SNMP Context Mapping MIB

draft-kkoushik-snmp-context-map-mib-01.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Abstract

This document defines a MIB module to manage the usage of SNMP contexts. Specifically, within for an SNMP agent which implements multiple copies/instances of some other MIB module, this MIB module provides a mapping between SNMP Contexts and the individual instances of that other MIB module.

Table of Contents

1. Introduction .. 2
2. Terminology ... 3
3. SNMP Context mapping feature – High-Level Picture 3
4. Protocol Operations 3
5. Object Definitions 4
6. Security Considerations 11
7. Example of usage 11
8. References ... 12
1. Introduction

With the advent of newer technologies, an increasing number of technologies which used to be defined such that only one instance could exist within a device, are now being implemented at a different granularity such that multiple copies/instances can exist in one device at the same time.

An excellent example for this behavior is with the OSPF-MIB (RFC 1850). When it was originally designed, there was no concept of multiple OSPF instances running on the same system and there was no built-in mechanism to handle such circumstances.

However according to Section 4.1.1 of RFC 4577, a PE router that attaches to more than one OSPF domain must run an independent instance of OSPF for each domain. Each OSPF instance is associated to a VRF (see section 3 of RFC4364). This means that OSPF-MIB must now support multiple VRF contexts and within each context the objects in the OSPF-MIB can be indexed by the same OID but represent different data.

One way to overcome this issue would be to update the OSPF-MIB to have an additional variable in the INDEX clause. This would require depreacting and re-defining just about all objects in the MIB; in effect, a modified copy of the original MIB. This change can be severely disadvantageous to existing deployments.

MPLS-LSR-STD-MIB[RFC3813], [BFD-MIB], BGP-MIB[RFC4273], [ISIS-MIB] and IP-FORWARD-MIB[RFC4292] are other MIBs which are also affected in the same way.

Another example is with the BRIDGE-MIB[RFC4188] where each Bridge entity in a system can contain different subsets of data indexed by the same OID.

A better way to overcome the issue is to use multiple SNMP contexts (see section 3.3.1 of RFC 3411). However, as and when significant usage is made of SNMP contexts (e.g., for multiple MIBs and/or multiple domains), then there is a need for the contexts themselves to be manageable. This document defines management information for this purpose.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119.

2. Terminology

This document uses terminology from the document describing the MPLS architecture [RFC3031] and from the document describing MPLS Layer-3 VPNs (L3VPN) [RFC4364], as well as the SNMP architecture [RFC3411].

Throughout this document, the use of the terms "Provider Edge (PE) and Customer Edge (CE)" or "PE/CE" will be replaced by "PE" in all cases except when a network device is a CE when used in the carrier’s carrier model.

3. SNMP Context mapping feature - High-Level Picture:

The use of SNMP contexts as a solution to the problem of accessing SNMP MIBs on a per-context basis requires no modifications to existing MIBs. Instead, this solution requires that the Network Management Station (NMS) or any other manager desiring to manage an agent, be made aware that a VPN Identifier or a Bridge Identifier or some other data distinguishing identifier can be mapped to a SNMP Context field for every request.

The MIB presented in this draft can be used to map a vacmContextName into any data distinguishing identifier which can retrieve data from the appropriate instance.

Every SNMPv3 operation acts within the context of an SNMP Context. The name of that SNMP Context is carried in the message header and serves as part of the naming structure of MIB objects (see section 3.3.1 of RFC 3411). When all of an agent’s management information is in the same SNMP Context, then the name of that Context need only be used implicitly. In contrast, when multiple SNMP Contexts are in use, then the name of a particular Context must be used explicitly to determine which items of management information are referenced by which OIDs.

For older versions of SNMP, a mapping between the SNMP community and the SNMP context can be maintained using the SNMP-COMMUNITY-MIB.

4. Protocol Operations
5. Object Definitions

SNMP-CONTEXT-MAPPING-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE
 FROM SNMPv2-SMI

SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB

MODULE-COMPLIANCE,
 OBJECT-GROUP
 FROM SNMPv2-CONF

RowStatus,
 StorageType
 FROM SNMPv2-TC

snmpContextMappingMIB MODULE-IDENTITY
 LAST-UPDATED "200802140000Z"
 ORGANIZATION "Cisco Systems Inc."
 CONTACT-INFO "
 Kiran Koushik A S
 Email: kkoushik@cisco.com

 Thomas Nadeau
 Email: thomas.nadeau@bt.com

 Chinna Pellacuru
 Email: pcn@cisco.com

 "
 DESCRIPTION
 "
 Copyright (C) The IETF Trust (2008). The initial
 version of this MIB module was published in RFC XXXX.
 -- RFC Editor: Please replace XXXX with RFC number & remove
 this note.

