The Layer Refresh Request (LRR) RTCP Feedback Message
draft-lennox-avtext-lrr-00

Abstract

This memo describes the RTP Payload-Specific Feedback Message "Layer Refresh Request" (LRR), which can be used to request a state refresh of one or more substreams of a layered media stream. It also defines its use with several scalable media formats.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 10, 2015.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
1. Introduction

This memo describes an RTP Payload-Specific Feedback Message [RFC4585] "Layer Refresh Request" (LRR). It is designed to allow a receiver of a layered media stream to request that one or more of its substreams be refreshed, such that it can then be decoded by an endpoint which previously was not receiving those layers, without requiring that the entire stream be refreshed (as it would be if the receiver sent a Full Intra Request (FIR) [RFC5104].

The message is designed to be applicable both to temporally and spatially scaled streams, and to both single-stream and multi-stream scalability modes.

2. Conventions, Definitions and Acronyms

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2.1. Terminology

A "Layer Refresh Point" is a point in a scalable stream after which a decoder, which previously had been able to decode only some (possibly none) of the available layers of stream, is able to decode a greater number of the layers.
For spatial (or quality) layers, layer refresh typically requires that a spatial layer be encoded in a way that references only lower-layer subpictures of the current picture, not any earlier pictures of that spatial layer. Additionally, the encoder must promise that no earlier pictures of that spatial layer will be used as reference in the future.

An illustration of spatial layer refresh is shown below.

```
... <-- S1 <-- S1 <-- S1 <-- S1 <-- ...
    |    |    |    |
   \   \   \   \   
... <-- S0 <-- S0 <-- S0 <-- S0 <-- ...
      \      \      \      
       1      2      3      4
```

In this illustration, frame 3 is a layer refresh point for spatial layer S1; a decoder which had previously only been decoding spatial layer S0 would be able to decode layer S1 starting at frame 3.

Figure 1

For temporal layers, layer refresh requires that the layer be "temporally nested", i.e. use as reference only earlier frames of a lower temporal layer, not any earlier frames of this temporal layer, and also promise that no future frames of this temporal layer will reference frames of this temporal layer before the refresh point. In many cases, the temporal structure of the stream will mean that all frames are temporally nested, in which case decoders will have no need to send LRR messages for the stream.

An illustration of temporal layer refresh is shown below.

```
...  <----- T1  <------ T1  T1  <------ ...
     /     |     /     \\
    /     |     /     \\
...  <-- T0  <------ T0  <------ T0  <------ T0  <---- ...
     1     2     3     4     5     6     7
```

In this illustration, frame 6 is a layer refresh point for temporal layer T1; a decoder which had previously only been decoding temporal layer T0 would be able to decode layer T1 starting at frame 6.

Figure 2
An illustration of an inherently temporally nested stream is shown below.

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
... <-- T0 <------ T0 <------ T0 <---- ...
```

In this illustration, the stream is temporally nested in its ordinary structure; a decoder receiving layer T0 can begin decoding layer T1 at any point.

Figure 3

3. Layer Refresh Request

A layer refresh frame can be requested by sending a Layer Refresh Request (LRR), which is an RTCP payload-specific feedback message [RFC4585] asking the encoder to encode a frame which makes it possible to upgrade to a higher layer. The LRR contains one or two tuples, indicating the layer the decoder wants to upgrade to, and (optionally) the currently highest layer the decoder can decode.

The specific format of the tuples, and the mechanism by which a receiver recognizes a refresh frame, is codec-dependent. Usage for several codecs is discussed in Section 4.

LRR follows the model of the Full Intra Request (FIR) [RFC5104](Section 3.5.1) for its retransmission, reliability, and use in multipoint conferences. TODO: expand these here.

The LRR message is identified by RTCP packet type value PT=PSFB and FMT=TBD. The FCI field MUST contain one or more FIR entries. Each entry applies to a different media sender, identified by its SSRC.

3.1. Message Format

The Feedback Control Information (FCI) for the Layer Refresh Request consists of one or more FCI entries, the content of which is depicted in Figure 4. The length of the LRR feedback message MUST be set to 2+3*N, where N is the number of FCI entries.
SSRC (32 bits) The SSRC value of the media sender that is requested to send a layer refresh point.

Seq nr. (8 bits) Command sequence number. The sequence number space is unique for each pairing of the SSRC of command source and the SSRC of the command target. The sequence number SHALL be increased by 1 modulo 256 for each new command. A repetition SHALL NOT increase the sequence number. The initial value is arbitrary.

C (1 bit) A flag bit indicating whether the "Current Layer Index" field is present in the FCI. If this bit is false, the sender of the LRR message is requesting refresh of all layers up to and including the target layer.

Payload Type (7 bits) The RTP payload type for which the LRR is being requested. This gives the context in which the target layer index is to be interpreted.

Reserved (16 bits) All bits SHALL be set to 0 by the sender and SHALL be ignored on reception.

Target Layer Index (16 bits) The target layer for which the receiver wishes a refresh point. Its format is dependent on the payload type field.

Current Layer Index (16 bits) If C is 1, the current layer being decoded by the receiver. This message is not requesting refresh of layers at or below this layer. If C is 0, this field SHALL be set to 0 by the sender and SHALL be ignored on reception.

4. Usage with specific codecs
4.1. H264 SVC

H.264 SVC [RFC6190] defines temporal, dependency (spatial), and quality scalability modes.

