Abstract

This document defines a YANG data model for the configuration of FlexE 2.0 interface, and its FlexE clients. The YANG module in this document conforms to the Network Management Datastore Architecture (NMDA).

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 8, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this
1. Introduction

The Flex Ethernet (FlexE) 2.0 Implementation Agreement [FLEXE] defined by the OIF provides the support of a variety of Ethernet MAC rates that may or may not correspond to any existing Ethernet PHY rate. This includes MAC rates that are both greater than (through bonding) and less than (through sub-rate and channelization) the Ethernet PHY rates used to carry FlexE. Besides 100GBASE-R PHYs, FlexE 2.0 further supports the bonding of 200GBASE-R PHYs or 400GBASE-R PHYs respectively.

In the FlexE, multiple Ethernet PHYs (each PHY can further consist of one or more FlexE Instances) are bonded into a FlexE Group, and the total capacity of the FlexE Group is represented as a collection of slots (e.g., each slot has a granularity of 5Gbps or 25Gbps). Based on their bandwidth needs, FlexE Clients are each mapped into one or more slots in a FlexE group. The FlexE mechanism operates using a calendar consisting of these slots.

This calendar is partitioned into sub-calendars for each FlexE instance. For example, the calendar for a FlexE Group composed of n 100G PHYs is partitioned into 20n slots (each slot representing 5Gbps of bandwidth when the slot granularity is 5Gbps).

This document defines a YANG data model for the configuration of a Flex Ethernet interface (i.e., FlexE Group). The data model is
augmented based on the generic interfaces data model as defined in [RFC8343], the FlexE attributes are based on the FlexE 2.0 Implementation Agreement as specified in [FLEXE]. With the help of this YANG module, the FlexE Groups can be managed just as network interfaces on a network device (e.g., a router or bridge).

The YANG module in this document conforms to the Network Management Datastore Architecture (NMDA) [RFC8342].

1.1. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.2. Terminology

Most terminologies used in this document are extracted from [FLEXE].

FlexE: Flex Ethernet

FlexE Client: An Ethernet flow based on a MAC data rate that may or may not correspond to any Ethernet PHY rate.

FlexE Group: A FlexE Group is composed of from 1 to n Ethernet PHYs.

FlexE Instance: A FlexE Instance is a unit of information consisting of 100G of capacity able to carry FlexE Client data, together with its associated overhead.

Ethernet PHY: an entity representing Ethernet Physical Coding Sublayer (PCS), Physical Media Attachment (PMA), and Physical Media Dependent (PMD) layers. Each PHY is consisted of one or more FlexE Instance (e.g., a 400GBASE-R PHY has four FlexE Instances)

FlexE Calendar: The total capacity of a FlexE Group is represented as a collection of slots. The calendar for a FlexE Group composed of n PHYs is represented in each PHY as an array of slots (e.g., each representing 5Gbps of bandwidth).

2. YANG model hierarchy for FlexE interface

This section describes the hierarchy of the YANG module for FlexE interface management.
Configuration and status of FlexE interface information include:

- flexe-group specifies a management interface for configuration of a FlexE group.
- flexe-phy-list specifies a list of PHYs in a Flex Group.
- flexe-client-list specifies a list of FlexE client, each client is mapped to some slots in this FlexE group. flexe-client-status indicates whether there is any fault in any mapped slot for this client.

The readers are assumed to be familiar with FlexE 2.0, as all FlexE terminologies are described in details in [FLEXE].

In order to simplify the YANG module of the FlexE interface and to follow the YANG style of terminology, neither sub-calendar nor calendar in FlexE are modelled explicitly. However, a calendar-slot-list per PHY is modeled which represents all the slots in a PHY (i.e., all sub-calendars of the FlexE instances in this PHY), and calendar is actually a conglomerate of all the slots in calendar slot lists for all FlexE PHYs of this FlexE Group.

