github-repo]. Which is additionally used to generate
intermediate test vectors. The Sage code is also checked against the hacspe implementation.

Note that each encoding requires that certain preconditions must hold in order to be applied.

5.3. Encodings for Weierstrass curves

The following encodings apply to elliptic curves defined as \(E: y^2 = x^3+Ax+B \), where \(4A^3+27B^2 \neq 0 \).

5.3.1. Icart Method

The \texttt{map2curve_icart(alpha)} implements the Icart encoding method from \cite{Icart09}.

Preconditions

A Weierstrass curve over \(F_{p^n} \), where \(p>3 \) and \(p^n = 2 \mod 3 \) (or \(p = 2 \mod 3 \) and for odd \(n \)).

Examples

\begin{itemize}
 \item P-384
\end{itemize}

Algorithm: \texttt{map2curve_icart}

\begin{itemize}
 \item Input:
 \begin{itemize}
 \item alpha: an octet string to be hashed.
 \item A, B : the constants from the Weierstrass curve.
 \end{itemize}
 \item Output:
 \begin{itemize}
 \item \((x, y)\), a point in \(E \).
 \end{itemize}
 \item Operations:
 \begin{itemize}
 \item \(u = \text{hash2base(alpha)} \)
 \item \(v = ((3A - u^4) / 6u) \)
 \item \(x = (v^2 - B - (u^6 / 27))^{1/3} + (u^2 / 3) \)
 \item \(y = ux + v \)
 \end{itemize}
 \item Output \((x, y)\)
\end{itemize}

Implementation
The following procedure implements Icart’s algorithm in a straight-line fashion.

map2curve_icart(alpha)

Input:

alpha - value to be hashed, an octet string

Output:

(x, y) - a point in E

Precomputations:

1. \(c1 = (2 \times p) - 1 \)
2. \(c1 = c1 / 3 \) // \(c1 = (2p-1)/3 \) as integer
3. \(c2 = 3^{(-1)} \) // \(c2 = 1/3 \) (mod p)
4. \(c3 = c2^3 \) // \(c3 = 1/27 \) (mod p)

Steps:

1. \(u = \text{hash2base}(alpha) \) // \((0,1)^*\) -> Fp
2. \(u2 = u^2 \) // \(u^2 \)
3. \(u4 = u2^2 \) // \(u^4 \)
4. \(v = 3 \times A \) // 3A in Fp
5. \(v = v - u4 \) // 3A - \(u^4 \)
6. \(t1 = 6 \times u \) // 6u
7. \(t1 = t1^{(-1)} \) // modular inverse
8. \(v = v \times t1 \) // \((3A - u^4)/(6u)\)
9. \(x1 = v^2 \) // \(v^2 \)
10. \(x1 = x1 - u6 \) // \(v^2 - B - u^6/27 \)
11. \(u6 = u6 \times u2 \) // \(u^6/27 \)
12. \(x1 = x1 - u6 \) // \(v^2 - B - u^6/27 \)
13. \(x1 = x1 - u6 \) // \(v^2 - B - u^6/27 \)
14. \(x1 = x1 - u6 \) // \((v^2 - B - u^6/27)^{(1/3)} \)
15. \(t1 = u2 \times c2 \) // \(u^2/3 \)
16. \(x = x + t1 \) // \((v^2 - B - u^6/27)^{(1/3)} + (u^2 / 3) \)
17. \(y = u \times x \) // \(ux \)
18. \(y = y + v \) // \(ux + v \)
19. Output (x, y)

5.3.2. Shallue-Woestijne-Ulas Method

The map2curve_swu(alpha) implements the Shallue-Woestijne-Ulas (SWU) method by Ulas [SWU07], which is based on Shallue and Woestijne [SW06] method.
Internet-Draft hash-to-curve March 2019

Preconditions

This algorithm works for any Weierstrass curve over \(F_{p^n} \) such that
\(A \neq 0 \) and \(B \neq 0 \).

Examples

- P-256
- P-384
- P-521

Algorithm: map2curve_swu

Input:

- alpha: an octet string to be hashed.
- A, B : the constants from the Weierstrass curve.

Output:

- \((x, y)\), a point in \(E \).

Operations:

1. \(u = \text{hash2base}(\alpha || 0x00) \)
2. \(v = \text{hash2base}(\alpha || 0x01) \)
3. \(x_1 = v \)
4. \(x_2 = (-B / A)(1 + 1 / (u^4 \cdot g(v)^2 + u^2 \cdot g(v))) \)
5. \(x_3 = u^2 \cdot g(v)^2 \cdot g(x_2) \)
6. If \(g(x_1) \) is square, output \((x_1, \sqrt{g(x_1)})\)
7. If \(g(x_2) \) is square, output \((x_2, \sqrt{g(x_2)})\)
8. Output \((x_3, \sqrt{g(x_3)})\)

The algorithm relies on the following equality:

\[u^3 \cdot g(v)^2 \cdot g(x_2) = g(x_1) \cdot g(x_2) \cdot g(x_3) \]

The algorithm computes three candidate points, constructed such that
at least one of them lies on the curve.

Implementation

The following procedure implements SWU’s algorithm in a straight-line
fashion.
map2curve_swu(alpha)

Input:

alpha - value to be hashed, an octet string

Output:

(x, y) - a point in E

Precomputations:
1. c1 = -B / A mod p // Field arithmetic
2. c2 = (p - 1)/2 // Integer arithmetic

Steps:
1. u = hash2base(alpha || 0x00) // (0,1)^* -> Fp
2. v = hash2base(alpha || 0x01) // (0,1)^* -> Fp
3. x1 = v // x1 = v
4. gv = v^3
5. gv = gv + (A * v)
6. gx1 = gv // gx1 = g(x1)
7. u2 = u^2
8. t1 = u2 * gv // t1 = u^2 * g(v)
9. t2 = t1^2
10. t2 = t2 + t1
11. n1 = 1 + t2
12. t2 = t2^(-1) // t2 = 1/(u^4*g(v)^2 + u^2*g(v))
13. x2 = c1 * n1 // x2 = -B/A * (1 + 1/(t1^2 + t1))
14. gx2 = x2^3
15. t2 = A * x2
16. gx2 = gx2 + t2
17. gx2 = gx2 + B // gx2 = g(x2)
18. x3 = x2 * t1 // x3 = x2 * u^2 * g(v)
19. gx3 = x3^3
20. gx3 = gx3 + (A * x3)
21. gx3 = gx3 + B // gx3 = g(X3(t, u))
22. l1 = gx1^c2 // Legendre(gx1)
23. l2 = gx2^c2 // Legendre(gx2)
24. x = CMOV(x2, x3, l2) // If l2 = 1, choose x2, else choose x3
25. x = CMOV(x1, x, l1) // If l1 = 1, choose x1, else choose x
26. gx = CMOV(gx2, gx3, l2) // If l2 = 1, choose gx2, else choose gx3
27. gx = CMOV(gx1, gx, l1) // If l1 = 1, choose gx1, else choose gx
28. y = sqrt(gx)
29. Output (x, y)
5.3.3. Simplified SWU Method

The map2curve_simple_swu(alpha) implements a simplified version of Shallue-Woestijne-Ulas algorithm given by Brier et al. [SimpleSWU].

Preconditions

This algorithm works for any Weierstrass curve over \mathbb{F}_{p^n} such that $A \neq 0$, $B \neq 0$, and $p \equiv 3 \mod 4$.

Examples

- P-256
- P-384
- P-521

Algorithm: map2curve_simple_swu

Input:

- alpha: an octet string to be hashed.
- A, B: the constants from the Weierstrass curve.

Output:

- (x, y), a point in E.

Operations:

1. Define $g(x) = x^3 + Ax + B$
2. $u = \text{hash2base}(alpha)$
3. $x_1 = -B/A \cdot (1 + (1 / (u^4 - u^2)))$
4. $x_2 = -u^2 \cdot x_1$
5. If $g(x_1)$ is square, output $(x_1, \sqrt{g(x_1)})$
6. Output $(x_2, \sqrt{g(x_2)})$

Implementation

The following procedure implements the Simple SWU’s algorithm in a straight-line fashion.
map2curve_simple_swu(alpha)

Input:

alpha - value to be encoded, an octet string

Output:

(x, y) - a point in E

Precomputations:

1. $c_1 = -B / A \mod p$ // Field arithmetic
2. $c_2 = (p - 1)/2$ // Integer arithmetic

Steps:

1. $u = \text{hash2base}(\alpha)$ // $(0,1)^* \rightarrow \mathbb{F}_p$
2. $u^2 = u^2$ // $u^2 = -u^2$
3. $u^4 = u^2 \cdot u^2$ // $u^4 = -u^2$
4. $t_1 = u^4 + u^2$ // $t_1 = t_1^(-1)$
5. $t_2 = 1 + t_2$ // $n_1 = 1 + (1 / (u^4 - u^2))$
6. $x_1 = c_1 \cdot n_1$ // $x_1 = -B/A \cdot (1 + (1 / (u^4 - u^2)))$
7. $gx_1 = x_1^3$ // $gx_1 = x_1 + 12$
8. $x_2 = u^2 \cdot x_1$ // $x_2 = -u^2 \cdot x_1$
9. $gx_2 = x_2^3$ // $gx_2 = x_2^3 + Ax_2 + B = g(x_2)$
10. $t_1 = A \cdot x_1$ // $t_1 = A \cdot x_2$
11. $gx_1 = gx_1 + t_1$ // $gx_1 = gx_1 + B$
12. $gx_2 = gx_2 + t_1$ // $gx_2 = gx_2 + B$
13. $e = gx_1^c_2$ // $e = gx_1^c_2$
14. $x = \text{CMOV}(x_1, x_2, 11)$ // If 11 = 1, choose x_1, else choose x_2
15. $gx = \text{CMOV}(gx_1, gx_2, 11)$ // If 11 = 1, choose gx_1, else choose gx_2
16. $y = \sqrt{gx}$ // $y = \sqrt{gx}$
17. Output (x, y) // Output (x, y)

5.3.4. Boneh-Franklin Method

The map2curve_bf(alpha) implements the Boneh-Franklin method [BF01] which covers the case of supersingular curves $E: y^2=x^3+B$. This method does not guarantee that the resulting a point be in a specific subgroup of the curve. To do that, a scalar multiplication by a cofactor is required.
This algorithm works for any Weierstrass curve over \("F_q\) such that
\("A=0\) and \("q=2 \text{ mod } 3\)."

