WiMAX Forum/3GPP2 Proxy Mobile IPv4
draft-leung-mip4-proxy-mode-04.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on March 23, 2008.

Copyright Notice

Copyright (C) The IETF Trust (2007).

Abstract

Mobile IPv4 is a standard mobility protocol that enables IPv4 device to move among networks while maintaining its IP address. The mobile device has the Mobile IPv4 client function to signal its location to the routing anchor, known as the Home Agent. However, there are many IPv4 devices without such capability due to various reasons. This document describes Proxy Mobile IPv4 (PMIPv4), a scheme based on
having the Mobile IPv4 client function in a network element to provide mobility support for an unaltered and mobility-unaware IPv4 device, and the existing application of PMIPv4 in WiMAX Forum and 3GPP2.
Table of Contents

1. Introduction ... 4
2. Conventions used in this document 4
3. Benefits of Proxy Mobile IPv4 6
4. Overview of Proxy Mobile IPv4 7
 4.1. Mobility Signaling for Mobile Device 7
 4.1.1. Proxy Registration during Initial Network
 Attachment 8
 4.1.2. Proxy Registration Renewal 10
 4.1.3. Proxy Handover Support 11
 4.1.4. Resource Cleanup 13
 4.2. Establishment of Bi-Directional Tunnel 13
 4.2.1. Packet Forwarding 13
 4.2.2. Forwarding Between Devices on same PMA 14
 4.3. Security Association Between the PMA and the HA 14
 4.4. Registration Sequencing 15
 4.5. Mobile Device Interface Configuration 15
 4.6. Dynamic HA Discovery 15
5. Proxy Mobile IPv4 Extensions 15
 5.1. PMIPv4 Per-Node Authentication Method Extension 15
 5.2. Proxy Mobile IPv4 Device ID Extension 16
6. PMIP Access Network Type Extension 17
7. PMIP Heartbeat Extension 18
8. Appearance of Being at Home Network 19
 8.1. ARP Considerations 20
 8.2. ICMP Considerations 20
 8.3. DHCP Considerations 20
 8.4. PPP IPCP Considerations 21
 8.5. Link-Local Multicast and Broadcast Considerations 22
9. Proxy Mobility Agent Operation 22
10. Home Agent Operation 23
 10.1. Processing Proxy Registration Requests 23
11. Mobile Device Operation 24
 11.1. Initial Network Access 24
 11.2. Mobile Device Mobility 24
 11.3. Sending and Receiving Packet 25
12. Proxy Mobile IPv4 Use Case in WiMAX 25
13. Proxy Mobile IPv4 Use Case in 3GPP2 28
 13.1. HO considerations in 3GPP2 31
14. IANA Considerations 32
 14.1. Mobile IPv4 Extension Type 32
 14.2. Mobile IPv4 Error Codes 33
15. Security Considerations 33
16. Acknowledgements 33
17. References .. 34
Authors’ Addresses .. 35
Intellectual Property and Copyright Statements 37
1. Introduction

There are many IPv4 devices which do not have or cannot be enabled with Mobile IPv4 [1] functionality. Yet, mobility for them is essential. Proxy Mobile IPv4 provides mobility support without “touching” these devices. The scheme is based on network elements which perform the mobility management function for a mobile device. The location of the device is signaled by the network element on the access network (referred as the Proxy Mobility Agent) to inform the network element on the home network (referred as the Home Agent) associated with the IPv4 address used by the device. Mobile IPv4 messaging is used by the PMA and HA, which correspond to the RFC 3344 entities Mobile Node (in proxy mode) and Home Agent, respectively.

These are some examples of Proxy Mobile IPv4:

1. A WLAN access point or cellular base station performs registration with the Home Agent when a mobile device is associated on the air-link.

2. An access router or Foreign Agent performs registration with the Home Agent when a mobile device is detected on the network.

Mobile IPv4 is used by the network elements because the mobility protocol has the functions needed to set up the route and tunneling endpoints for the mobile device’s IP address and to deliver configuration parameters (e.g. DNS server addresses, default gateway) for enabling the mobile device’s IP stack. When Mobile IPv4 is used in this way, the security association is between the PMA and the HA because these entities are the signaling endpoints. Also, when the mobile device moves to a new PMA, the sequencing of messages sourced from multiple PMAs needs to be handled properly by the HA.