A simplified YANG tree diagram [RFC8340] representing the data model is typically used by YANG modules. This document uses the same tree diagram syntax as described in [RFC8340].

```
module: ietf-flexe
  augment /if:interfaces/if:interface:
    +--rw flexe-group
      |  +--rw group-number?         uint32
      |  +--rw slot-granularity?     slot-granularity-enumeration
      |  +--rw flexe-phy-type?       flexe-phy-enumeration
      +=--rw flexe-phy-list* [phy-number]
      |      |  +--rw phy-number           uint8
      |      |  +--rw flexe-phy-if?        if:interface-ref
      |      |  +--ro phy-status?          uint8
      |      |  +=--rw calendar-slot-list* [slot-id]
      |      |      |  +--rw slot-id              uint8
      |      |      |  +=--rw flexe-slot-status?   slot-status-enumeration
      |      +=--rw flexe-client-list* [client-id]
      |      |  +--rw client-id            uint16
      |      |  +--rw flexe-client-if?     if:interface-ref
      |      |  +=--rw mapped-slot-list*   [mapped-slot-id]
      |      |      |  +--rw mapped-slot-id       uint8
      |      |      |  +=--rw mapped-phy-number?  uint8
      |      +=ro flexe-client-status? uint8
```
A tree diagram of the module for FlexE client interface is depicted as the following:

```
module: ietf-interfaces-flexe-client
    augment /if:interfaces/if:interface:
        +--rw flexe-client
        +--ro mac-address
        +--rw group-number?      uint32
```

---ro flexe-group-status? uint8
3. YANG Module for FlexE interface

This module imports iana-if-type [RFC7224] and ietf-interfaces [RFC8343].

```
<CODE BEGINS> file "ietf-flexe@2019-07-05.yang"
module ietf-flexe {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-flexe";
  prefix "flexe";

  import iana-if-type {
    prefix ianaift;
  }
  import ietf-interfaces {
    prefix if;
    reference "RFC8343: A YANG Data Model for Interface Management";
  }

  organization "IETF CCAMP Working Group";
  contact "WG Web:  http://tools.ietf.org/wg/ccamp/
    WG List:  <mailto:ccamp@ietf.org>
    Author:  Yuanlong Jiang
    <mailto:jiangyuanlong@huawei.com>
    Author:  Xiang He
    <mailto: hexiang@huawei.com>
    Author:  Weiqiang Cheng
    <mailto: chengweiqiang@chinamobile.com>";
  description "This YANG module defines a data model for the configuration
    of FlexE interface."

  revision "2019-07-05" {
    description "Initial version";
    reference "draft-jiang-ccamp-flexe-yang-01: YANG Data Model for FlexE
      Interface Management ";
  }

  identity flexEthernet {
    base ianaift:iana-interface-type;
    description "Flex Ethernet.";
  }
```

typedef slot-granularity-enumeration {
 type enumeration {
 enum slot-5g {
 value 1;
 description "5Gbps per slot.";
 }
 enum slot-25g {
 value 2;
 description "25Gbps per slot.";
 }
 enum slot-others {
 value 254;
 description "Other type of granularities per slot.";
 }
 }
}

description
"The bandwidth granularity of a slot. Options for this enumeration are specified by the OIF standard, currently only 5G and 25G are defined.";
reference
"OIF Flex 2.0: Section 6.7";
}

typedef slot-status-enumeration {
 type enumeration {
 enum unavailable {
 value 1;
 description "slot is unavailable for FlexE client.";
 }
 enum unused {
 value 2;
 description "slot is unused.";
 }
 enum used {
 value 3;
 description "slot is used.";
 }
 }
}

description
"The status of a slot. Options for this enumeration are specified by the OIF standard, 'used' is implicit.";
typedef flexe-phy-enumeration {
 type enumeration {
 enum 'PHY-100GBASE-R' {
 value 1;
 description "100GBASE-R PHY, as defined in FlexE 1.0.";
 }
 enum 'PHY-200GBASE-R' {
 value 2;
 description "200GBASE-R PHY, as defined in FlexE 2.0.";
 }
 enum 'PHY-400GBASE-R' {
 value 3;
 description "400GBASE-R PHY, as defined in FlexE 2.0.";
 }
 }
}