Examples

- \("y^2 = x^3 + 1\)"

Algorithm: map2curve_bf

Input:

- "\(\alpha\)"; an octet string to be hashed.
- "\(B\)"; the constant from the Weierstrass curve.

Output:

- "\((x, y)\)"; a point in \(E\).

Operations:

1. \(u = \text{hash2base}(\alpha)\)
2. \(x = (u^2 - B)^{(2 \times q - 1) / 3}\)
3. Output \((x, u)\)

Implementation

The following procedure implements the Boneh-Franklin’s algorithm in
a straight-line fashion.
map2curve_bf(alpha)

Input:

alpha: an octet string to be hashed.
B : the constant from the Weierstrass curve.

Output:

(x, y): a point in E

Precomputations:

1. c = (2 * q - 1) / 3 // Integer arithmetic

Steps:

1. u = hash2base(alpha) // {0,1}^* -> F_q
2. t0 = u^2 // t0 = u^2
3. t1 = t0 - B // t1 = u^2 - B
4. x = t1^c // x = (u^2 - B)^((2 * q - 1) / 3)
5. Output (x, u)

5.3.5. Fouque-Tibouchi Method

The map2curve_ft(alpha) implements the Fouque-Tibouchi’s method [FT12] (Sec. 3, Def. 2) which covers the case of pairing-friendly curves "E : y^2 = x^3 + B". Note that for pairing curves the destination group is usually a subgroup of the curve, hence, a scalar multiplication by the cofactor will be required to send the point to the desired subgroup.

Preconditions

This algorithm works for any Weierstrass curve over "F_q" such that "q=7 mod 12", "A=0", and "1+B" is a non-zero square in the field. This covers the case "q=1 mod 3" not handled by Boneh-Franklin’s method.

Examples

- SECP256K1 curve [SEC2]
- BN curves [BN05]
- KSS curves [KSS08]
- BLS curves [BLS01]
Algorithm: map2curve_ft

Input:

- "alpha": an octet string to be hashed.
- "B": the constant from the Weierstrass curve.
- "s": a constant equal to \(\sqrt{-3}\) in the field.

Output:

- \((x, y)\): a point in \(E\).

Operations:

1. \(t = \text{hash2base}(alpha)\)
2. \(w = \frac{s \cdot t}{1 + B + t^2}\)
3. \(x_1 = \frac{(-1 + s)}{2} - t \cdot w\)
4. \(x_2 = -1 - x_1\)
5. \(x_3 = 1 + \frac{1}{w^2}\)
6. \(e = \text{Legendre}(t)\)
7. If \(x_1^3 + B\) is square, output \((x_1, e \cdot \sqrt{x_1^3 + B})\)
8. If \(x_2^3 + B\) is square, output \((x_2, e \cdot \sqrt{x_2^3 + B})\)
9. Output \((x_3, e \cdot \sqrt{x_3^3 + B})\)

Implementation

The following procedure implements the Fouque-Tibouchi’s algorithm in a straight-line fashion.
map2curve_ft(alpha)

Input:

alpha: an octet string to be encoded
B : the constant of the curve

Output:

(x, y): - a point in E

Precomputations:

1. c1 = sqrt(-3) // Field arithmetic
2. c2 = (-1 + c1) / 2 // Field arithmetic

Steps:

1. t = hash2base(alpha) // {0,1}^* -> Fp
2. k = t^2 // t^2
3. k = k + B + 1 // t^2 + B + 1
4. k = 1 / k // 1 / (t^2 + B + 1)
5. k = k * t // t / (t^2 + B + 1)
6. k = k * c1 // sqrt(-3) * t / (t^2 + B + 1)
7. x1 = c2 - t * k // (-1 + sqrt(-3)) / 2 - sqrt(-3) * t^2 / (t^2 + B + 1)
8. x2 = -1 - x1
9. r = k^2
10. r = 1 / r
11. x3 = 1 + r
12. fx1 = x1^3 + B
13. fx2 = x2^3 + B
14. s1 = Legendre(fx1)
15. s2 = Legendre(fx2)
16. x = x3
17. y = x^3 + B
18. t2 = Legendre(t)
19. y = t2 * sqrt(y) // TODO: determine which root to choose
20. Output (x, y)

Additionally, "map2curve_ft(alpha)" can return the point "(c2, sqrt(1 + B))" when "u=0".
5.4. Encodings for Montgomery curves

A Montgomery curve is given by the following equation E:
$By^2 = x^3 + Ax^2 + x$, where $B(A^2 - 4) \neq 0$. Note that any curve with a point of order 2 is isomorphic to this representation. Also notice that E cannot have a prime order group, hence, a scalar multiplication by the cofactor is required to obtain a point in the main subgroup.

5.4.1. Elligator2 Method

The map2curve_elligator2(alpha) implements the Elligator2 method from [Elligator2].

Preconditions

Any curve of the form $y^2 = x^3 + Ax^2 + Bx$, which covers all Montgomery curves such that $A \neq 8800; 0$ and $B=1$ (i.e. j-invariant $\neq 1728$).

Examples

- Curve25519
- Curve448

Algorithm: map2curve_elligator2

Input:

- α: an octet string to be hashed.
- $A, B=1$: the constants of the Montgomery curve.
- N: a constant non-square in the field.

Output:

- (x, y), a point in E.

Operations:
1. Define \(g(x) = x(x^2 + Ax + B) \)
2. \(u = \text{hash2base}(\alpha) \)
3. \(v = -A/(1 + N\alpha^2) \)
4. \(e = \text{Legendre}(g(v)) \)
5.1. If \(u \neq 0 \), then
5.2. \(x = ev - (1 - e)A/2 \)
5.3. \(y = -e\sqrt{g(x)} \)
5.4. Else, \(x=0 \) and \(y=0 \)
6. Output \((x,y)\)

Here, \(e \) is the Legendre symbol defined as in Section 4.

Implementation

The following procedure implements elligator2 algorithm in a straight-line fashion.
map2curve_elligator2(alpha)

Input:

alpha - value to be encoded, an octet string
A,B=1 - the constants of the Montgomery curve.
N - a constant non-square value in Fp.

Output:

(x, y) - a point in E

Precomputations:

1. c1 = (p - 1)/2 // Integer arithmetic
2. c2 = A / 2 (mod p) // Field arithmetic

Steps:

1. u = hash2base(alpha)
2. t1 = u^2
3. t1 = N * t1
4. t1 = 1 + t1
5. t1 = t1^(-1)
6. v = A * t1
7. v = -v // v = -A / (1 + N * u^2)
8. gv = v + A
9. gv = gv * v
10. gv = gv + B
11. e = gv^c1 // Legendre(gv)
12. x = e*v
13. ne = -e
14. t1 = 1 + ne
15. t1 = t1 * c2
16. x = x - t1 // x = ev - (1 - e)*A/2
17. y = y + B
18. y = y * x
19. y = y * x
20. y = y + B
21. y = y * x
22. y = sqrt(y)
23. y = y * ne // y = -e * sqrt(x^3 + Ax^2 + Bx)
24. x = CMOV(0, x, 1-u)
25. y = CMOV(0, y, 1-u)
26. Output (x, y)

Elligator2 can be simplified with projective coordinates.
6. Random Oracles

Some applications require a Random Oracle (RO) of points, which can be constructed from deterministic encoding functions. Farashahi et al. [FFSTV13] showed a generic mapping construction that is indistinguishable from a random oracle. In particular, let \(f : \{0,1\}^* \rightarrow E(F) \) be a deterministic encoding function, and let \(H_0 \) and \(H_1 \) be two hash functions modeled as random oracles that map bit strings to elements in the field \(F \), i.e., \(H_0, H_1 : \{0,1\}^* \rightarrow F \).

Then, the "hash2curveRO(alpha)" mapping is defined as

\[
\text{hash2curveRO}(\alpha) = f(H_0(\alpha)) + f(H_1(\alpha))
\]

where \(\alpha \) is an octet string to be encoded as a point on a curve.

6.1. Interface

Using the deterministic encodings from Section 5, the "hash2curveRO(alpha)" mapping can be instantiated as

\[
\text{hash2curveRO}(\alpha) = \text{hash2curve}(\alpha || 0x02) + \text{hash2curve}(\alpha || 0x03)
\]

where the addition operation is performed as a point addition.