This document describes how the network elements, PMA and HA, provide mobility management for the mobile device. It is organized to cover the generic functionality of Proxy Mobile IPv4 and also the specifics pertaining to WiMAX (Section 12) and 3GPP2 (Section 13).

2. Conventions used in this document

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [2].

The following new terminology and abbreviations are introduced in this document and all other general mobility related terms as
defined in Mobile IPv4 specification [1].

Mobile Device

The mobile device is used to refer to an IPv4 device with its mobility provided by the network. The mobile device is not required to participate in any mobility related signaling for achieving mobility for an obtained IP address.

Proxy Mobile IPv4 Client (PMIP Client)

This network function is responsible for initiating and maintaining the proxy Mobile IPv4 registration on behalf of the mobile device. Essentially, it performs the Mobile IPv4 client function but it is hosted in the network. In some cases, this function is collocated with the Foreign Agent and in others it is not. In both cases, proxy Mobile IPv4 registration still goes via the Foreign Agent at all practical effects even if it is internal to the node.

Home Agent (HA)

The Home Agent that is defined in Mobile IPv4 [1] is used in the Proxy Mobile IPv4 scheme. It is the topological anchor point for the mobile device’s home network and is the entity that manages the mobile device’s reach-ability state. The additional capabilities for supporting Proxy Mobile IPv4 in the Home Agent are defined in this document.

Foreign Agent (FA)

The Foreign Agent that is defined in [1] is used in the Proxy Mobile IPv4 scheme. It is either collocated with or separate from the PMIP Client. It serves the purpose of tunnel end-point from Proxy Mobile IPv4 perspective.

Access Router (AR)

Access Router is a commonly used term that refers to the node in the network which connects the hosts to the IP network.

Proxy Mobility Agent (PMA)

Proxy Mobility Agent is the logical entity in the network that encompasses both the PMIP Client and the FA functions. The PMIP Client and the FA collocation in the Access Router constitute an integrated PMA. When the PMIP Client and the FA functions are not collocated in the Access Router, it is
referred as a split PMA.

Proxy Registration Request (PRRQ)

The Registration Request message sent by the Proxy Mobility Agent to the Home Agent to set up a mobility binding entry for a mobile device. The message format is identical to that of Mobile IPv4 Registration Request, though the Proxy Mobile IPv4 extensions that are defined in this document may be included for enhanced features of network-based mobility management.

Proxy Registration Reply (PRRP)

The Registration Reply message sent by the Home Agent in response to the Proxy Registration Request received from the Proxy Mobility Agent. The message format is identical to that of Mobile IPv4 Registration Reply, though the Proxy Mobile IPv4 extensions that are defined in this document may be included for enhanced features of network-based mobility management.

3. Benefits of Proxy Mobile IPv4

Proxy Mobile IPv4 (PMIP) is designed to satisfy the requirements listed below. In addition, the solution leverages well-studied specification and highly available implementations. The client-based mobility protocol can be used "as-is" to support network-based mobility. However, new PMIPv4 extensions that are added to Mobile IPv4 improves the flexibility of the solution. The practical advantage of having a common mobility protocol for both client-based and network-based mobility is that a Home Agent can anchor all types of mobile devices, ones that have or others that lack Mobile IPv4 function.

The network-based mobility management solution defined in this document has the following significant reasons for its use in any wireless network:

1. Support for Unmodified Hosts

An overwhelming majority of IPv4 hosts do not have Mobile IPv4 capability. Providing mobility for them is achievable using Proxy Mobile IPv4. This is accomplished without "touching" the user’s devices running on a myriad of operating systems and networking stacks.
2. Re-use of Existing Home Agent

Existing Home Agent implementation can be used for network-based mobility as well. Further enhancements are optional and only incremental in nature. There are many commonalities between client-based and network-based mobility and sharing the same protocol is a significant benefit.

3. Reduction of Air-link Resource Consumption

Mobility-related signaling over the air-link is eliminated.

4. Support for Heterogeneous Wireless Link Technologies

Since Proxy Mobile IPv4 is based on an access technology independent mobility protocol, it can be used for any type of access network.

From the network perspective, a mobile device is identified by the NAI and the forwarding is set up between the PMA and HA for the mobile device’s current point of attachment on the network. The mobile device may be attached to multiple networks concurrently, but the network can prioritize which path to use for the mobile device. This feature can be supported with the use of the PMIP Access Network Type Extension (Section 6).