 For full legal notices see the RFC itself or see:
 http://www.ietf.org/copyrights/ianamib.html

 A single SNMP agent sometimes needs to support multiple
instances of the same MIB module, and does so through the use of multiple SNMP contexts. This typically occurs because the technology has evolved to have extra dimension(s), i.e., one or more extra data and/or identifier values which are different in the different contexts, but were not defined in INDEX clause(s) of the original MIB module. In such cases, network management applications need to know the specific data/identifier values in each context, and this MIB module provides mapping tables which contain that information.

Within a network there can be multiple Virtual Private Networks (VPNs) configured using Virtual Routing and Forwarding Instances (VRFs). Within a VPN there can be multiple topologies when Multi-topology Routing (MTR) is used. Also, Interior Gateway Protocols (IGPs) can have multiple protocol instances running on the device.

With MTR routing and VRFs, a router now needs to support multiple instances of several existing MIB modules, and this can be achieved if the router’s SNMP agent provides access to each instance of the same MIB module via a different SNMP context (see Section 3.1.1 of RFC 3411). For MTR routing and VRFs, a different SNMP context is needed depending on one or more of the following: the VRF, the topology-identifier, and the routing protocol instance. In other words, the router’s management information can be accessed through multiple SNMP contexts where each such context represents a specific VRF, a specific topology-identifier, and/or a specific routing protocol instance. This MIB module provides a mapping of each such SNMP context to the corresponding VRF, the corresponding topology, and the corresponding routing protocol instance. Some SNMP contexts are independent of VRFs, independent of a topology, or independent of a routing protocol instance, and in such a case, the mapping is to the to the zero length string.

We have also added the mapping to dot1dBasePort from BRIDGE-MIB and the vplsConfigIndex from VPLS-MIB as we feel that these data distinguishing identifiers will be applicable to a larger subset of the MIBs that are already defined.

As technology evolves more we may need additional identifiers to identify the context. Then we would need to add those additional identifiers into the mapping. We must caution that since there are huge number MIB modules defined, if even a small fraction of them needs to have multiple instances in SNMP contexts, then what this
The paragraph proposes will NOT scale. We request the MIB users to judiciously choose the data distinguishing identifiers which map to a SNMP context.

Copyright (C) The IETF Trust (2008). This version of this MIB module is part of RFC XXX; see the RFC itself for full legal notices.

-- RFC Ed.: replace XXX with actual RFC number & remove this -- note

" REVISION "200802140000Z"
DESCRIPTION
"Initial version of the MIB module."
::= { experiment xxx }

snmpContextMappingMIBObjects OBJECT IDENTIFIER
::= { snmpContextMappingMIB 1 }

snmpContextMappingMIBConformance OBJECT IDENTIFIER
::= { snmpContextMappingMIB 2 }

snmpContextMappingTable OBJECT-TYPE
SYNTAX SEQUENCE OF SNMPContextMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains information on which
snmpContextMappingVacmContextName is mapped to
which VRF, topology, and routing protocol instance.

This table is indexed by SNMP VACM context.

Configuring a row in this table for an SNMP context does not require that the context be already defined, i.e., a row can be created in this table for a context before the corresponding row is created in RFC 3415’s vacmContextTable.

To create a row in this table, a manager must set
snmpContextMappingRowStatus to either ‘createAndGo’ or ‘createAndWait’.

To delete a row in this table, a manager must set
snmpContextMappingRowStatus to ‘destroy’.

