JSON Web Key (JWK) Thumbprint
draft-jones-jose-jwk-thumbprint-01

Abstract

This specification defines a means of computing a thumbprint value (a.k.a. digest) of JSON Web Key (JWK) objects analogous to the "x5t" (X.509 Certificate SHA-1 Thumbprint) value defined for X.509 certificate objects. This specification also registers the new JSON Web Signature (JWS) and JSON Web Encryption (JWE) Header Parameters and the new JSON Web Key (JWK) member name "jkt" (JWK SHA-256 Thumbprint) for holding these values.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 24, 2015.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
 1.1. Notational Conventions 3
2. Terminology .. 3
3. JSON Web Key (JWK) Thumbprint 3
 3.1. Example JWK Thumbprint Computation 4
 3.2. JWK Members Used in the Thumbprint Computation 5
 3.2.1. JWK Thumbprint of a Private Key 6
 3.2.2. Why Not Include Optional Members? 6
 3.3. Order and Representation of Members in Hash Input 6
 3.4. JWK Thumbprints of Any Keys 7
4. "jkt" Member Definitions 7
 4.1. "jkt" (JWK SHA-256 Thumbprint) JWS Header Parameter 7
 4.2. "jkt" (JWK SHA-256 Thumbprint) JWE Header Parameter 7
 4.3. "jkt" (JWK SHA-256 Thumbprint) JWK Parameter 8
 4.4. Possible Future Alternative Thumbprint Computations 8
5. Practical JSON and Unicode Considerations 8
6. IANA Considerations .. 9
 6.1. JWS and JWE Header Parameter Registration 9
 6.1.1. Registry Contents 9
 6.2. JSON Web Key Parameters Registration 9
 6.2.1. Registry Contents 9
7. Security Considerations 10
8. Normative References 10
Appendix A. Acknowledgements 10
Appendix B. Document History 11
Author’s Address ... 11
1. Introduction

This specification defines a means of computing a thumbprint value (a.k.a. digest) of JSON Web Key (JWK) [JWK] objects analogous to the "x5t" (X.509 Certificate SHA-1 Thumbprint) value defined for X.509 certificate objects. This specification also registers the new JSON Web Signature (JWS) [JWS] and JSON Web Encryption (JWE) [JWE] Header Parameters and the new JSON Web Key (JWK) [JWK] member name "jkt" (JWK SHA-256 Thumbprint) for holding these values.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in Key words for use in RFCs to Indicate Requirement Levels [RFC2119].

2. Terminology

This specification uses the same terminology as the JSON Web Key (JWK) [JWK], JSON Web Signature (JWS) [JWS], JSON Web Encryption (JWE) [JWE], and JSON Web Algorithms (JWA) [JWA] specifications.

This term is defined by this specification:

JWK Thumbprint

The digest value for a key that is the subject of this specification.

3. JSON Web Key (JWK) Thumbprint

This specification defines the thumbprint of a JSON Web Key (JWK) value as being a function of the REQUIRED members of the key’s JWK representation. Specifically, this function is the SHA-256 hash of the octets of the UTF-8 representation of a JSON object [RFC7159] constructed containing only the REQUIRED members of a JWK representing the key and with no white space or line breaks before or after any syntactic elements and with the REQUIRED members ordered lexicographically by the Unicode code points of the member names. This JSON object is itself a legal JWK representation of the key value. The details of this computation are further described in subsequent sections.
3.1. Example JWK Thumbprint Computation

This section demonstrates the JWK Thumbprint computation for the JWK below (with long lines broken for display purposes only):

```
{
  "kty": "RSA",
  "n": "0vx7agoebGcQSuuPiLJXZptN9ndrQmbXEps2aiAFbWhM781hWx4cbbfAAt
  VT86zwu1RK7aPFFxuh6Rl6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMstn6
  4tZ_2W-5JsGY4Hc5n9yBXArw1931qt7_RN5w6Cf0h4QyQ5v-65YgjQR0_FD
  W2QvzqY368QQMicAtaSgzs8KJ2gnYb9c7d0zgdA2Hzu6qMQvRL5hajrn1n9
  1Cb0pbISD08qNLyrdkt-bFTWhAI4vMQFh6We2u0fM41Fd2Ncrwr3XPksINH
  aQ-G_xBniIgbw0LsljF44-csFCur-kEgU8awanJZKngDKgw",
  "e": "AQAB",
  "alg": "RS256",
  "kid": "2011-04-29"
}
```

As defined in JSON Web Key (JWK) [JWK] and JSON Web Algorithms (JWA) [JWA], the REQUIRED members of an RSA public key are:

- "kty"
- "n"
- "e"

Therefore, these are the members used in the thumbprint computation.

