EdDSA and Ed25519
draft-josefsson-eddsa-ed25519-02

Abstract

The elliptic curve signature scheme EdDSA and one instance of it called Ed25519 is described. An example implementation and test vectors are provided.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 26, 2015.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of Schnorr’s signature system with Twisted Edwards curves. EdDSA needs to be instantiated with certain parameters and this document describe Ed25519 – an instantiation of EdDSA in a curve over GF(2^255−19). To facilitate adoption in the Internet community of Ed25519, this document describe the signature scheme in an implementation-oriented way, and we provide sample code and test vectors.

The advantages with EdDSA and Ed25519 include:

1. High-performance on a variety of platforms.

2. Does not require the use of a unique random number for each signature.
3. More resilient to side-channel attacks.

4. Small public keys (32 bytes) and signatures (64 bytes).

5. The formulas are "strongly unified", i.e., they are valid for all points on the curve, with no exceptions. This obviates the need for EdDSA to perform expensive point validation on untrusted public values.

6. Collision resilience, meaning that hash-function collisions do not break this system.

For further background, see the original EdDSA paper [EDDSA].

2. Notation

The following notation is used throughout the document:

GF(p) finite field with p elements

\(x^y \) \(x \) multiplied by itself \(y \) times

\(B \) generator of the group or subgroup of interest

\(n B \) \(B \) added to itself \(n \) times.

\(h_i \) the \(i \)'th bit of \(h \)

\(a \ || \ b \) (bit-)string \(a \) concatenated with (bit-)string \(b \)

3. Background

EdDSA is defined using an elliptic curve over GF(p) of the form

\[-x^2 + y^2 = 1 + d x^2 y^2\]

In general, \(p \) could be a prime power, but it is usually chosen as a prime number. It is required that \(p = 1 \) modulo 4 (which implies that \(-1 \) is a square modulo \(p \)) and that \(d \) is a non-square modulo \(p \). For Ed25519, the curve used is equivalent to Curve25519 [CURVE25519], under a change of coordinates, which means that the difficulty of the discrete logarithm problem is the same as for Curve25519.

Points on this curve form a group under addition, \((x_3, y_3) = (x_1, y_1) + (x_2, y_2)\), with the formulas
x1 y2 + x2 y1
x3 = -------------------,
1 + d x1 x2 y1 y2

y1 y2 + x1 x2
y3 = -------------------
1 - d x1 x2 y1 y2

The neutral element in the group is (0, 1).

Unlike many other curves used for cryptographic applications, these formulas are "strongly unified": they are valid for all points on the curve, with no exceptions. In particular, the denominators are non-zero for all input points.

There are more efficient formulas, which are still strongly unified, which use homogeneous coordinates to avoid the expensive modulo p inversions. See [Faster-ECC] and [Edwards-revisited].

4. EdDSA

EdDSA is a digital signature system with several parameters. The generic EdDSA digital signature system is normally not implemented directly, but instead a particular instance of EdDSA (like Ed25519) is implemented. A precise explanation of the generic EdDSA is thus not particularly useful for implementers, but for background and completeness, a succinct description of the generic EdDSA algorithm is given here.

EdDSA has seven parameters:

1. an integer b >= 10.
2. a cryptographic hash function H producing 2b-bit outputs.
3. a prime power p congruent to 1 modulo 4.
4. a (b-1)-bit encoding of elements of the finite field GF(p).
5. a non-square element d of GF(p)
6. an element B != (0,1) of the set E = \{ (x,y) is a member of GF(p) x GF(p) such that -x^2 + y^2 = 1 + dx^2y^2 \}.
7. a prime q, of size b-3 bits, such that qB = (0, 1), i.e., q is the order of B or a multiple thereof.

4.1. Encoding

An element (x,y) of E is encoded as a b-bit string called ENC(x,y) which is the (b-1)-bit encoding of y concatenated with one bit that is 1 if x is negative and 0 if x is not negative. Negative elements
of GF(q) are those x which the (b-1)-bit encoding of x is lexicographically larger than the (b-1)-bit encoding of -x.