```
+---------------+---------------+
|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|
+---------------+---------------+
|R| DID | QID | TID |RES      |
+---------------+---------------+
```

Figure 5

Figure 5 shows the format of the layer index field for H.264 SVC streams. This is designed to follow the same layout as the third and fourth bytes of the H.264 SVC NAL unit extension, which carry the stream’s layer information. The "R" and "RES" fields MUST be set to 0 on transmission and ignored on reception. See [RFC6190] Section 1.1.3 for details on the DID, QID, and TID fields.

TODO: identifying layer refresh frames in an H.264 bitstream.

4.2. VP8

The VP8 RTP payload format [I-D.ietf-payload-vp8] defines temporal scalability modes. It does not support spatial scalability.

```
+---------------+---------------+
|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|
+---------------+---------------+
|TID| RES                       |
+---------------+---------------+
```

Figure 6

Figure 6 shows the format of the layer index field for VP8 streams. The "RES" fields MUST be set to 0 on transmission and ignored on reception. See [I-D.ietf-payload-vp8] Section 4.2 for details on the TID field.

TODO: identifying layer refresh frames in a VP8 bitstream.

4.3. H265

The initial version of the H.265 payload format [I-D.ietf-payload-rtp-h265] defines temporal scalability, with protocol elements reserved for spatial or other scalability modes.
(which are expected to be defined in a future version of the specification.

```
+---------------+---------------+
|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|
+---------------+---------------+
| RES         |  LayerId  | TID |
+-------------+-----------------+
```

Figure 7

Figure 7 shows the format of the layer index field for H.265 streams. This is designed to follow the same layout as the first and second bytes of the H.265 NAL unit header, which carry the stream’s layer information. The "RES" field MUST be set to 0 on transmission and ignored on reception. See [I-D.ietf-payload-rtp-h265] Section 1.1.3 for details on the LayerId and TID fields.

TODO: identifying layer refresh frames in an H.265 bitstream.

4.4. VP9

The RTP payload format for VP9 [I-D.uberti-payload-vp9] defines how it can be used for spatial and temporal scalability.

```
+---------------+---------------+
|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|
+---------------+---------------+
| T  |R|  S  | RES             |
+-------------+-----------------+
```

Figure 8

Figure 8 shows the format of the layer index field for VP9 streams. This is designed to follow the same layout as the "L" byte of the VP9 payload header, which carries the stream’s layer information. The "R" and "RES" fields MUST be set to 0 on transmission and ignored on reception. See [I-D.uberti-payload-vp9] for details on the T and S fields.

Identification of a layer refresh frame can be derived from the reference IDs of each frame by backtracking the dependency chain until reaching a point where only decodable frames are being referenced. Therefore it’s recommended for both the flexible and the non-flexible mode that, when upgrade frames are being encoded in response to a LRR, those packets should contain layer indices and the reference fields so that the decoder or an MCU can make this derivation.
Example:

LRR {1,0}, {2,1} is sent by an MCU when it is currently relaying {1,0} to a receiver and which wants to upgrade to {2,1}. In response the encoder should encode the next frames in layers {1,1} and {2,1} by only referring to frames in {1,0}, or {0,0}.

In the non-flexible mode, periodic upgrade frames can be defined by the layer structure of the SS, thus periodic upgrade frames can be automatically identified by the picture ID.

5. Usage with different scalability transmission mechanisms

Several different mechanisms are defined for how scalable streams can be transmitted in RTP. The RTP Taxonomy [I-D.ietf-avtext-rtp-grouping-taxonomy] Section 3.7 defines three mechanisms: Single RTP Stream on a Single Media Transport (SRST), Multiple RTP Streams on a Single Media Transport (MRST), and Multiple RTP Streams on Multiple Media Transports (MRMT).

The LRR message is applicable to all these mechanisms. For MRST and MRMT mechanisms, the "media source" field of the LRR FCI is set to the SSRC of the RTP stream containing the layer indicated by the Current Layer Index (if "C" is 1), or the stream containing the base encoded stream (if "C" is 0). For MRMT, it is sent on the RTP session on which this stream is sent. On receipt, the sender MUST refresh all the layers requested in the stream, simultaneously in decode order.

Note: arguably, for the MRST and MRMT mechanisms, FIR feedback messages could instead be used to refresh specific individual layers. However, the usage of FIR for MRST/MRMT is not explicitly specified anywhere, and if FIR is interpreted as refreshing layers, there is no way to request an actual full, synchronized refresh of all the layers of an MRST/MRMT layered source. Thus, the authors feel that interpreting FIR as refreshing the entire source, and using LRR for the individual layers, would be more useful.

6. Security Considerations

All the security considerations of FIR feedback packets [RFC5104] apply to LRR feedback packets as well. Additionally, media senders receiving LRR feedback packets MUST validate that the payload types and layer indices they are receiving are valid for the stream they are currently sending, and discard the requests if not.
7. IANA Considerations

The IANA is requested to register the following values:
- TODO: PSFB value for LRR

8. References

[I-D.ietf-avtext-rtp-grouping-taxonomy]
Lennox, J., Gross, K., Nandakumar, S., and G. Salgueiro,

[I-D.ietf-payload-rtp-h265]

[I-D.ietf-payload-vp8]

[I-D.uberti-payload-vp9]

Authors’ Addresses

Jonathan Lennox
Vidyo, Inc.
433 Hackensack Avenue
Seventh Floor
Hackensack, NJ 07601
US
Email: jonathan@vidyo.com

Danny Hong
Vidyo, Inc.
433 Hackensack Avenue
Seventh Floor
Hackensack, NJ 07601
US
Email: danny@vidyo.com

Justin Uberti
Google, Inc.
747 6th Street South
Kirkland, WA 98033
USA
Email: justin@uberti.name

Stefan Holmer
Google, Inc.
Kungsbron 2
Stockholm 111 22
Sweden

Magnus Flodman
Google, Inc.
Kungsbron 2
Stockholm 111 22
Sweden