Their lexicographic order (see more about this in Section 3.3) is:

- "e"
- "kty"
- "n"

Therefore the JSON object constructed as an intermediate step in the computation is as follows (with long lines broken for display purposes only):

```
{"e":"AQAB","kty":"RSA","n":"0vx7agoebGcQSuuPiLJXZptN9ndrQmbXEps2
aiAFbWhM781hWx4cbbfAAtVT86zwu1RK7aPFFxuh6Rl6tSoc_BJECPebWKRXjBZCi
FV4n3oknjhMstn64tZ_2W-5JsGY4Hc5n9yBXArw1931qt7_RN5w6Cf0h4QyQ5v-65Y
GjQR0_FDW2QvzqY368QQMicAtaSgzs8KJ2gnYb9c7d0zgdA2Hzu6qMQvRL5hajrn1n
91Cb0pbISD08qNLyrdkt-bFTWhAI4vMQFh6We2u0fM41Fd2Ncrwr3XPksINHagQ_x
BniIgbw0LsljF44-csFCur-kEgU8awanJZKngDKgw"}
```

The octets of the UTF-8 representation of this JSON object are:

```
[123, 34, 101, 34, 58, 34, 65, 81, 65, 66, 34, 44, 34, 107, 116, 121,
  34, 58, 34, 82, 83, 65, 34, 44, 34, 44, 34, 110, 34, 58, 34, 48, 118, 120]
```
The JWK Thumbprint value is the SHA-256 hash of these octets, specifically:

```
[55, 54, 203, 177, 120, 124, 184, 48, 156, 119, 238, 140, 55, 5, 197, 225, 111, 251, 158, 133, 151, 21, 144, 31, 30, 76, 89, 177, 17, 130, 243, 123]
```

The base64url encoding of this JWK Thumbprint value (which would be used in the "jkt" members registered below) is:

```
NzbLsXh8uDCcd-6MNwXF4W_7noWXFZAfHkxZsRGC9Xs
```

3.2. JWK Members Used in the Thumbprint Computation

Only the REQUIRED members of a key’s representation are used when computing its JWK Thumbprint value. As defined in JSON Web Key (JWK) [JWK] and JSON Web Algorithms (JWA) [JWA], the REQUIRED members of an elliptic curve public key, in lexicographic order, are:

- "crv"
- "kty"
- "x"
- "y"

the REQUIRED members of an RSA public key, in lexicographic order,
are:

- "e"
- "kty"
- "n"

and the REQUIRED members of a symmetric key, in lexicographic order, are:

- "k"
- "kty"

As other key type values are defined, the specifications defining them should be similarly consulted to determine which members, in addition to "kty", are REQUIRED.

3.2.1. JWK Thumbprint of a Private Key

The JWK Thumbprint of a private key is computed as the JWK Thumbprint of the corresponding public key. This has the intentional benefit that the same JWK Thumbprint value can be computed both by parties using either the public or private key. The JWK Thumbprint can then be used to refer to both keys of the key pair. Application context can be used to determine whether the public or the private key is the one being referred to by the JWK Thumbprint.

3.2.2. Why Not Include Optional Members?

OPTIONAL members of JWKs are intentionally not included in the JWK Thumbprint computation so that their absence or presence in the JWK doesn’t alter the resulting value. The JWK Thumbprint value is a digest of the key value itself -- not of additional data that may also accompany the key.

3.3. Order and Representation of Members in Hash Input

The REQUIRED members in the input to the SHA-256 hash function are ordered lexicographically by the Unicode code points of the member names.

Characters in member names and member values MUST be represented without being escaped. This means that thumbprints of JWK values that require such characters are not defined by this specification. (This is not expected to limit the applicability of this specification, in practice, as the REQUIRED members of JWK representations are not expected to use any of these characters.) The characters specified as requiring escaping by Section 7 of [RFC7159] are quotation mark, reverse solidus (a.k.a. backslash), and
the control characters U+0000 through U+001F.

If the JWK key type uses members whose values are themselves JSON objects (as of the time of this writing, none are defined that do), the members of those objects must likewise be lexicographically ordered.

If the JWK key type uses members whose values are JSON numbers (as of the time of this writing, none are defined that do), if the numbers are integers, they MUST be represented as a JSON number as defined in Section 6 of [RFC7159] without including a fraction part or exponent part. For instance, the value "1.024e3" MUST be represented as "1024". This means that thumbprints of JWK values that use numbers that are not integers are not defined by this specification.

See Section 5 for a discussion of further practical considerations pertaining to the representation of the hash input.

3.4. JWK Thumbprints of Any Keys

Note that a key need not be in JWK format to create a JWK Thumbprint of it. The only prerequisites are that the JWK representation of the key be defined and the party creating the JWK Thumbprint is in possession of the necessary key material. These are sufficient to create the hash input, as described in Section 3.3.

4. "jkt" Member Definitions

This section defines "jkt" (JWK SHA-256 Thumbprint) members used for holding base64url encoded JWK Thumbprint values in JWK, JWS, and JWE objects.

4.1. "jkt" (JWK SHA-256 Thumbprint) JWS Header Parameter

The "jkt" (JWK SHA-256 Thumbprint) JWS Header Parameter is a base64url encoded JWK Thumbprint (a.k.a. digest) of the public key that corresponds to the key used to digitally sign the JWS. Use of this JWS Header Parameter is OPTIONAL.