4.2. Keys

An EdDSA secret key is a b-bit string k. Let the hash \(H(k) = (h_0, h_1, \ldots, h_{(2b-1)}) \) determine an integer a which is \(2^{(b-2)} \) plus the sum of \(m = 2^i \cdot h_i \) for all \(i \) equal or larger than 3 and equal to or less than \(b-3 \) such that \(m \) is a member of the set \{ \(2^{(b-2)}, 2^{(b-2)} + 8, \ldots, 2^{(b-1)} - 8 \) \}. The EdDSA public key is ENC(A) = ENC(aB). The bits \(h_b, \ldots, h_{(2b-1)} \) is used below during signing.

4.3. Sign

The signature of a message M under a secret key k is the 2b-bit string ENC(R) || ENC’(S), where ENC’(S) is defined as the b-bit little-endian encoding of S. R and S are derived as follows. First define \(r = H(h_b, \ldots, h_{(2b-1)}), M) \) interpreting 2b-bit strings in little-endian form as integers in \{0, 1, \ldots, 2^{(2b)}-1\}. Let R=rB and S=(r+H(ENC(R) || ENC(A) || M)) a mod l.

4.4. Verify

To verify a signature ENC(R) || ENC’(S) on a message M under a public key ENC(A), proceed as follows. Parse the inputs so that A and R is an element of E, and S is a member of the set \{0, 1, \ldots, 1-1\}. Compute \(H’ = H(ENC(R) || ENC(A) || M) \) and check the group equation \(8SB = 8R + 8H’A \) in E. Verification is rejected if parsing fails or the group equation does not hold.

5. Ed25519

Theoretically, Ed25519 is EdDSA instantiated with b=256, H being SHA-512 [RFC4634], p is the prime \(2^{255-19} \), the 255-bit encoding of GF(\(2^{255-19} \)) being the little-endian encoding of \{0, 1, \ldots, 2^{255-20}\}, q is the prime \(2^{252} + 0x14def9dea2f79cd65812631a5cf5d3ed \), d = -121665/121666 which is a member of GF(p), and B is the unique point (x, 4/5) in E for which x is "positive", which with the encoding used simply means that the least significant bit of x is 0. The curve p, prime q, d and B follows from [I-D.irtf-cfrg-curves].

Written out explicitly, B is the point \((15112221349535400772501151409, 588531511454012693041857206046113283949847762202, 46316835694926478169428394003475163141307993866256225615783033603165251855960) \).
5.1. Modular arithmetic

For advice on how to implement arithmetic modulo $p = 2^{255} - 1$ efficiently and securely, see Curve25519 [CURVE25519]. For inversion modulo p, it is recommended to use the identity $x^{-1} = x^{(p-2)} \pmod{p}$.

For point decoding or "decompression", square roots modulo p are needed. They can be computed using the Tonelli-Shanks algorithm, or the special case for $p = 5 \pmod{8}$. To find a square root of a, first compute the candidate root $x = a^{((p+3)/8)} \pmod{p}$. Then there are three cases:

- $x^2 = a \pmod{p}$. Then x is a square root.
- $x^2 = -a \pmod{p}$. Then $2^{((p-1)/4)} x$ is a square root.
- a is not a square modulo p.

5.2. Encoding

All values are coded as octet strings, and integers are coded using little endian convention. I.e., a 32-octet string $h \ h[0],...h[31]$ represents the integer $h[0] + 2^8 h[1] + ... + 2^{248} h[31]$.

A curve point (x,y), with coordinates in the range $0 \leq x,y < p$, is coded as follows. First encode the y-coordinate as a little-endian string of 32 octets. The most significant bit of the final octet is always zero. To form the encoding of the point, copy the least significant bit of the x-coordinate to the most significant bit of the final octet.

5.3. Decoding

Decoding a point, given as a 32-octet string, is a little more complicated.

1. First interpret the string as an integer in little-endian representation. Bit 255 of this number is the least significant bit of the x-coordinate, and denote this value x_0. The y-coordinate is recovered simply by clearing this bit. If the resulting value is $> p$, decoding fails.