7. Curve Transformations

Every elliptic curve can be converted to an equivalent curve in short Weierstrass form ([BL07] Theorem 2.1), making SWU a generic algorithm that can be used for all curves. Curves in either Edwards or Twisted Edwards form can be transformed into equivalent curves in Montgomery form [BL17] for use with Elligator2. [RFC7748] describes how to convert between points on Curve25519 and Ed25519, and between Curve448 and its Edwards equivalent, Goldilocks.

8. Ciphersuites

To provide concrete recommendations for algorithms we define a hash-to-curve "ciphersuite" as a four-tuple containing:

- Destination Group (e.g. P256 or Curve25519)
- hash2base algorithm
- HashToCurve algorithm (e.g. SSWU, Icart)
- (Optional) Transformation (e.g. FFSTV, cofactor clearing)
A ciphersuite defines an algorithm that takes an arbitrary octet string and returns an element of the Destination Group defined in the ciphersuite by applying HashToCurve and Transformation (if defined).

This document describes the following set of ciphersuites:

- H2C-P256-SHA256-SSWU-
- H2C-P384-SHA512-Icart-
- H2C-SECP256K1-SHA512-FT-
- H2C-BN256-SHA512-FT-
- H2C-Curve25519-SHA512-ElPagator2-Clear
- H2C-Curve448-SHA512-ElPagator2-Clear
- H2C-Curve25519-SHA512-ElPagator2-FFSTV
- H2C-Curve448-SHA512-ElPagator2-FFSTV

H2C-P256-SHA256-SSWU- is defined as follows:

- The destination group is the set of points on the NIST P-256 elliptic curve, with curve parameters as specified in [DSS] (Section D.1.2.3) and [RFC5114] (Section 2.6).
- hash2base is defined as (#hashtobase) with the hash function defined as SHA-256 as specified in [RFC6234], and p set to the prime field used in P-256 (2^256 - 2^224 + 2^192 + 2^96 - 1).
- HashToCurve is defined to be (#sswu) with A and B taken from the definition of P-256 (A=-3, B=41058363725152142129326129780047268409114441015993725554835256314039467401291).

H2C-P384-SHA512-Icart- is defined as follows:

- The destination group is the set of points on the NIST P-384 elliptic curve, with curve parameters as specified in [DSS] (Section D.1.2.4) and [RFC5114] (Section 2.7).
- hash2base is defined as (#hashtobase) with the hash function defined as SHA-512 as specified in [RFC6234], and p set to the prime field used in P-384 (2^384 - 2^128 - 2^96 + 2^32 - 1).
- HashToCurve is defined to be (#icart) with A and B taken from the definition of P-384 (A=-3, B=2758019355995970587784901184038904809).
H2C-Curve25519-SHA512-Elligator2-Clear is defined as follows:

- The destination group is the points on Curve25519, with curve parameters as specified in [RFC7748] (Section 4.1).

- hash2base is defined as (#hashtobase) with the hash function defined as SHA-512 as specified in [RFC6234], and p set to the prime field used in Curve25519 \((2^{255} - 19)\).

- HashToCurve is defined to be (#elligator2) with the curve function defined to be the Montgomery form of Curve25519 \((y^2 = x^3 + 486662x^2 + x)\) and \(N = 2\).

- The final output is multiplied by the cofactor of Curve25519, 8.

H2C-Curve448-SHA512-Elligator2-Clear is defined as follows:

- The destination group is the points on Curve448, with curve parameters as specified in [RFC7748] (Section 4.1).

- hash2base is defined as (#hashtobase) with the hash function defined as SHA-512 as specified in [RFC6234], and p set to the prime field used in Curve448 \((2^{448} - 2^{224} - 1)\).

- HashToCurve is defined to be (#elligator2) with the curve function defined to be the Montgomery form of Curve448 \((y^2 = x^3 + 156326x^2 + x)\) and \(N = -1\).

- The final output is multiplied by the cofactor of Curve448, 4.

H2C-Curve25519-SHA512-Elligator2-FFSTV is defined as in H2C-Curve25519-SHA-512-Elligator2-Clear except HashToCurve is defined to be (#ffstv) where F is (#elligator2).

H2C-Curve448-SHA512-Elligator2-FFSTV is defined as in H2C-Curve448-SHA-512-Elligator2-Clear except HashToCurve is defined to be (#ffstv) where F is (#elligator2).

9. IANA Considerations

This document has no IANA actions.
10. Security Considerations

Each encoding function variant accepts arbitrary input and maps it to a pseudorandom point on the curve. Points are close to indistinguishable from randomly chosen elements on the curve. Not all encoding functions are full-domain hashes. Elligator2, for example, only maps strings to "about half of all curve points," whereas Icart’s method only covers about 5/8 of the points.

11. Acknowledgements

The authors would like to thank Adam Langley for this detailed writeup Elligator2 with Curve25519 [ElligatorAGL]. We also thank Sean Devlin and Thomas Icart for feedback on earlier versions of this document.

12. Contributors

- Armando Faz
 Cloudflare
 armfazh@cloudflare.com

- Sharon Goldberg
 Boston University
 goldbe@cs.bu.edu

- Ela Lee
 Royal Holloway, University of London
 Ela.Lee.2010@live.rhul.ac.uk

13. Normative References

[ECOPRF] "EC-OPRF - Oblivious Pseudorandom Functions using Elliptic Curves", n.d..

[FFSTV13] "Indifferentiable deterministic hashing to elliptic and hyperelliptic curves", n.d..

[Jablon96] "Strong password-only authenticated key exchange", n.d..

Appendix A. Related Work

In this chapter, we give a background to some common methods to encode or hash to the curve, motivated by the similar exposition in \[Icart09\]. Understanding of this material is not required in order to choose a suitable encoding function - we defer this to Section 3 - the background covered here can work as a template for analyzing encoding functions not found in this document, and as a guide for further research into the topics covered.

A.1. Probabilistic Encoding

As mentioned in Section 2, as a rule of thumb, for every x in $\text{GF}(p)$, there is approximately a $1/2$ chance that there exist a corresponding y value such that (x, y) is on the curve E.

This motivates the construction of the MapToGroup method described by Boneh et al. \[BLS01\]. For an input message m, a counter i, and a standard hash function $H : \{0, 1\}^* \rightarrow \text{GF}(p) \times \{0, 1\}$, one computes $(x, b) = H(i \mid m)$, where $i \mid m$ denotes concatenation of the two values. Next, test to see whether there exists a corresponding y value such that (x, y) is on the curve, returning (x, y) if successful, where b determines whether to take $+/- y$. If there does not exist such a y, then increment i and repeat. A maximum counter
value is set to I, and since each iteration succeeds with probability approximately 1/2, this process fails with probability 2^{-I}. (See Appendix B for a more detailed description of this algorithm.)

Although MapToGroup describes a method to hash to the curve, it can also be adapted to a simple encoding mechanism. For a bitstring of length strictly less than $\log_2(p)$, one can make use of the spare bits in order to encode the counter value. Allocating more space for the counter increases the expansion, but reduces the failure probability. Since the running time of the MapToGroup algorithm depends on m, this algorithm is NOT safe for cases sensitive to timing side channel attacks. Deterministic algorithms are needed in such cases where failures are undesirable.

A.2. Naive Encoding

A naive solution includes computing $H(m)\cdot G$ as $\text{map2curve}(m)$, where H is a standard hash function $H : \{0, 1\}^* \rightarrow GF(p)$, and G is a generator of the curve. Although efficient, this solution is unsuitable for constructing a random oracle onto E, since the discrete logarithm with respect to G is known. For example, given $y_1 = \text{map2curve}(m_1)$ and $y_2 = \text{map2curve}(m_2)$ for any m_1 and m_2, it must be true that $y_2 = H(m_2) / H(m_1) \cdot \text{map2curve}(m_1)$. This relationship would not hold (with overwhelming probability) for truly random values y_1 and y_2. This causes catastrophic failure in many cases. However, one exception is found in SPEKE [Jablon96], which constructs a base for a Diffie-Hellman key exchange by hashing the password to a curve point. Notably the use of a hash function is purely for encoding an arbitrary length string to a curve point, and does not need to be a random oracle.

A.3. Deterministic Encoding

Shallue, Woestijne, and Ulas [SW06] first introduced a deterministic algorithm that maps elements in $F_{q'}$ to a curve in time $O(\log^4 q)$, where $q = p^n$ for some prime p, and time $O(\log^3 q)$ when $q = 3 \mod 4$. Icart introduced yet another deterministic algorithm which maps $F_{q'}$ to any EC where $q = 2 \mod 3$ in time $O(\log^3 q)$ [Icart09]. Elligator (2) [Elligator2] is yet another deterministic algorithm for any odd-characteristic EC that has a point of order 2. Elligator2 can be applied to Curve25519 and Curve448, which are both CFRG-recommended curves [RFC7748].

However, an important caveat to all of the above deterministic encoding functions, is that none of them map injectively to the entire curve, but rather some fraction of the points. This makes
them unable to use to directly construct a random oracle on the curve.