description "The current type of PHYs bonded in a FlexE Group. Values for this enumeration are specified by the OIF standard.";
reference "OIF Flex 2.0: Section 5.2.1.5";

augment "/if:interfaces/if:interface" {
 when "if:type = 'ianaift:flexEthernet'" {
 description "Applies to Flex bonded Ethernet interfaces";
 }
}

description "Augment interface model with OIF Flex Ethernet interface specific configuration nodes. Each flexEthernet interface represents a FlexE Group configured in a device.";

container flexe-group {
 description "The struct containing all FlexE related configuration (see OIF FlexE 2.0 Section 6.1).";
Note that max number of FlexE groups in a network is 63.

leaf group-number {
 type uint32 {
 range "1..1048574";
 }
 description
 "FlexE Group Number as defined in Section 7.3.6 of FlexE 2.0.";
}

leaf slot-granularity {
 type slot-granularity-enumeration;
 default "slot-5g";
 description
 "The granularity of a slot in a FlexE group.";
}

leaf flexe-phy-type {
 type flexe-phy-enumeration;
 default "PHY-100GBASE-R";
 description
 "The type of PHYs bonded in a FlexE Group.";
}

list flexe-phy-list {
 key "phy-number";
 description
 "List of PHYs bonded in a FlexE group per FlexE 2.0.";

 leaf phy-number {
 type uint8 {
 range "1 .. 254";
 }
 description
 "PHY number of a FlexE PHY.
 If PHY type is 100GBASE-R, phy-number is [1,254].
 If PHY type is 200GBASE-R, phy-number is [1,126].
 If PHY type is 400GBASE-R, phy-number is [1, 62].";
 }

 leaf flexe-phy-if {
 type if:interface-ref;
 description
 "Reference to a Flexe PHY interface.";
 }
}
leaf phy-status {
 type uint8;
 config false;
 description
 "Fault status for a FlexE PHY. Status includes:
 OK, Local Fault, Remote Fault and etc.";
}

list calendar-slot-list {
 key "slot-id";
 leaf slot-id {
 type uint8;
 description
 "slot id of a slot in an instance.";
 }
 description
 "List of slots in a FlexE PHY. Max elements of
 slot-list for a FlexE PHY is dependent on the PHY
 bandwidth (X)G and the slot granularity (Y)G, i.e.,
 X/Y. For example, for a 400GBASE-R PHY:
 If slot-granularity=slot-5g, max-elements is 80.
 If slot-granularity=slot-25g, max-elements is 16.";
}

leaf flexe-slot-status {
 type slot-status-enumeration;
 default unused;
 description
 "Slot status of a slot in an instance.";
}
}
}
//flexe-phy-list

list flexe-client-list {
 key "client-id";
 description
 "List of FlexE clients in a FlexE Group.";
 leaf client-id {
 type uint16;
 description
 "FlexE client ID as defined in FlexE IA.";
 }
 leaf flexe-client-if {
 type if:interface-ref;
 description
 "The type of a flexe client interface must be
'flexeClient'.
)

list mapped-slot-list {
 key "mapped-slot-id";
 description
 "List of mapped-slots for a FlexE client.";
 leaf mapped-slot-id {
 type uint8;
 description
 "Slot id of a slot in an instance for a client.";
 }
 leaf mapped-phy-number {
 type uint8;
 description
 "PHY number of a slot for a client.";
 }
} // mapped-slot-list

leaf flexe-client-status {
 type uint8;
 config false;
 description
 "Fault status for a client indicated in its mapped
 slots. If any slot is in fault, the client status
 is indicated in fault. Status includes:
 OK, Local Fault, Remote Fault and etc.";
}
//flexe-client-list

leaf flexe-group-status {
 type uint8;
 config false;
 description
 "Fault status for a FlexE Group. If any PHY is in fault,
 the FlexE Group status is indicated in fault. Status
 includes:
 OK, Local Fault, Remote Fault and etc.";
}
//flexe-group
} //augment