2. To recover the x coordinate, the curve equation implies $x^2 = (y^2 - 1) / (d \ y^2 + 1) \pmod{p}$. Since d is a non-square and -1 is a square, the numerator, $(d \ y^2 + 1)$, is always invertible modulo p. Let $u = y^2 - 1$ and $v = d \ y^2 + 1$. To compute the square root of (u/v), the first step is to compute the candidate
root \(x = (u/v)^{((p+3)/8)} \). This can be done using the following trick, to use a single modular powering for both the inversion of \(v \) and the square root:

\[
\frac{p+3}{8} \quad 3 \quad \frac{p-5}{8}
\]

\[
x = (u/v) = u \cdot v \cdot (u \cdot v^7) \pmod{p}
\]

3. Again, there are three cases:

1. If \(v \cdot x^2 = u \pmod{p} \), \(x \) is a square root.

2. If \(v \cdot x^2 = -u \pmod{p} \), set \(x \leftarrow 2^{((p-1)/4)} \), which is a square root.

3. Otherwise, no square root exists modulo \(p \), and decoding fails.

4. Finally, use the \(x_0 \) bit to select the right square root. If \(x = 0 \), and \(x_0 = 1 \), decoding fails. Otherwise, if \(x_0 \neq x \pmod{2} \), set \(x \leftarrow p - x \). Return the decoded point \((x,y)\).

5.4. Point addition

For point addition, the following method is recommended. A point \((x,y)\) is represented in extended homogeneous coordinates \((X, Y, Z, T)\), with \(x = X/Z \), \(y = Y/Z \), \(x \cdot y = T/Z \).

The following formulas for adding two points, \((x_3, y_3) = (x_1, y_1) + (x_2, y_2)\) are described in [Edwards-revisited], section 3.1. They are strongly unified, i.e., they work for any pair of valid input points.

\[
A = (Y_1 - X_1) \cdot (Y_2 - X_2)
B = (Y_1 + X_1) \cdot (Y_2 + X_2)
C = T_1 \cdot 2 \cdot d \cdot T_2
D = Z_1 \cdot 2 \cdot Z_2
E = B - A
F = D - C
G = D + C
H = B + A
X_3 = E \cdot F
Y_3 = G \cdot H
T_3 = E \cdot H
Z_3 = F \cdot G
\]
5.5. Key Generation

The secret is 32 octets (256 bits, corresponding to b) of cryptographically-secure random data. See [RFC4086] for a discussion about randomness.

The 32-byte public key is generated by the following steps.

1. Hash the 32-byte secret using SHA-512, storing the digest in a 64-octet large buffer, denoted h. Only the lower 32 bytes are used for generating the public key.

2. Prune the buffer. In C terminology:

 \[
 \begin{align*}
 h[0] &\&= ~0x07; \\
 h[31] &\&= 0x7F; \\
 h[31] &\| = 0x40;
 \end{align*}
 \]

3. Interpret the buffer as the little-endian integer, forming a secret scalar a. Perform a known-base-point scalar multiplication aB.

4. The public key A is the encoding of the point aB. First encode the y coordinate (in the range 0 <= y < p) as a little-endian string of 32 octets. The most significant bit of the final octet is always zero. To form the encoding of the point aB, copy the least significant bit of the x coordinate to the most significant bit of the final octet. The result is the public key.

5.6. Sign

The inputs to the signing procedure is the secret key, a 32-octet string, and a message M of arbitrary size.

1. Hash the secret key, 32-octets, using SHA-512. Let h denote the resulting digest. Construct the secret scalar a from the first half of the digest, and the corresponding public key A, as described in the previous section. Let prefix denote the second half of the hash digest, h[32],...,h[63].

2. Compute SHA-512(prefix || M), where M is the message to be signed. Interpret the 64-octet digest as a little-endian integer r.

3. Compute the point rB. For efficiency, do this by first reducing r modulo q, the group order of B. Let the string R be the encoding of this point.
4. Compute SHA512(R || A || M), and interpret the 64-octet digest as a little-endian integer k.

5. Compute $s = (r + k \cdot a) \mod q$. For efficiency, again reduce k modulo q first.

6. Form the signature of the concatenation of R (32 octets) and the little-endian encoding of s (32 octets, three most significant bits of the final octets always zero).

5.7. Verify

1. To verify a signature on a message M, first split the signature into two 32-octet halves. Decode the first half as a point R, and the second half as an integer s, in the range $0 \leq s < q$. If the decoding fails, the signature is invalid.

2. Compute SHA512(R || A || M), and interpret the 64-octet digest as a little-endian integer k.

3. Check the group equation $8s \cdot B = 8 \cdot R + 8k \cdot A$. It’s sufficient, but not required, to instead check $s \cdot B = R + k \cdot A$.