Brier et al. [SimpleSWU] proposed a couple of solutions to this problem. The first applies solely to Icart’s method described above, by computing $F(H_0(m)) + F(H_1(m))$ for two distinct hash functions H_0, H_1. The second uses a generator G, and computes $F(H_0(m)) + H_1(m)*G$. Later, Farashahi et al. [FFSTV13] showed the generality of the $F(H_0(m)) + F(H_1(m))$ method, as well as the applicability to hyperelliptic curves (not covered here).

A.4. Supersingular Curves

For supersingular curves, for every y in $GF(p)$ (with $p>3$), there exists a value x such that (x, y) is on the curve E. Hence we can construct a bijection $F : GF(p) \rightarrow E$ (ignoring the point at infinity). This is the case for [BF01], but is not common.

A.5. Twisted Variants

We can also consider curves which have twisted variants, E^d. For such curves, for any x in $GF(p)$, there exists y in $GF(p)$ such that (x, y) is either a point on E or E^d. Hence one can construct a bijection $F : GF(p) \times \{0,1\} \rightarrow E \#$8746; E^d, where the extra bit is needed to choose the sign of the point. This can be particularly useful for constructions which only need the x-coordinate of the point. For example, x-only scalar multiplication can be computed on Montgomery curves. In this case, there is no need for an encoding function, since the output of F in $GF(p)$ is sufficient to define a point on one of E or E^d.

Appendix B. Try-and-Increment Method

In cases where constant time execution is not required, the so-called try-and-increment method may be appropriate. As discussion in Section 1, this variant works by hashing input m using a standard hash function ("Hash"), e.g., SHA256, and then checking to see if the resulting point $(m, f(m))$, for curve function f, belongs on E. This is detailed below.
1. ctr = 0
2. h = "INVALID"
3. While h is "INVALID" or h is EC point at infinity:
4.1 CTR = I2OSP(ctr, 4)
4.2 ctr = ctr + 1
4.3 attempted_hash = Hash(m || CTR)
4.4 h = RS2ECP(attempted_hash)
4.5 If h is not "INVALID" and cofactor > 1, set h = h * cofactor
5. Output h

I2OSP is a function that converts a nonnegative integer to octet string as defined in Section 4.1 of [RFC8017], and RS2ECP(h) = OS2ECP(0x02 || h), where OS2ECP is specified in Section 2.3.4 of [SECG1], which converts an input string into an EC point.

Appendix C. Sample Code

This section contains reference implementations for each map2curve variant built using [hacspec].

C.1. Icart Method

The following hacspec program implements map2curve_icart(alpha) for P-384.

```python
from hacspec.speclib import *

prime = 2**384 - 2**128 - 2**96 + 2**32 - 1
felem_t = refine(nat, lambda x: x < prime)
affine_t = tuple2(felem_t, felem_t)

@typechecked
def to_felem(x: nat_t) -> felem_t:
    return felem_t(nat(x % prime))

@typechecked
def fadd(x: felem_t, y: felem_t) -> felem_t:
    return to_felem(x + y)

@typechecked
def fsub(x: felem_t, y: felem_t) -> felem_t:
    return to_felem(x - y)
```

def fmul(x: felem_t, y: felem_t) -> felem_t:
 return to_felem(x * y)

@typechecked
def fsqr(x: felem_t) -> felem_t:
 return to_felem(x * x)

@typechecked
def fexp(x: felem_t, n: nat_t) -> felem_t:
 return to_felem(pow(x, n, prime))

@typechecked
def finv(x: felem_t) -> felem_t:
 return to_felem(pow(x, prime-2, prime))

a384 = to_felem(prime - 3)
b384 = to_felem(275801355995705877849011840389048093056905856315685214287073019888689241309860865136260764883745107765439761230575)

@typechecked
def map2p384(u:felem_t) -> affine_t:
 v = fmul(fsub(fmul(to_felem(3), a384), fexp(u, 4)), finv(fmul(to_felem(6), u)))
 u2 = fmul(fexp(u, 6), finv(to_felem(27)))
 x = fsub(fsqr(v), b384)
 x = fsub(x, u2)
 x = fexp(x, 2 * prime - 1) // 3
 x = fadd(x, fmul(fexp(u, finv(to_felem(3)))))
 y = fadd(fmul(u, x), v)
 return (x, y)

C.2. Shallue-Woestijne-Ulas Method

The following hascpec program implements map2curve_swu(alpha) for P-256.
from p256 import *
from hacspec.speclib import *
a256 = to_felem(prime - 3)
b256 = to_felem(41058363725152129326129780047268409114441015993725554835256314039467401291)

@typechecked
def f_p256(x:felem_t) -> felem_t:
 return fadd(fexp(x, 3), fadd(fmul(to_felem(a256), x), to_felem(b256)))

@typechecked
def x1(t:felem_t, u:felem_t) -> felem_t:
 return u

@typechecked
def x2(t:felem_t, u:felem_t) -> felem_t:
 coefficient = fmul(to_felem(-b256), finv(to_felem(a256)))
 t2 = fsqr(t)
 t4 = fsqr(t2)
 gu = f_p256(u)
 gu2 = fsqr(gu)
 denom = fadd(fmul(t4, gu2), fmul(t2, gu))
 return fmul(coefficient, fadd(to_felem(1), finv(denom)))

@typechecked
def x3(t:felem_t, u:felem_t) -> felem_t:
 return fmul(fsqr(t), fmul(f_p256(u), x2(t, u)))

@typechecked
def map2p256(t:felem_t) -> felem_t:
 u = fadd(t, to_felem(1))
 x1v = x1(t, u)
 x2v = x2(t, u)
 x3v = x3(t, u)
 exp = to_felem((prime - 1) // 2)
 e1 = fexp(f_p256(x1v), exp)
 e2 = fexp(f_p256(x2v), exp)
 if e1 == 1:
 return x1v
 elif e2 == 1:
 return x2v
 else:
 return x3v
C.3. Simplified SWU Method

The following hacspec program implements `map2curve_simple_swu(alpha)` for P-256.

```python
def f_p256(x:felem_t) -> felem_t:
    return fadd(fexp(x, 3), fadd(fmul(to_felem(a256), x), to_felem(b256)))

def map2p256(t:felem_t) -> affine_t:
    alpha = to_felem(-(fsqr(t)))
    frac = finv((fadd(fsqr(alpha), alpha)))
    coefficient = fmul(to_felem(-b256), finv(to_felem(a256)))
    x2 = fmul(coefficient, fadd(to_felem(1), frac))
    x3 = fmul(alpha, x2)
    h2 = fadd(fexp(x2, 3), fadd(fmul(a256, x2), b256))
    h3 = fadd(fexp(x3, 3), fadd(fmul(a256, x3), b256))
    exp = fmul(fadd(to_felem(prime), to_felem(-1)), finv(to_felem(2)))
    e = fexp(h2, exp)
    exp = to_felem((prime + 1) // 4)
    if e == 1:
        return (x2, fexp(f_p256(x2), exp))
    else:
        return (x3, fexp(f_p256(x3), exp))
```

C.4. Boneh-Franklin Method

The following hacspec program implements `map2curve_bf(alpha)` for a supersingular curve "y^2=x^3+1" over "GF(p)" and "p = (2^250)(3^159)-1".
from hacspe.speclib import *

prime = 2**250*3**159-1

a503 = to_felem(0)
b503 = to_felem(1)

@typechecked
def map2p503(u:felem_t) -> affine_t:
t0 = fsqr(u)
t1 = fsub(t0,b503)
x = fexp(t1, (2 * prime - 1) // 3)
return (x, u)

C.5. Fouque-Tibouchi Method

The following hacspe spec program implements map2curve_ft(alpha) for a BN curve "BN256 : y^2=x^3+1" over "GF(p(t))", where "p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1", and "t = -(2^62 + 2^55 + 1)".
from hacspec.speclib import *

t = -(2**62 + 2**55 + 1)
p = lambda x: 36*x**4 + 36*x**3 + 24*x**2 + 6*x + 1
prime = p(t)

aBN256 = to_felem(0)
bBN256 = to_felem(1)

@typechecked
def map2BN256(u:felem_t) -> affine_t:
 ZERO = to_felem(0)
 ONE = to_felem(1)
 SQRT_MINUS3 = fsqrt(to_felem(-3))
 ONE_SQRT3_DIV2 = fmul(finv(to_felem(2)), fsub(SQRT_MINUS3, ONE))

 fcurve = lambda x: fadd(fexp(x, 3), fadd(fmul(to_felem(aBN256), x), to_felem(bBN256)))
 flegendre = lambda x: fexp(u, (prime - 1) // 2)

 w = finv(fadd(fadd(fsqr(u), B), ONE))
 w = fmul(fmul(w, SQRT_MINUS3), u)
 e = flegendre(u)

 x1 = fsub(ONE_SQRT3_DIV2, fmul(u, w))
 fx1 = fcurve(x1)
 s1 = flegendre(fx1)
 if s1 == 1:
 y1 = fmul(fsqrt(fx1), e)
 return (x1, y1)

 x2 = fsub(ZERO, fadd(ONE, x1))
 fx2 = fcurve(x2)
 s2 = flegendre(fx2)
 if s2 == 1:
 y2 = fmul(fsqrt(fx2), e)
 return (x2, y2)

 x3 = fadd(finv(fsqr(w)), ONE)
 fx3 = fcurve(x3)
 y3 = fmul(fsqrt(fx3), e)
 return (x3, y3)