<CODE ENDS>
4. YANG Module for FlexE client interface

The following YANG data module augments the interface container defined in RFC 8343 for FlexE client interfaces.

```yang
module ietf-interfaces-flexe-client {
  yang-version 1.1;
  prefix flexcl;

  import ietf-interfaces {
    prefix if;
  }

  import ietf-yang-types {
    prefix yang;
  }

  import iana-if-type {
    prefix ianaift;
  }

  organization "IETF CCAMP Working Group";
  contact
    "WG Web:  http://tools.ietf.org/wg/ccamp/
    WG List:  <mailto:ccamp@ietf.org>
    Author:  Yuanlong Jiang
             <mailto:jiangyuanlong@huawei.com>
    Author:  Xiang He
             <mailto:hexiang@huawei.com>
    Author:  Weiqiang Cheng
             <mailto:chengweiqiang@chinamobile.com">

  description "This module contains YANG definitions for configuration of 'FlexE client' interfaces. FlexE Client is defined in OIF Flexible Ethernet 2.0 Implementation Agreement.";

  revision 2019-07-05 {
    description "Initial revision";
  }
}
```
identifier flexeClient {
 base ianaift:iana-interface-type;
 description "FlexE Client."
}

/*
 * Configuration parameters for FlexE client interfaces.
 */
augment "/if:interfaces/if:interface" {
 when "derived-from-or-self(if:type, 'ianaift:flexeClient')" {
 description "Applies to FlexE client interfaces";
 }
 description "Augment the interface model with parameters for FlexE client interfaces";
}

container flexe-client {
 description "Contains parameters for FlexE client interfaces which expose an Ethernet MAC layer.";
 leaf mac-address {
 type yang:mac-address;
 config false;
 description "The MAC address of the FlexE client."
 }
 leaf group-number {
 type uint32 {
 range "1..1048574";
 }
 description "FlexE Group Number of the FlexE group binding this client.";
 }
 // statistics can further be defined for the MAC layer
}

5. Security Considerations
The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module are writable, and the involved subtrees that are sensitive include:

/flexe/flexe-group/flexe-phy-list specifies a list of FlexE PHYs.

/flexe/flexe-group/flexe-client-list specifies a list of FlexE Client, and each client is mapped to some slots in a FlexE PHY.

Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. Specifically, an inappropriate configuration of them may cause an interrupt of a client flow or even break down of a whole FlexE interface.
6. IANA Considerations

It is proposed that IANA register the following URI in the "IETF XML registry" [RFC3688]:
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace

It is proposed that IANA register the following YANG module in the "YANG Module Names" registry:
Name: ietf-flexe
Prefix: flexe
Reference: this document

It is proposed that IANA register a new IANAifType TBD for the interface type of Flex Ethernet in the "IANA Interface Type YANG Module" [RFC7224].
It is proposed that IANA register a new IANAifType TBD for the interface type of Flex client in the "IANA Interface Type YANG Module" [RFC7224].

7. References

7.1. Normative References

[FLEXE] OIF, "Flex Ethernet 2.0 Implementation Agreement", FlexE 2.0, June 2018

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997

[RFC7224] Bjorklund, M., "IANA Interface Type YANG Module", RFC 7224, May 2014
7.2. Informative References

[RFC8340] Bjorklund, M., and Berger, L., "YANG Tree Diagrams", RFC 8340, March 2018

8. Acknowledgments

The authors would like to thank Yongjian Hu, Zitao Wang and Zhongjian Zhang for discussions on YANG.
Authors’ Addresses

Yuanlong Jiang
Huawei Technologies Co., Ltd.
Bantian, Longgang district
Shenzhen 518129, China
Email: jiangyuanlong@huawei.com

Xiang He
Huawei Technologies Co., Ltd.
Huawei Campus, No. 156 Beiqing Rd.
Beijing 100095
Email: hexiang9@huawei.com

Weiqiang Cheng
China Mobile
No.32 Xuanwumen West Street
Beijing 100053, China
Email: chengweiqiang@chinamobile.com

Junfang Wang
Fiberhome
Email: wjf@fiberhome.com

Yalei Han
Fiberhome
Email: ylhan@fiberhome.com