5.8. Python illustration

The rest of this section describes how Ed25519 can be implemented in Python (version 3.2 or later) for illustration. See appendix A for the complete implementation and appendix B for a test-driver to run it through some test vectors.

First some preliminaries that will be needed.
import hashlib

def sha512(s):
 return hashlib.sha512(s).digest()

Base field Z_p
p = 2**255 - 19

def modp_inv(x):
 return pow(x, p-2, p)

Curve constant
d = -121665 * modp_inv(121666) % p

Group order
q = 2**252 + 277423177773723535851937790883648493

def sha512_modq(s):
 return int.from_bytes(sha512(s), "little") % q

Then follows functions to perform point operations.
Points are represented as tuples \((X, Y, Z, T)\) of extended coordinates, # with \(x = X/Z\), \(y = Y/Z\), \(x*y = T/Z\)

def point_add(P, Q):
 A = (P[1] - P[0]) * (Q[1] - Q[0]) % p
 B = (P[1] + P[0]) * (Q[1] + Q[0]) % p
 E = B - A
 F = D - C
 G = D + C
 H = B + A
 return (E*F, G*H, F*G, E*H)

Computes \(Q = s * Q\)
def point_mul(s, P):
 Q = (0, 1, 1, 0) # Neutral element
 while s > 0:
 # Is there any bit-set predicate?
 if s & 1:
 Q = point_add(Q, P)
 P = point_add(P, P)
 s >>= 1
 return Q

def point_equal(P, Q):
 # \(x_1/z_1 = x_2/z_2 \iff x_1 * z_2 = x_2 * z_1\)
 if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
 return False
 return False
 return True

Now follows functions for point compression.
Square root of -1

modp_sqrt_m1 = pow(2, (p-1) // 4, p)

Compute corresponding x coordinate, with low bit corresponding to sign, # or return None on failure

def recover_x(y, sign):
 x2 = (y*y-1) * modp_inv(d*y*y+1)
 if x2 == 0:
 if sign:
 return None
 else:
 return 0

 # Compute square root of x2
 x = pow(x2, (p+3) // 8, p)
 if (x*x - x2) % p != 0:
 x = x * modp_sqrt_m1 % p
 if (x*x - x2) % p != 0:
 return None
 if (x & 1) != sign:
 x = p - x
 return x

Base point

g_y = 4 * modp_inv(5) % p

G = (g_x, g_y, 1, g_x * g_y % p)

def point_compress(P):
 zinv = modp_inv(P[2])
 x = P[0] * zinv % p
 y = P[1] * zinv % p
 return int.to_bytes(y | ((x & 1) << 255), 32, "little")

def point_decompress(s):
 if len(s) != 32:
 raise Exception("Invalid input length for decompression")
 y = int.from_bytes(s, "little")
 sign = y >> 255
 y &= (1 << 255) - 1

 x = recover_x(y, sign)
 if x is None:
 return None
 else:
 return (x, y, 1, x*y % p)
These are functions for manipulating the secret.

def secret_expand(secret):
 if len(secret) != 32:
 raise Exception("Bad size of private key")
 h = sha512(secret)
 a = int.from_bytes(h[:32], "little")
 a &=(1 << 254) - 8
 a |= (1 << 254)
 return (a, h[32:])

def secret_to_public(secret):
 (a, dummy) = secret_expand(secret)
 return point_compress(point_mul(a, G))

The signature function works as below.

def sign(secret, msg):
 a, prefix = secret_expand(secret)
 A = point_compress(point_mul(a, G))
 r = sha512_modq(prefix + msg)
 R = point_mul(r, G)
 Rs = point_compress(R)
 h = sha512_modq(Rs + A + msg)
 s = (r + h * a) % q
 return Rs + int.to_bytes(s, 32, "little")

And finally the verification function.

def verify(public, msg, signature):
 if len(public) != 32:
 raise Exception("Bad public-key length")
 if len(signature) != 64:
 Exception("Bad signature length")
 A = point_decompress(public)
 if not A:
 return False
 Rs = signature[:32]
 R = point_decompress(Rs)
 if not R:
 return False
 s = int.from_bytes(signature[32:], "little")
 h = sha512_modq(Rs + public + msg)
 sB = point_mul(s, G)
 hA = point_mul(h, A)
 return point_equal(sB, point_add(R, hA))
6. Test Vectors for Ed25519

Below is a sequence of octets with test vectors for the Ed25519 signature algorithm. The octets are hex encoded and whitespace is inserted for readability. Private keys are 64 bytes, public keys 32 bytes, message of arbitrary length, and signatures are 64 bytes. The test vectors are taken from [ED25519-TEST-VECTORS] (but we removed the public key as a suffix of the secret key, and removed the message from the signature) and [ED25519-LIBGCRYPT-TEST-VECTORS].