::= { snmpContextMappingMIBObjects 1 }

snmpContextMappingEntry OBJECT-TYPE
SYNTAX SNMPContextMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information relating to a single mapping of
snmpContextMappingVacmContextName to the corresponding VRF,
the corresponding topology, and the corresponding routing
protocol instance."
INDEX { snmpContextMappingVacmContextName }
::= { snmpContextMappingTable 1 }

SNMPContextMappingEntry ::=
SEQUENCE {
 snmpContextMappingVacmContextName SnmpAdminString,
 snmpContextMappingVrfName SnmpAdminString,
 snmpContextMappingTopologyName SnmpAdminString,
 snmpContextMappingProtoInstName SnmpAdminString,
 snmpContextMappingBridgePort Unsigned32,
 snmpContextMappingVplsIndex Unsigned 32,
 snmpContextMappingStorageType StorageType,
 snmpContextMappingRowStatus RowStatus
}

snmpContextMappingVacmContextName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The vacmContextName given to the SNMP context.

This is a human readable name identifying a particular
SNMP VACM context at a particular SNMP entity.
The empty contextName (zero length) represents the
default context."
::= { snmpContextMappingEntry 1 }

snmpContextMappingVrfName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..32))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of an instance of this object identifies
the name given to the VRF to which the SNMP context
is mapped to.

This is typically a human-readable string. This is
the same ASCII string used in the router’s console
interface to refer to this VRF."
When the value of this object is the zero length string it indicates that the SNMP context is independent of any VRF.

DEFVAL \{ ''H \} -- the zero length string
::= \{ snmpContextMappingEntry 2 \}

snmpContextMappingTopoName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..32))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of an instance of this object identifies the name given to the topology to which the SNMP context is mapped to.

This is typically a human-readable string. This is the same ASCII string used in the router’s console interface to refer to this topology.

When the value of this object is the zero length string it indicates that the SNMP context is independent of any topology."

DEFVAL \{ ''H \} -- the zero length string
::= \{ snmpContextMappingEntry 3 \}

snmpContextMappingProtoInstName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(0..32))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of an instance of this object identifies the name given to the protocol instance to which the SNMP context is mapped to.

This is typically a human-readable string. This is the same ASCII string used in the router’s console interface to refer to this protocol instance.

When the value of this object is the zero length string it indicates that the SNMP context is independent of any protocol instance."

DEFVAL \{ ''H \} -- the zero length string
::= \{ snmpContextMappingEntry 4 \}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of an instance of this object identifies the dot1dBasePort to which the SNMP context is mapped to.

When the value of this object is zero it indicates that the SNMP context is independent of dot1dBasePort."
DEFVAL { 0 }
REFERENCE "RFC 4188 - Section 4."
::= { snmpContextMappingEntry 5 }

snmpContextMappingVplsIndex OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of an instance of this object identifies vplsConfigIndex to which the SNMP context is mapped to.

When the value of this object is zero it indicates that the SNMP context is independent of vplsConfigIndex."
DEFVAL { 0 }
REFERENCE "draft-ietf-l2vpn-vpls-mib-00.txt"
::= { snmpContextMappingEntry 6 }

snmpContextMappingStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type for this conceptual row.

Conceptual rows having the value ‘permanent’ need not allow write-access to any columnar objects in the row."
DEFVAL { nonVolatile }
::= { snmpContextMappingEntry 7 }

snmpContextMappingRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object facilitates the creation, modification, or
deletion of a conceptual row in this table.
::= { snmpContextMappingEntry 8 }

-- Conformance

snmpContextMappingMIBCompliances
 OBJECT IDENTIFIER ::= { snmpContextMappingMIBConformance 1 }

snmpContextMappingMIBGroups
 OBJECT IDENTIFIER ::= { snmpContextMappingMIBConformance 2 }

-- Compliance

snmpContextMappingMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION "The compliance statement for entities which implement
 the SNMP-CONTEXT-MAPPING-MIB."
 MODULE
 MANDATORY-GROUPS {
 snmpContextMappingDataGroup
 }

OBJECT snmpContextMappingVrfName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT snmpContextMappingTopologyName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT snmpContextMappingProtoInstName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT snmpContextMappingBridgePort
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT snmpContextMappingVplsIndex
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT snmpContextMappingStorageType
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

OBJECT snmpContextMappingRowStatus
MIN-ACCESS read-only
DESCRIPTION "Create/delete/modify access to the
 snmpContextMappingTable is not required."