4.2. "jkt" (JWK SHA-256 Thumbprint) JWE Header Parameter

This parameter has the same meaning, syntax, and processing rules as the "jkt" JWS Header Parameter defined in Section 4.1, except that the JWK Thumbprint references the public key to which the JWE was encrypted; this can be used to determine the private key needed to decrypt the JWE.
4.3. "jkt" (JWK SHA-256 Thumbprint) JWK Parameter

The "jkt" (JWK SHA-256 Thumbprint) JWK parameter is a base64url encoded JWK Thumbprint (a.k.a. digest) of the JWK. If present, the JWK Thumbprint value represented MUST have been computed from the other members of the JWK as described in Section 3. Use of this member is OPTIONAL.

4.4. Possible Future Alternative Thumbprint Computations

If, in the future, JWK Thumbprints need to be computed using hash functions other than SHA-256, it is suggested that additional related JWK, JWS, and JWE parameters be defined for that purpose. For example, it is suggested that a new "jkt#S3-256" (X.509 Certificate Thumbprint using SHA-3-256) JWK parameter could be defined by registering it in the IANA JSON Web Key Parameters registry and the IANA JSON Web Signature and Encryption Header Parameters registry.

5. Practical JSON and Unicode Considerations

Implementations will almost certainly use functionality provided by the platform’s JSON support, such as the JavaScript JSON.parse() JSON.stringify() functions, when parsing the JWK and emitting the JSON object used as the SHA-256 hash input. As a practical consideration, future JWK member names should be avoided for which different platforms or libraries might emit different representations. As of the time of this writing, currently all defined JWK member names use only printable ASCII characters, which should not exhibit this problem.

In particular, while the operation of lexicographically ordering member names by their Unicode code points is well defined, different platform sort functions may produce different results for non-ASCII characters, in ways that may not be obvious to developers. If writers of future specifications defining new JWK Key Type values choose to restrict themselves to ASCII member names (which are for machine and not human consumption anyway), some future interoperability problems might be avoided.

Use of escaped characters in the input JWK representation should be avoided.

While there is a natural representation to use for numeric values that are integers, this specification doesn’t attempt to define a standard representation for numbers that are not integers or that contain an exponent component. This is not expected to be a problem in practice, as the REQUIRED members of JWK representations are not
expected to use numbers that are not integers.

Use of number representations containing fraction or exponent parts in the input JWK representation should be avoided.

All of these practical considerations are really an instance of Jon Postel's principle: "Be liberal in what you accept, and conservative in what you send."

6. IANA Considerations

6.1. JWS and JWE Header Parameter Registration

This specification registers the "jkt" Header Parameters defined in Sections 4.1 and 4.2 in the IANA JSON Web Signature and Encryption Header Parameters registry defined in [JWS].

6.1.1. Registry Contents

- Header Parameter Name: "jkt"
- Header Parameter Description: JWS JWK Thumbprint
- Header Parameter Usage Location(s): JWS
- Change Controller: IETF
- Specification Document(s): Section 4.1 of [[this document]]

- Header Parameter Name: "jkt"
- Header Parameter Description: JWE JWK Thumbprint
- Header Parameter Usage Location(s): JWE
- Change Controller: IETF
- Specification Document(s): Section 4.2 of [[this document]]

6.2. JSON Web Key Parameters Registration

This specification registers the "jkt" JWK member defined in Section 4.3 in the IANA JSON Web Key Parameters registry defined in [JWK].

6.2.1. Registry Contents

- Parameter Name: "jkt"
- Parameter Description: JWK Thumbprint
- Used with "kty" Value(s): *
- Parameter Information Class: Public
- Change Controller: IESG
- Specification Document(s): Section 4.3 of [[this document]]
7. Security Considerations

The JSON Security Considerations and Unicode security considerations
described in Sections 10.2 and 10.3 of JSON Web Signature (JWS) [JWS]
also apply to this specification.

Also, as described in Section 5, some implementations may produce
incorrect results if esoteric or escaped characters are used in the
member names. The security implications of this appear to be limited
for JWK Thumbprints of public keys, since while it may result in
implementations failing to identify the intended key, it should not
leak information, since the information in a public key is already
public in nature, by definition.

8. Normative References

[JWA] Jones, M., "JSON Web Algorithms (JWA)",
draft-ietf-jose-json-web-algorithms (work in progress),
July 2014.

draft-ietf-jose-json-web-encryption (work in progress),
July 2014.

[JWK] Jones, M., "JSON Web Key (JWK)",
draft-ietf-jose-json-web-key (work in progress),
July 2014.

[JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JWS)", draft-ietf-jose-json-web-signature (work
in progress), July 2014.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data

Appendix A. Acknowledgements

James Manger, Nat Sakimura, and John Bradley participated in
discussions that led to the creation of this specification.
Appendix B. Document History

[[to be removed by the RFC editor before publication as an RFC]]

-01

- Based on input at IETF 90, revised the draft to say that the result is undefined if characters requiring escaping are needed in the hash input. If a canonical JSON representation standard is ever adopted, this specification could be revised to use it, resulting in unambiguous definitions for those (unlikely to ever occur) values as well.

- Added instructions for representing integer numeric values in the hash input.

-00

- Created draft-jones-jose-jwk-thumbprint.

Author’s Address

Michael B. Jones
Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/