-----TEST 1
SECRET KEY:
9d61b19deffdf5a60ba844af492ec2cc4
4449c5697b326919703bac031caee7f60

PUBLIC KEY:
d75a98018b10ab7d54bfed3c964073a
0ee172f3da62325af021a68f707511a

MESSAGE (length 0 bytes):

SIGNATURE:
e5564300c360ac729086e2cc806e828a
84877f1eb8e5d974d873e06522490155
5fb8821590a33bacc6e39701cf9b46b
d25bf5f0595bbe24655141438e7a100b

-----TEST 2
SECRET KEY:
4ccd089b28ff96da9db6c346ec114e0f
5b8a319f35aba624da8cf6ed4fb8a6fb

PUBLIC KEY:
3d4017c3e843895a92b70a7d41b7ebc
9c982ccf2ec4968cc0cd55f12af4660c

MESSAGE (length 1 byte):
72

SIGNATURE:
92a009a9f0d4cab8720e820b5f642540
a2b27b5416503f8fb3762223ebdb69da
085ac1e43e1599e458f3613d0f11d8c
387b2eeb4302aeb0d291612bb0c00

-----TEST 3
SECRET KEY:
c5aa8df43f9f837bedb7442f31dcb7b1
PUBLIC KEY:
fc51cd8e6218a1a38da47ed00230f058
0816ed13ba3303ac5deb911548908025

MESSAGE (length 2 bytes):
af82

SIGNATURE:
6291d657deec24024827e69c3abe01a3
0ce548a284743a445e3680d7db5ac3ac
18ff9b538d16f290ae67f760984dc659
4a7c15e9716ed28dc027beceee1ec40a

-----TEST 1024
SECRET KEY:
f5e5767cf153319517630f226876b86c
8160cc583bc013744c6bf255f5cc0e5

PUBLIC KEY:
278117fc144c72340f67d0f2316e8386
ceffbf2b2428c9c51fef7c597f1d426e

MESSAGE:
08b8b2b733424243760fe426a4b54908
632110a66c2f6591eabd3345e34eb98
fa6e264bf09efe12ee50f854e9f77b1
e355f6c50544e23fb1433ddf73be84d8
79de7c0046dc4996d9e773f4bc9e5e57
38829adb2681b37c93a1b270b20329d
658675fc6ea534e0810a4432826bf58c
941efb65d5a338bbde26640f89ffbc
1a858efcb8550e3ae5e1998bd177e93a
7363c344fe6b199e5d02e82d522d4fe
ba15452f80288a821a579116ec6dad2b
3b310da90341aa62100ab5d1a36553e
06203b33890cc9b832f79ef80560cc9b
a39ce767967ed626c6a573cb11e6beef
efd75499da96db68a8a9b28a8bbce10
3b6621fcde2bea1231d206be6cd9ec7
aff6f6c94fcd7204ed3455c68c83f4a4
1da4af2b74ef5c5f1d8ac70bdc87ed1
85ce81bd84359d44254d95629e9855a9
4a7c1958d1f8ada5d0532ed8a5aa3fb2
d17ba70eb6248e594e1a2297ac9bb39d
502f1a8c6eb6f1ce22b3da1af40cc24
554119a831a9aad6079cad88425de6bd
SIGNATURE:
0aab4c900501b3e24d7cdf4663326a3a
87df5e483b2cbdb67cb6e460fecn350
aa5371b1508f9f4528ecea23c436d94b
5e8fcd4f681e30a6ac00a9704a188a03
-----TEST 1A
-----An additional test with the data from test 1 but using an
-----uncompressed public key.
SECRET KEY:
9d61b19deff5a60ba844af492ec2cc4
4449c5697b326919703bac031cae7f60

PUBLIC KEY:
0455d0e09a2b9d34292297e08d60d0f6
20c513d7253187c24b12786bd777645
c1a107f7681a02af253a6daf372e1
0e3a07649d3fe4bd5b70ab18201985ad7