C.6. Elligator2 Method

The following hacspec program implements map2curve_elligator2(alpha) for Curve25519.
from curve25519 import *
from hacspec.speclib import *

a25519 = to_felem(486662)
b25519 = to_felem(1)
u25519 = to_felem(2)

@typechecked
def f_25519(x:felem_t) -> felem_t:
 return fadd(fmul(x, fsqr(x)), fadd(fmul(a25519, fsqr(x)), x))

@typechecked
def map2curve25519(r:felem_t) -> felem_t:
 d = fsub(to_felem(p25519), fmul(a25519, finv(fadd(to_felem(1), fmul(u25519, fsqr(r)))))
 power = nat((p25519 - 1) // 2)
 e = fexp(f_25519(d), power)
 x = 0
 if e != 1:
 x = fsub(to_felem(-d), to_felem(a25519))
 else:
 x = d
 return x

C.7. hash2base

The following procedure implements hash2base.
hash2base(x)

Parameters:

H - cryptographic hash function to use
hbits - number of bits output by H
p - order of the base field Fp
label - context label for domain separation

Preconditions:

floor(log2(p)) + 1 >= hbits

Input:

x - an octet string to be hashed

Output:

y - a value in the field Fp

Steps:

1. t1 = H("h2c" || label || I2OSP(len(x), 4) || x)
2. t2 = OS2IP(t1)
3. y = t2 mod p
4. Output y

where I2OSP, OS2IP [RFC8017] are used to convert an octet string to
and from a non-negative integer, and a || b denotes concatenation of
a and b.

C.7.1. Considerations

Performance: hash2base requires hashing the entire input x. In some
algorithms/ciphersuite combinations, hash2base is called multiple
times. For large inputs, implementers can therefore consider hashing
x before calling hash2base. I.e. hash2base(H’(x)).

Most algorithms assume that hash2base maps its input to the base
field uniformly. In practice, there will be inherent biases. For
example, taking H as SHA256, over the finite field used by Curve25519
we have p = 2^255 - 19, and thus when reducing from 255 bits, the
values of 0 .. 19 will be twice as likely to occur. This is a
standard problem in generating uniformly distributed integers from a
bitstring. In this example, the resulting bias is negligible, but
for others this bias can be significant.
To address this, our hash2base algorithm greedily takes as many bits as possible before reducing mod p, in order to smooth out this bias. This is preferable to an iterated procedure, such as rejection sampling, since this can be hard to reliably implement in constant time.

The running time of each map2curve function is dominated by the cost of finite field inversion. Assuming \(T_i(F) \) is the time of inversion in field \(F \), a rough bound on the running time of each map2curve function is \(O(T_i(F)) \) for the associated field.

Appendix D. Test Vectors

This section contains test vectors, generated from reference Sage code, for each map2curve variant and the hash2base function described in Appendix C.7.

D.1. Elligator2 to Curve25519

Input:

\[\alpha = \]

Intermediate values:

\[
\begin{align*}
 u &= 140876c725e59a161990918755b3eff6a9d5e75d69ea20f9a4ebcf94e69ff013 \\
 v &= 6a262de4da3a094ceb2d307fd985a018f55d1c7dafa3416423b462c8aaff893 \\
 gv &= 5dc09f578dca7bfffeac3ec4ad2792c9822cd1d881839e823d26cd338f6ddc3e
\end{align*}
\]

Output:

\[
\begin{align*}
 x &= 15d9d21b245c5f6b314d2cf80267a5fe70aa2e382505cbe9bdc4b9d375489a54 \\
 y &= 1f132cbbfbb17d3f80eba862a6fb437650775de0b86624f5a40d3e17739a07ff
\end{align*}
\]
Input:

\(\alpha = 00 \)

Intermediate values:

\[
\begin{align*}
\text{u} &= 10a97c83d3952945a72fe18511ac9741234de3fb62fa0fec399df5f390a6a21 \\
\text{v} &= 6ff5b9893b26c08b68adb3d653b335a8e810b4abbd3bc13348e28f74814f4c4 \\
\text{gv} &= 2d1599d36275c36cabc334c07c6934e94c3248a9d275041f3724819d7e8b22
\end{align*}
\]

Output:

\[
\begin{align*}
\text{x} &= 6ff5b9893b26c08b68adb3d653b335a8e810b4abbd3bc13348e28f74814f4c4 \\
\text{y} &= 55345d1e10a5fc1c56434494c47dca9c7983c07fcb908f7a38717ba869a2469
\end{align*}
\]

Input:

\(\alpha = ff \)

Intermediate values:

\[
\begin{align*}
\text{u} &= 59c48eefc872abc09321ca7231ec6c754c65244a86e6315e9e23076ed674d3 \\
\text{v} &= 20a920e0e96303c4a37cd6650a86c6bc390bce921919d9c544f35f2a2534b2b \\
\text{gv} &= 0951a0c55b92e231494695cb775a0653a23f41635e11f97168e231095dd5c30c
\end{align*}
\]

Output:

\[
\begin{align*}
\text{x} &= 5fc6d21f6b9f63b5c832909af5793943c6f4313de6e6263abb0ca0d5da547bc \\
\text{y} &= 2b6bf1b3322717ed5640d04659757c8db6615c0dee954fb695e8ac9d97e24d1
\end{align*}
\]
Input:

alpha = ff00112344411234411233445567788566778855667788
Input:

alpha =

Intermediate values:

\[u = 380619de15c80fe3668bac96be51b0fd17129f6cf084a250cf\begin{9u}7f92b6cba\end{9u} \]
\[v = 2f3d9063e573c522d8f20c752f15b114f810b53d880154e2f30cede \]
\[gv = 4ce282b7cfda2db63c99a08b947f10f0c3bc96946cd1c66b7d \]
\[dfe305baaf \]
Output:

\[x = 2f3d9063e573c522d8f20c752f15b114f810b53d880154e2f30cede \]
\[y = 5e43a6a0590c11547b910d0d37c964cc3fc91adf8a54494d74b \]
\[12d6e\text{ae}45d \]

D.2. Icart to P-384

Input:

alpha =

Intermediate values:

\[u = 287d7ef77451eced3c1c0428092a70b5ed870ca22681ca81ac52037d \]
\[a7e22a3657d3538fa5ce30488b8e5fb95e685fda86 \]
\[u4 = 56ae47e1e72dbabe15bd0d5a8462d0228a5db9093268639e1cd015 \]
\[4a3e63d81ee72c2d5fa4998f7ca971b50b44df6 \]
\[v = eaal6e82d5a88ebb9ff186660c34693d4d32fda72921ed2fe4d \]
\[cfc\text{e}3b163dea8ec9e528f7e3b5ca3e27cba5c97db9 \]
\[x1 = cbec52f2bf7f194a47fd88e3fa4f96fc41cddde8a4879c225ad80 \]
\[e55c4db05d674709754764929327ed3939c21903b \]
\[u6 = 5af8bcb067cf10bf3c7115481f3bd78af70e359a9d67060c6e2 \]
\[16462d44715475a55e514d0a790a7d58e7482fa \]
\[x1 = 871a993757d3aa90b7261aa76fc1d748b4dcafc8505f1170e3707 \]
\[1ab59c93a88aa9633173053d2b4f94a592b147 \]

Output:

\[x = b4e57f7c7f87adbc52ab84363513cdf5fb356550b6fbde5741f6b \]
\[5a1b23a109b6fe0c268b2ef2c4139332c7e213f145d5 \]
\[y = bd3980b713d51ac0f719b6cc045e2168717b74157f6f0e36d4501 \]
\[3e2b5c7e0d70dacb8d2fb826ad12d38a0dc5dc801f \]
Input:

alpha = 00

Intermediate values:

\[u = 5584733e5ee080c9dbfa4a91c5c8da5552cce17c74fae9d28380e6623493df985a7827f02538929373de483477b23521 \]
\[u_4 = 3f8451733c017a3e5acd8a310f5594ae539c74b009fc75aeced37f1 \]
\[abd42b3a47b1bd8b2b29eb3dd01db0a1bf67f5c15e \]
\[v = a20ff29b0a3d0067cb8a53e132753a46f598aa568efe00f9e286a5e4300c9010f58e3ed97b4b7b356347048f122ca2b8 \]
\[x_1 = d8fcadbc05829f3d7d12493f8720514e2f125751f0ddf91ba8ee5d4e3456528c1e155cc93ac525562d9c3fcb3e49d3e3 \]
\[u_6 = 35340edd3abbe78fe33fd955e9126d67c6352db6ecbcbcf3abba530ffa37724d3a51d9d046057d0fa76278f916fa10c \]
\[x_1 = 382b470b52f50e866e824ae3827a738b8cada54c9473d1eee18b548b8f12389dce7a7c47893e18aafad06ab8ff52 \]

Output:

\[x = a15fe3979721e717f173c54d38882c011be02499d26a070a3bed825fcac5a251a297a9593254a50f8aa243c6191976a \]
\[y = 641d1cb53087208240a935769ca1b99c3a97a492526e5b3cfae8c20bebde9345c4dd549e2d01d5417918ce039451f4d7 \]
Input:

\[\text{alpha} = \text{ff} \]