::= { snmpContextMappingMIBCompliances 1 }

-- Units of Conformance

snmpContextMappingDataGroup OBJECT-GROUP
 OBJECTS {
 snmpContextMappingVrfName,
 snmpContextMappingTopologyName,
 snmpContextMappingProtoInstName,
 snmpContextMappingBridgePort,
 snmpContextMappingVplsIndex,
 snmpContextMappingStorageType,
 snmpContextMappingRowStatus
 }
 STATUS current
 DESCRIPTION
 "The collection of objects providing the context
 mapping data between the SNMP context to the
 VRF, topology, protocol instance, bridge port,
 and VPLS index."
::= { snmpContextMappingMIBGroups 1 }

END

6. Security Considerations

The MIB module described in this document in association with
SNMP-COMMUNITY-MIB and SNMPv3 framework is useful for accessing
subsets of data based on various data distinguishing identifiers.

There are objects in this MIB which are configurable via SNMP.
If these are configured incorrectly, there can be potential
data access violations.

There are a number of management objects defined in these MIB modules
with a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection can have a negative effect on
network operations. These are the tables and objects and their
sensitivity/vulnerability.

7. Example of usage:
In snmpContextMappingTable:

<table>
<thead>
<tr>
<th>snmpContextMappingContextName</th>
<th>"contextA"{Index}</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmpContextMappingVrfName</td>
<td>"customerA"</td>
</tr>
<tr>
<td>snmpContextMappingTopologyName</td>
<td>""</td>
</tr>
<tr>
<td>snmpContextMappingProtoInstName</td>
<td>""</td>
</tr>
<tr>
<td>snmpContextMappingBridgePort</td>
<td>0</td>
</tr>
<tr>
<td>snmpContextMappingVplsIndex</td>
<td>0</td>
</tr>
<tr>
<td>snmpContextMappingStorageType</td>
<td>(2)volatile</td>
</tr>
<tr>
<td>snmpContextMappingRowStatus</td>
<td>1(active)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>snmpContextMappingContextName</th>
<th>"contextB"{Index}</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmpContextMappingVrfName</td>
<td>"customerB"</td>
</tr>
<tr>
<td>snmpContextMappingTopologyName</td>
<td>""</td>
</tr>
<tr>
<td>snmpContextMappingProtoInstName</td>
<td>""</td>
</tr>
<tr>
<td>snmpContextMappingBridgePort</td>
<td>0</td>
</tr>
<tr>
<td>snmpContextMappingVplsIndex</td>
<td>0</td>
</tr>
<tr>
<td>snmpContextMappingStorageType</td>
<td>(2)volatile</td>
</tr>
<tr>
<td>snmpContextMappingRowStatus</td>
<td>1(active)</td>
</tr>
</tbody>
</table>

In ospfHostTable from RFC 1850:

[For OSPF Instance on VRF "customerA"]

<table>
<thead>
<tr>
<th>ospfHostIpAddress</th>
<th>"1.2.3.4"{Index}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfHostTOS</td>
<td>8</td>
</tr>
<tr>
<td>ospfHostMetric</td>
<td>"ab"</td>
</tr>
<tr>
<td>ospfHostStatus</td>
<td>"1(enabled)"</td>
</tr>
<tr>
<td>ospfHostAreaID</td>
<td>"1.1.1.1"</td>
</tr>
</tbody>
</table>

[For OSPF Instance on VRF "customerB"]

<table>
<thead>
<tr>
<th>ospfHostIpAddress</th>
<th>"1.2.3.4"{Index}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfHostTOS</td>
<td>8</td>
</tr>
<tr>
<td>ospfHostMetric</td>
<td>"ab"</td>
</tr>
<tr>
<td>ospfHostStatus</td>
<td>"1(enabled)"</td>
</tr>
<tr>
<td>ospfHostAreaID</td>
<td>"1.1.1.2"</td>
</tr>
</tbody>
</table>

In the above case, we can use the context mapping to distinguish data between different OSPF instances even though the OID indexes are the same.

8. References

8.1. Normative References
8.2. Informative References

9. Acknowledgments

We would like to thank Keith McCloghrie for his insightful comments and expert suggestions.

We would also like to thank Chinna Narasimha Reddy and Madhavi.

10. IANA Considerations
11. Authors’ Addresses

Thomas D. Nadeau
BT
BT Centre
81 Newgate Street
EC1A 7AJ
London
Email: tom.nadeau@bt.com

A S Kiran Koushik
Cisco Systems Inc
12515 Research Blvd, Bldg 4
Austin TX 78759
Email: kkoushik@cisco.com

Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.