MSG (length 0 bytes):

SIGNATURE:
e5564300c360ac729086e2cc806e828a
8487f1eb8e5d974d873e06522490155
5fb2821590a33bac61e39701cf9b46b
d25bf5f0595bbe2465514138e7a100b

-----TEST 1B
-----An additional test with the data from test 1 but using an
-----compressed prefix.
SECRET KEY:
9d61b19deff5a60ba844af492ec2cc4
4449c5697b326919703bac031cae7f60

PUBLIC KEY:
40d75a980182b10ab7d54bfed3c96407
3a0ee172f3daa52325af021a68f70751
la

MESSAGE (length 0 bytes):

SIGNATURE:
e5564300c360ac729086e2cc806e828a
8487f1eb8e5d974d873e06522490155
5fb2821590a33bac61e39701cf9b46b
d25bf5f0595bbe2465514138e7a100b

7. Acknowledgements

Feedback on this document was received from Werner Koch and Damien Miller.
8. IANA Considerations

None.

9. Security Considerations

9.1. Side-channel leaks

For implementations performing signatures, secrecy of the key is fundamental. It is possible to protect against some side-channel attacks by ensuring that the implementation executes exactly the same sequence of instructions and performs exactly the same memory accesses, for any value of the secret key.

To make an implementation side-channel silent in this way, the modulo \(p \) arithmetic must not use any data-dependent branches, e.g., related to carry propagation. Side channel-silent point addition is straight-forward, thanks to the unified formulas.

Scalar multiplication, multiplying a point by an integer, needs some additional effort to implement in a side-channel silent manner. One simple approach is to implement a side-channel silent conditional assignment, and use together with the binary algorithm to examine one bit of the integer at a time.

Note that the example implementation in this document does not attempt to be side-channel silent.

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Ed25519 Python Library

Below is an example implementation of Ed25519 written in Python, version 3.2 or higher is required.

Loosely based on the public domain code at
http://ed25519.cr.yp.to/software.html
Needs python-3.2

import hashlib

def sha512(s):
 return hashlib.sha512(s).digest()

Base field Z_p
\[p = 2^{255} - 19 \]

def modp_inv(x):
 return pow(x, p-2, p)

Curve constant
\[d = -121665 \times \text{modp inv}(121666) \mod p \]

Group order
\[q = 2^{252} + 2774231777372353535851937790883648493 \]

def sha512_modq(s):
 return int.from_bytes(sha512(s), "little") \mod q

Points are represented as tuples (X, Y, Z, T) of extended coordinates,
with x = X/Z, y = Y/Z, x*y = T/Z

def point_add(P, Q):
 A = (P[1]-P[0]) \times (Q[1]-Q[0]) \mod p
 B = (P[1]+P[0]) \times (Q[1]+Q[0]) \mod p
 C = 2 \times P[3] \times Q[3] \times d \mod p
 D = 2 \times P[2] \times Q[2] \mod p
 E = B-A
 F = D-C
 G = D+C
 H = B+A
 return (E*F, G*H, F*G, E*H)

Computes Q = s \times Q
def point_mul(s, P):
 Q = (0, 1, 1, 0) # Neutral element
 while s > 0:
 # Is there any bit-set predicate?
 if s & 1:
 Q = point_add(Q, P)
 P = point_add(P, P)
 s >>= 1
 return Q

def point_equal(P, Q):
 # x1 / z1 == x2 / z2 \iff x1 \times z2 == x2 \times z1
 if (P[0] \times Q[2] - Q[0] \times P[2]) \mod p != 0:
 return False
if \((P[1] \cdot Q[2] - Q[1] \cdot P[2]) \mod p \neq 0:\n\)
\quad \text{return False}
\text{return True}

Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)

Compute corresponding x coordinate, with low bit corresponding to sign,
or return None on failure
def recover_x(y, sign):
 \(x2 = (y \cdot y - 1) \cdot \text{modp}^{-1}(d \cdot y \cdot y + 1)\)
 if \(x2 = 0:\n \text{if } \text{sign: return None}
 \text{else: return 0}
 \)