Intermediate values:

\[u = \text{d25e7c84dcdf5b32e8ff5ae510026628d7427b2341c9d885f753a972b21e3c82881ab0a2845ec645dd9d6fd4f3c74cb3} \]
\[u4 = \text{60cbd41d32d7588ff3634655bd5e5ef6ab9077b7629bb648669cf8bef00c87b3c7c59bed55d6db75a59fc988ee84db41} \]
\[v = \text{f3e63b1b10195a28833f391d480df124be3c1cbbaa0c7b5b0252db405ba97a10d19a6afdf134f1c829fd8fba36a3ea5a5} \]
\[x1 = \text{9d4c43b595deb9913eb0f7688695abe8a7145d4b8f1f911b8384b0205c873cfcb6a6092e71b887e0a56e8633987fa7e} \]
\[u6 = \text{bb44318a26c920aa39270421eb8ff73aaac89637d01e6b32697fbd2c6097d3143fbee8e192372a25be723a0008bcef64326} \]
\[x1 = \text{aa283d625fdb4d127611e359d6bd6a2d1e63f036a2d9d1373c11d91a557ffe24ec208f0408763c524112147fd78fd15e} \]

Output:

\[x = \text{26536b1be6480de4e8d3232e17312085d2fc5b4ad18ae3edfe1f62c192ebcbed4711aba15be7af83ef691e09aded56c} \]
\[y = \text{7533cf819fa713699f4919f79fc0f01c9b632f2e08a5ae34de7d9e1069b18b256924b9acb7db85c707fb40ef893e4b9e} \]
Input:

\[\alpha = \text{ff001123441122334411223344556677885667788556677885566778855667788} \]

Intermediate values:

\[
\begin{align*}
u &= \text{e1a5025e8e9b6776263767613cd90b685a46fe462c914aaf7dab3b2ac7b7f6479e6de0790858fae8471beda1d93117c2} \\
u_4 &= \text{be47baa8671fb710a0cf58c85d95ea9cef2a7d6a6d859f3dcb52be} \\
v &= \text{24ed8cb050c045f6401a6221b85c37d482197f54a7340303449c1352717394450495f4bfa8c0bc12181496db59113671} \\
x_1 &= \text{a1e180da2f619774632fccc74133963606ffaec0545dcdff225e1803f04d7bd9f612bf57145004905142a35a5d1b47f0} \\
x_6 &= \text{e806b407af7874d4ded4a46bc002e0dda1a39a5754cf09dfebc99cfc8d19750a4a7ae825e06ac256166b91ee3f5e28d} \\
x_1 &= \text{41d581708d776d43b75fd29658c14fddaf009d8f47a9ec18b9d3bee961f1544dd7339e6115bffbe638a17658ce94a} \\
\end{align*}
\]

Output:

\[
\begin{align*}
x &= \text{810096c7dec85367fa04f706c2e456334325202b9fcbc34970d9fd} \\
y &= \text{ddde061cec66efc0cfcdabdc0241fdebd00ab2ad28bf8e00dc0d45f8845c00b6e5c803b133c8de3b14922d83649c4c249} \\
\end{align*}
\]

D.3. SWU to P-256
Input:

alpha =

Intermediate values:

\[u = \text{d8e1655d6562677a74be47c33ce9edcbefd5596653650e5758c8aa} \]
\[v = \text{7764572395df002912b7cbb93c9c287f325b57afa1e7e82618ba57} \]
\[x_1 = \text{7764572395df002912b7cbb93c9c287f325b57afa1e7e82618ba57} \]
\[g_v = \text{0d8af0935d993caaeefca7ef91206415cbe7e09a3cca295237c66} \]
\[g_{x_1} = \text{0d8af0935d993caaeefca7ef91206415cbe7e09a3cca295237c66} \]
\[n_1 = \text{ef66b409fa309a99e4dd4a1922711dea3899259d4a5947b3a0e3fe} \]
\[x_2 = \text{2848af84de537f96c3629d93a78b37413a8b07c72248be8eac61fa} \]
\[g_{x_2} = \text{3aebl6a81af78b9176847f84ab7987f361cb486846d4df3e45af2} \]
\[x_3 = \text{4331af8e69e4fc7a3e5f0ca7b8a62c3c9f0146dac5f75b6990fe} \]
\[g_{x_3} = \text{1d78a2bd9ff7c11c53807622c4d476ed67ab3c93206225ae437f0} \]
\[y_1 = \text{574e9564a28b9104b9dfb104a976f5f6a07c5c5b69e901e596df26} \]
\[x = \text{7764572395df002912b7cbb93c9c287f325b57afa1e7e82618ba57} \]
\[y = \text{574e9564a28b9104b9dfb104a976f5f6a07c5c5b69e901e596df26} \]

Output:
Input:

\[\alpha = 00 \]

Intermediate values:

\[u = c4188ee0e554dae7aea559d04d45982d6b184eff86c4a910a4324744d6fb3c62 \]
\[v = 0e82c0c07eb17c24c84f4a83fdd6195c23f76d455ba7a8d5bc3f620cee20caf9 \]
\[x_1 = 0e82c0c07eb17c24c84f4a83fdd6195c23f76d455ba7a8d5bc3f620cee20caf9 \]
\[g_v = 4914f49c40cb5c561bfeded5762d4bbf652e236f890ae752ea10460be2939c3a \]
\[g_x_1 = 4914f49c40cb5c561bfeded5762d4bbf652e236f890ae752ea10460be2939c3a \]
\[n_1 = ae5000e861347ff29e3368597174b1a0a04b9b08019f59936aa65f7e3176cf03 \]
\[x_2 = 331a4d8dead257f3d36e239e9cfaeaaf6804354a5897da421db73a795c3f9af7 \]
\[g_x_2 = b3dda8702e046be4e2bd42e2c9f09fddbc98a3fe04bd91ca8a19045684be9d81 \]
\[x_3 = 1133498ac9e96b683271586be695ca43a946aa320eb32e796624766ac7d1cc60 \]
\[g_x_3 = 7cd39b42a3b487dc6c2782a5aebd123502b9fecc849be21766c8a00ca16c318f \]
\[y_2 = 6c6fa249077e13be24cf2cfab67dfcc8407a299e69c817785b8b9a23eece734 \]

Output:

\[x = 331a4d8dead257f3d36e239e9cfaeaaf6804354a5897da421db73a795c3f9af7 \]
\[y = 6c6fa249077e13be24cf2cfab67dfcc8407a299e69c817785b8b9a23eece734 \]
Input:
alpha = ff

Intermediate values:

\[\begin{align*}
 u &= 777b56233c4bdb9fe7de8b046189d39e0b2c2add660221e7c4a2d458c3034df2 \\
 v &= 51a60aedc0ade7769bd04a4a3241130e00c7adaa9af76f1e115f1d082902b02 \\
 x_1 &= 51a60aedc0ade7769bd04a4a3241130e00c7adaa9af76f1e115f1d082902b02 \\
 g_v &= f7ba284fd26c0cb7b678f71caecbd9bf88890dda48b596927c70bf805ef5eba \\
 g_{x_1} &= f7ba284fd26c0cb7b678f71caecbd9bf88890dda48b596927c70bf805ef5eba \\
 n_1 &= a437e699818d87069a6e4d5298f26f19fd301835eb33b0a3936e3bd1507d680 \\
 x_2 &= 7236d245e18df43dd756a2d048c6e491bb9ebfc2caa627e315d49b1e02957fc \\
 g_{x_2} &= 9d6efbf27637ca38ee894e5052b989021b7d76fa2b01053ce0542954a205c047 \\
 x_3 &= 90553f9df8a170464497621e7f2ffcc35d17af4107b79dab6d2a126ea692c9db \\
 g_{x_3} &= d7d141749e2e8e4b2253d4ef22e3ba7c7970e604e03b59277aed1032f02ca11 \\
 y_1 &= 4115534ea22d3b46a9c541a25e72b3f37a2ac7635a6bebb16ff504c3170fb69a
\end{align*}\]

Output:

\[\begin{align*}
 x &= 51a60aedc0ade7769bd04a4a3241130e00c7adaa9af76f1e115f1d082902b02 \\
 y &= 4115534ea22d3b46a9c541a25e72b3f37a2ac7635a6bebb16ff504c3170fb69a
\end{align*}\]
Input:

\[\alpha = \text{ff001123441122334411223344112233445566778856677885566778855667788} \]

Intermediate values:

- \[u = 87541ffa2efec46a38875330f66a6a53b99edce4e07e06cd0ccaf39f8208aa6 \]
- \[v = 3dbb190235f823df04fe0797456bfee25d0a2016ae6e357197c4122bf7e310 \]
- \[x_1 = 3dbb190235f823df04fe0797456bfee25d0a2016ae6e357197c4122bf7e310 \]
- \[g_v = 2704056d76b889ce788ab5cc68fd932f3d7cb125d0d6e0a9f9a9d7655d0651ed \]
- \[g_{x_1} = 2704056d76b889ce788ab5cc68fd932f3d7cb125d0d6e0a9f9a9d7655d0651ed \]
- \[n_1 = 43b52359e2739c205b2e4c8a0b3cd6842fed131ec37fc0788eb264dc1999b \]
- \[x_2 = 39150bdb341015403c27154093cd0382d61d27dafe1d6e7d08368323bc3e1b2a \]
- \[g_{x_2} = 0985428e7b570b3c94dbaa2c4f160095db00a3d79b738ce488c485971d03 \]
- \[x_3 = 3c5f2e681176c3e50b36842e3ee7623ba0577f6a1a0572448ab5a4bc9c3d71 \]
- \[g_{x_3} = ea7c1cf13e2ab39240d1d74e884f0878d21020fd73b7f4f84c79d9ad720d09ae0 \]
- \[y_2 = 71b6e4a8c8dcaee3dab695b69f25a7dbdc4e00f4926407bad89a80ab12655340 \]

Output:

\[x = 39150bdb341015403c27154093cd0382d61d27dafe1d6e7d08368323bc3e1b2a \]
\[y = 71b6e4a8c8dcaee3dab695b69f25a7dbdc4e00f4926407bad89a80ab12655340 \]

D.4. Simple SWU to P-256
Input:

alpha =

Intermediate values:

\[
\begin{align*}
u &= \text{650354c1367c575b44d039f35a05f2201b3b3d2a93bf4ad6e5535b bb5838c24e} \\
n1 &= \text{88d14bad9d79058c1427aa778892529b513234976ce84015c795f3 b3c1860963} \\
x1 &= \text{c55836cadc8cedf9b9e345c88aa0af67db2d32e6527de7a5b7a8 59a3f6a2d3} \\
gx1 &= \text{9104bf247de931541fedfd4a483ced90fd3ac32f4bbbd0de021a21 f770fccc7ae} \\
x2 &= \text{0243b55837314f184ed8eca38b733945ec124f0d079850d608c9d 175aed9d29} \\
gx2 &= \text{0f522f68139c6a8ff028c5c24536069441c3ea8a68d49939b2019 0a87e2f170} \\
y2 &= \text{29b59b5c656bf740b3ea8efad626a01f072eb384f2db56903f67f e4fbb6f82}
\end{align*}
\]

Output:

\[
\begin{align*}
x &= \text{0243b55837314f184ed8eca38b733945ec124f0d079850d608c9d 175aed9d29} \\
y &= \text{29b59b5c656bf740b3ea8efad626a01f072eb384f2db56903f67f e4fbb6f82}
\end{align*}
\]
Input:

alpha = 00

Intermediate values:

\[u = 54acd0c1b3527a157432500fc3403b6f8a0aa0103d6966b783614a8e41c9c5b1 \]
\[n_1 = bb27567ea0729adc2b7af65a85b7f599559b107ce0d2495c4d26d8a1ce842372 \]
\[x_1 = 6ae899e0232f040f8a82934f462e1ccedac76ad8549ae581f17c821a5944244f \]
\[g_x_1 = 8a78bbf9c2156533fa0d9d37533752508a061b90108675ad7050097adabff9cb \]
\[x_2 = 498c0e2faee29adf4e6aed9120eb8c69cd3bb7206bcd47a746fb5ed4ed5529a5 \]
\[g_x_2 = 63adfce3aaa4d56b70cc3e8e7475154b5963855e275ffc26858cbf2456ea5f52 \]
\[y_1 = 3b81976ce93e79d2ba13394a6b5deb34602d6829f4625d987fc98ca79d5d5c98 \]

Output:

\[x = 6ae899e0232f040f8a82934f462e1ccedac76ad8549ae581f17c821a5944244f \]
\[y = 3b81976ce93e79d2ba13394a6b5deb34602d6829f4625d987fc98ca79d5d5c98 \]
Input:

\[\alpha = \text{ff} \]

Intermediate values:

\[u = 86855e4bc3905ae04f6b284820856db6809633c5046ed92816a4e9976e994818 \]
\[n_1 = 5ec1cf436c1a2e84b53674bcf2470a0aeeda9550c474b06da4bda83bda56f2e3 \]
\[x_1 = 04e73147d10de271f7d77a9a3d6dd761d5b892ab39224b9dab93a250139b124a \]
\[g_{x_1} = 9d26bdc1b5afe7ccf9a7963a099e3c0b98070525b7ed08e8f32f44aef918b15f \]
\[x_2 = 28566b4d673bf59f00d42771968bd69b1a54e8b557857ba231cbddfe8b38b5 \]
\[g_{x_2} = 3b7edb432f00509ed44a4e6a2cbdb69321215097953dac5bab8a901a1d0998 \]
\[y_2 = 6644bab658f2915f2129791db0eb29eaeb34036db1bcde721b16e06caae008 \]

Output:

\[x = 28566b4d673bf59f00d42771968bd69b1a54e8b557857ba231cbddfe8b38b5 \]
\[y = 6644bab658f2915f2129791db0eb29eaeb34036db1bcde721b16e06caae008 \]
Input:
alpha = ff00112334411223344112233441122334455667788566778855
66778855667788

Intermediate values:
\[\begin{align*}
 u &= 34a8fc904e2d40dabb826b914917a6f3ea97ec3c0828f41c8716b26f8f4b7aaf \\
 n1 &= 3b14efe9953378860e667b9051f9e412811e71b489ad8b72a8856fe57a5473d9 \\
 x1 &= 8ac342ff43931be5b1a9de4f602994853fa9ec943eacc5e39760df73fb4d9799 \\
 gx1 &= b45e916f6478943e1baf89e559c38f95457f2cad1aaa8d5b0c9ac507ebc6ba \\
 x2 &= f9e15f7507632859104da82a28882021608b2c41f2f6e3b1a82e432841284ec7 \\
 gx2 &= 1940c3ff4cd98e41cde5e863eb355168b5794af03c374244c7ac94c5e2f7b0 \\
 y2 &= 180369d261ec6086346e6b2d36990a3aaa803558f1398b6816c3c618d41ff73e
\end{align*}\]

Output:
\[\begin{align*}
 x &= f9e15f7507632859104da82a28882021608b2c41f2f6e3b1a82e432841284ec7 \\
 y &= 180369d261ec6086346e6b2d36990a3aaa803558f1398b6816c3c618d41ff73e
\end{align*}\]

D.5. Boneh-Franklin to P-503

The P-503 curve is a supersingular curve defined as "$y^2=x^3+1$" over "$\text{GF}(p)$", where "$p = 2^{250}\cdot 3^{159}-1$".
Input:

alpha =

Intermediate values:

\[
\begin{align*}
 u &= 198008fe3da9ee741c2ff07b9d4732df88a3cb98e8227b2cf49d5557aec1e61d1d29f460c6e4572b2baa21d2444d64d59cddc2c0dfa20144dfab7e92a83e00 \\
t_0 &= 1f6bb1854a1ff7db82b43c235727d998fe28889152ec4e533994fc6d0e77cd9f3dd8c46226de8e5de75f705370944b809fe0ca0928587addb9c54ae1a05 \\
t_1 &= 1f6bb1854a1ff7db82b43c235727d998fe28889152ec4e533994fc6d0e77cd9f3dd8c46226de8e5de75f705370944b809fe0ca0928587addb9c54ae1a04 \\
x &= 04671bff33e7f9f7905848cd40fc652bd22200eef29e8e13ccb5536e4a11db4366d2f346070d63c994bf0a4b1a4e555d6b3d021aeba340b641ada82054 \\
y &= 198008fe3da9ee741c2ff07b9d4732df88a3cb98e8227b2cf49d5557aec1e61d1d29f460c6e4572b2baa21d2444d64d59cddc2c0dfa20144dfab7e92a83e00
\end{align*}
\]
Input:

\[
\alpha = 00
\]

Intermediate values:

\[
u = 30e30a56d82cdca830f08d729ce909fc1ffec68df49ba75f9a1af72ca242e92742f34b474a299bb452c6a71b69bdc9ee2403eaae7c84120a160737d667e29e
\]
\[
t0 = 0a64d9f288a0881bb6addebc0db89f146b282b05570e7a3419f5d32f11ec7bb449a1da8b33817642f01db039f838ad0bd459ec03e76d8e38316796633f79
\]
\[
t1 = 0a64d9f288a0881bb6addebc0db89f146b282b05570e7a3419f5d32f11ec7bb449a1da8b33817642f01db039f838ad0bd459ec03e76d8e38316796633f78
\]
\[
x = 0970ffbb9237704cc30f5b0d80a9d97001064ab4cda98e74f8d7283b922726406393c07ad01de0499e46ec0ed1cd116112cf8965fb8f918205adb133da
\]

Output:

\[
x = 0970ffbb9237704cc30f5b0d80a9d97001064ab4cda98e74f8d7283b922726406393c07ad01de0499e46ec0ed1cd116112cf8965fb8f918205adb133da
\]
\[
y = 30e30a56d82cdca830f08d729ce909fc1ffec68df49ba75f9a1af72ca242e92742f34b474a299bb452c6a71b69bdc9ee2403eaae7c84120a160737d667e29e
\]
Input:

\[\alpha = \text{ff} \]

Intermediate values:

\[
\begin{align*}
u &= 3808ae24b17af9147bd16077e3e83aff5c579784c8a1443d90e5ff \\
e2451bfabacba73ee8b8f652b991290f5c64b34b1a4c9a498e21d4 \\
3d000dae7f8860200a \\
t0 &= 2282d37dce4761dad69d1fe012c8580ba4e23158a0621fb3f51813 \\
10e7275e95573c89a8f0cda7ad98ca9e0a9e04ef94a1a79685d069 \\
6ac6ad423a0de96b7d \\
t1 &= 2282d37dce4761dad69d1fe012c8580ba4e23158a0621fb3f51813 \\
10e7275e95573c89a8f0cda7ad98ca9e0a9e04ef94a1a79685d069 \\
6ac6ad423a0de96b7c \\
x &= 173dc6d853d9024f367e24a283768e11ce559473e788f3c0ed0281 \\
6b48403fc6e100d4935b3f6197799bfb4fd94b3656596252f12b \\
27fa46602c76ae1370
\end{align*}
\]