Compute square root of x2
x = pow(x2, (p+3) // 8, p)
if \((x \cdot x - x2) \mod p \neq 0:\n \text{return None}

if \((x \& 1) \neq \text{sign:}\n \quad x = p - x
\text{return x}

Base point
\(g_y = 4 \cdot \text{modp}^{-1}(5) \mod p\)
\(g_x = \text{recover}_x(g_y, 0)\)
\(G = (g_x, g_y, 1, g_x \cdot g_y \mod p)\)

def point_compress(P):
 zinv = \text{modp}^{-1}(P[2])
 x = P[0] \cdot zinv \mod p
 y = P[1] \cdot zinv \mod p
 \text{return int.to_bytes}(y | ((x \& 1) << 255), 32, "little")

def point_decompress(s):
 if len(s) \neq 32:
 \text{raise Exception("Invalid input length for decompression")}
 y = \text{int.from_bytes}(s, "little")
 sign = y >> 255
 y &= (1 << 255) - 1
x = recover_x(y, sign)
if x is None:
 return None
else:
 return (x, y, 1, x*y % p)

def secret_expand(secret):
 if len(secret) != 32:
 raise Exception("Bad size of private key")
 h = sha512(secret)
 a = int.from_bytes(h[:32], "little")
 a &= (1 << 254) - 8
 a |= (1 << 254)
 return (a, h[32:])

def secret_to_public(secret):
 (a, dummy) = secret_expand(secret)
 return point_compress(point_mul(a, G))

def sign(secret, msg):
 a, prefix = secret_expand(secret)
 A = point_compress(point_mul(a, G))
 r = sha512_modq(prefix + msg)
 R = point_mul(r, G)
 Rs = point_compress(R)
 h = sha512_modq(Rs + A + msg)
 s = (r + h * a) % q
 return Rs + int.to_bytes(s, 32, "little")

def verify(public, msg, signature):
 if len(public) != 32:
 raise Exception("Bad public-key length")
 if len(signature) != 64:
 Exception("Bad signature length")
 A = point_decompress(public)
 if not A:
 return False
 Rs = signature[:32]
 R = point_decompress(Rs)
 if not R:
 return False
 s = int.from_bytes(signature[32:], "little")
 h = sha512_modq(Rs + public + msg)
 sB = point_mul(s, G)
hA = point_mul(h, A)
return point_equal(sB, point_add(R, hA))

Appendix B. Library driver

Below is a command-line tool that uses the library above to perform computations, for interactive use or for self-checking.

import sys
import binascii
from ed25519 import *

def point_valid(P):
 zinv = modp_inv(P[2])
 x = P[0] * zinv % p
 y = P[1] * zinv % p
 assert (x*y - P[3]*zinv) % p == 0
 return (-x*x + y*y - 1 - d*x*x*y*y) % p == 0

assert point_valid(G)
Z = (0, 1, 1, 0)
assert point_valid(Z)

assert point_equal(Z, point_add(Z, Z))
assert point_equal(G, point_add(Z, G))
assert point_equal(Z, point_mul(0, G))
assert point_equal(G, point_mul(1, G))
assert point_equal(point_add(G, G), point_mul(2, G))
for i in range(0, 100):
 assert point_valid(point_mul(i, G))
assert point_equal(Z, point_mul(q, G))

def munge_string(s, pos, change):
 return (s[:pos] +
 int.to_bytes(s[pos] ^ change, 1, "little") +
 s[pos+1:])

Read a file in the format of
http://ed25519.cr.yp.to/python/sign.input
lineno = 0
while True:
 line = sys.stdin.readline()
 if not line:
 break
 lineno = lineno + 1
 fields = line.split(":")
secret = (binascii.unhexlify(fields[0]))[:32]
public = binascii.unhexlify(fields[1])
msg = binascii.unhexlify(fields[2])
signature = binascii.unhexlify(fields[3])[:64]

assert public == secret_to_public(secret)
assert signature == sign(secret, msg)
if len(msg) == 0:
 bad_msg = b"x"
else:
 bad_msg = munge_string(msg, len(msg) // 3, 4)
assert not verify(public, bad_msg, signature)
bad_signature = munge_string(signature, 20, 8)
assert not verify(public, msg, bad_signature)
bad_signature = munge_string(signature, 40, 16)
assert not verify(public, msg, bad_signature)

Authors' Addresses

Simon Josefsson
SJD AB

Email: simon@josefsson.org
URI: http://josefsson.org/

Niels Moeller

Email: nisse@lysator.liu.se