Output:

\[
\begin{align*}
x &= 173dc6d853d9024f367e24a283768e11ce559473e788f3c0ed0281 \\
6b48403fc6e100d4935b3f6197799bfb4fd94b3656596252f12b \\
27fa46602c76ae1370 \\
y &= 3808ae24b17af9147bd16077e3e83aff5c579784c8a1443d90e5ff \\
e2451bfabacba73ee8b8f652b991290f5c64b34b1a4c9a498e21d4 \\
3d000dae7f8860200a
\end{align*}
\]
Input:

\[\text{alpha} = \text{ff0011234411223344112233444556677885667788556677885566778855667788556677885566778855667788556677885566778855667788556677885566778855667788 \]

Intermediate values:

\[\text{u} = 3ebdfccb07dd619f81be2b9f5a7a8733581f1a8d531d78229d7b0be50f30887f085ef393422ef96e06ff1df4b608b05c53320a90129b8df48b68ab338ec \]

\[\text{t0} = 27958e69b08a9fd2d1765ce3e8dbaf8645c28e5ce033b9d0a7875ce7e73d6583e62ff3a06a2b55de1cb8c26819d0cd4aed2d7cb65fa5eb3c149db9e8381b \]

\[\text{t1} = 27958e69b08a9fd2d1765ce3e8dbaf8645c28e5ce033b9d0a7875ce7e73d6583e62ff3a06a2b55de1cb8c26819d0cd4aed2d7cb65fa5eb3c149db9e8381a \]

\[\text{x} = 3fe94cd4d2be061834d1a5020ca181562fdb7e9787f71965ca55cd7bf069b68dd5e2b05a5696a061723093914e69b054042baa0db3fddc517df4211daea1 \]

Output:

\[\text{x} = 3fe94cd4d2be061834d1a5020ca181562fdb7e9787f71965ca55cd7bf069b68dd5e2b05a5696a061723093914e69b054042baa0db3fddc517df4211daea1 \]

\[\text{y} = 3ebdfccb07dd619f81be2b9f5a7a8733581f1a8d531d78229d7b0be50f30887f085ef393422ef96e06ff1df4b608b05c53320a90129b8df48b68ab338ec \]

D.6. Fouque-Tibouchi to BN256

An instance of a BN curve is defined as "BN256: \(y^2 = x^3 + 1 \)" over "GF(p(t))" such that

\[t = -(2^{62} + 2^{55} + 1). \]

\[p = 0x252364824000001ba344d8000000008612100000000013a70000000000013 \]
Input:

\[\alpha = \quad \]

Intermediate values:

\[u = 1f6f2aceae3d9323ea64e9be00566f863cc1583385eaff6b01aed7 \]
\[\quad a762b11122 \]
\[t0 = 1e9c884ab8d2015985a3e3d2764798b183ff5982b0fd9034f27456 \]
\[\quad 0f19d06ed0 \]
\[x1 = 0843eb0f5ed559e940a453f257b2a2e297895ecc2375a070168117 \]
\[\quad b5127ec2ae \]
\[x2 = 1cdf7972e12aa618798ff98da84d5d25c997a133dc8a5fa3907ee8 \]
\[\quad 4aed813d64 \]
\[x3 = 042f756fe42e2ed4c58990da3b2567a7b16252c0e17b2da55b8f68 \]
\[\quad be71ebd432 \]
\[e = 2523648240000001ba344d800000008612100000000013a70000 \]
\[\quad 0000000012 \]
\[fx1 = 0a8442855e93541a104052273e2bb930338d392d71f70efe83c77 \]
\[\quad ae95471a4e \]
\[y1 = 135a017a32abc542796e55d0b68840546c3b2498963773635e27c2 \]
\[\quad 5aa3737199 \]

Output:

\[x = 0843eb0f5ed559e940a453f257b2a2e297895ecc2375a070168117 \]
\[\quad b5127ec2ae \]
\[y = 135a017a32abc542796e55d0b68840546c3b2498963773635e27c2 \]
\[\quad 5aa3737199 \]
Input:
alpha = 00

Intermediate values:

\[u = 053c7251b0e5e5c9acde43c6abd44ffe13109f61ec27ba0a8191f \]
\[t0 = 0377baf027b80854661187280a98ae1320d7fd8cb0a65fd7077270 \]
\[x1 = 0f5173cd2eb8d4352497a9cb56ebf40b623d9dabb7dcc3f626b1f3 \]
\[x2 = 15d1f0b511472b99c95ca3b4a9140bfcee3625448233c1d804e0c \]
\[x3 = 100fb33cea2b98b99ca5a279e1b4e5b0cf6927ded3cb729a822483 \]
\[e = 2523648240000001ba344d8000000008612100000000013a70000 \]
\[fx1 = 044c88525cbf81408b9bac1c83bdc49e3f31ec5a7b68495b5d03e5 \]
\[y1 = 18e4bd91f687e110fb5f57411fccf34b4b1d16d3d978a75d988c38 \]
\[x = 0f5173cd2eb8d4352497a9cb56ebf40b623d9dabb7dcc3f626b1f3 \]
\[y = 18e4bd91f687e110fb5f57411fccf34b4b1d16d3d978a75d988c38 \]

Output:
Input:

alpha = ff

Intermediate values:

\(u = 077033c69096f00eb76446a64be88c7ae5f1921b977381a6f2e9a8336191e783 \)

\(t0 = 1716fb7790dd8e2e5a3ef94d63ca31682dd8b92ce13b93e0977943bf4c364c72 \)

\(x1 = 187ca1d0f0dec664467d49b4a4a661602faac5453fbd4ad9e3f15da35627459e \)

\(x2 = 0ca6c2b14f21399d73b703cb5b599ea831763abac042b539c30ea25ca9d8ba74 \)

\(x3 = 0f694914de2533b1fbab6495b1de12cde6965bba0b505b527c1cb069a5fddf03 \)

\(e = 0001 \)

\(fx1 = 067a294268373f0123d95357d7d46c73027f767e68da3a2c65bf035f680a7b \)

\(y1 = 0de5f5d8ecfc19580a882c53c08b47791edf4499965df86263c525afd4fe0769 \)

Output:

\(x = 187ca1d0f0dec664467d49b4a4a661602faac5453fbd4ad9e3f15da35627459e \)

\(y = 0de5f5d8ecfc19580a882c53c08b47791edf4499965df86263c525afd4fe0769 \)
Input:

\[\alpha = \text{ff001123441122334411223445567788566778856677885667788} \]

Intermediate values:

\[u = \text{1dd9ec37d5abeed0f289dadd685d45a395a90f2730a9adead62bf} \]
\[t_0 = \text{23d0adbb23709a3732948019e038c13f498b33812149} \]
\[x_1 = \text{00e2d073931bc2f38a069df42afbc9e6f04155e52cfe621ibe3d4} \]
\[x_2 = \text{2440940eae43d} \]
\[x_3 = \text{09c1ba4259e59a54221b5761cf9438a60e6cd644996e7c8a11be96} \]
\[e = \text{25236482400000001ba344d8000000086121000000000013a7000} \]
\[fx_1 = \text{080e2aef1644070acf09d653db6805684572eb33f457d9d75ed5c} \]
\[fx_2 = \text{0c293717e6a4a89c1574ed4fa9683a64fb09670c49a8b49232a1} \]
\[fx_3 = \text{118bcb595ca0eac3ae6e56595267670caf75d34386dadc99284bf8} \]
\[y_3 = \text{190e8d47070240ff3c78a03d07123334e67b207fe555c31d0900fe} \]

Output:

\[x = \text{09c1ba4259e59a54221b5761cf9438a60e6cd644996e7c8a11be96} \]
\[y = \text{190e8d47070240ff3c78a03d07123334e67b207fe555c31d0900fe} \]

D.7. Sample hash2base

\text{hash2base("H2C-Curve25519-SHA256-Elligator-Clear", 1234)} = \text{1e10b542835e7b227c727bd0a7b2790f39ca1e09fc8538b3c70ef736cb1c298f}

\text{hash2base("H2C-P256-SHA512-SWU-", 1234)} = \text{4fabef095423c97566bd2b70e70fb4dd95acfeec076862f4e40981a6c9dd85}

\text{hash2base("H2C-P256-SHA512-SSWU-", 1234)} = \text{d6f685079d692e24ae13ab154684ae46c531b78a704c6e11b2f44f4db4c6e47}
Authors’ Addresses

Sam Scott
Cornell Tech
2 West Loop Rd
New York, New York 10044
United States of America

Email: sam.scott@cornell.edu

Nick Sullivan
Cloudflare
101 Townsend St
San Francisco
United States of America

Email: nick@cloudflare.com

Christopher A. Wood
Apple Inc.
One Apple Park Way
Cupertino, California 95014
United States of America

Email: cawood@apple.com