5. Support for IPv4 and IPv6 Host

As IPv6 increases in popularity, the host will likely be dual stack. Adding IPv6 support to the host for Proxy Mobile IPv4 involves the methods defined in [3] and [4]. The former draft covers the interface between MN and AR whereas the latter draft specifies the extensions for IPv6 address in the PMIP signaling enhancements between the AR and the HA.

4. Overview of Proxy Mobile IPv4

4.1. Mobility Signaling for Mobile Device

After the mobile device completes network access authentication, the PMA exchanges proxy Mobile IPv4 registration messages with the HA to set up proper routing and tunneling of packets from/to the Mobile Node. The PMIP Client is responsible for initiating the proxy Mobile IPv4 registration. For integrated PMA, the PMIP Client and the FA interaction is all within the node. In the case of split PMA
implementation, the interaction between the PMIP Client and the FA are exposed. The interface between the PMIP Client and the FA in the split PMA scenario is the same as the one defined in RFC3344 and consequently out of scope of this document.

The following call flows describe the operations of Proxy Mobile IPv4. The initial network attachment, registration renewal, and resource cleanup procedures are covered. Note that the protocols which interact with Proxy Mobile IP are identified and explained in more details. PPP/IPCP protocol involves PPP client in the mobile device and NAS in the AR. DHCP protocol involves a DHCP Client in the MN and DHCP Server in either the AR or the HA. PMIP protocol involves a PMA in the AR and an HA in the router on the home network. AAA protocol involves a AAA Client in the AR and a AAA Server in the network. The colocation of the functional entities in the AR/HA enables parameters to be shared/processed among the protocols.

4.1.1. Proxy Registration during Initial Network Attachment

![Diagram of network connection setup](Figure 1: Network Connection Setup)
The initial network attachment procedure is described below. There are three distinct phases. First, authentication and authorization happen when the mobile device accesses the network. Then mobile device attempts to obtain an IP address. This triggers Proxy Mobile IP which assigns the IP address and sets up forwarding between the PMA and HA. The host configuration parameters may be passed in the PMIP signaling. Finally, mobile device configures its IP stack with the IP address and obtained host configuration. Packets to and from the mobile device transit both the PMA and HA.

1a. The mobile device establishes L2 link with the base station (not shown) and performs access authentication/authorization with the AR (Access Router). During this phase, the mobile device may run CHAP [5] or PAP [6] if PPP [7] is used or EAP [8] over foo (foo being the specific access technology or PANA [9]). The AR acts as the NAS (Network Access Server) in this step.

1b. The AAA client exchanges AAA messages with the AAA infrastructure to perform authentication and authorization of the mobile device. As part of this step, the AAA server may download some information about the mobile device (e.g. user’s profile, handset type, assigned home agent address, and other capabilities of the mobile device).

2. The mobile device requests for an IP address via an PPP/IPCP [10] or DHCP [11]. Specifically for PPP, the PPP client sends IPCP Configure-Request to the NAS. As for DHCP, the DHCP client sends the DHCP Discover message to the DHCP relay agent/server.

For the DHCP case, the DHCP server or DHCP relay agent holds the DHCP Discover message until PMIPv4 signaling completes.

3. Triggered by step 2, the PMA sends an Proxy Registration Request (PRRQ) to the HA. The HA’s IP address is either obtained from the AAA server at step 1b or discovered by some other method. The PRRQ contains the Care-of Address (CoA) of the PMA (collocated FA in this case). The Home Address field is set to zero or the IP address specified as hint in the DHCP or IPCP message. The PRRQ MUST be protected by the methods described in Security Considerations (Section 15). The derivation and distribution of the MN-HA or FA-HA key is outside the scope of this document.

4. The home agent sets up the mobility binding entry for the mobile device after assigning an IP address or authorizing the requested Home Address. The home agent returns the Home Address in the Proxy Registration Request (PRRP) to the PMA. After the PMA processes the PRRP, the forwarding path for the Home Address between the PMA and HA is established. The event completes the Proxy Mobile IPv4 signaling.
for initial network attachment.

5. After the Proxy Mobile IPv4 registration exchange, the AR provides the IP address to the mobile device in response to step 2. For IPCP, the NAS replies to the PPP client with IPCP Configure-Nak which includes the PMIP assigned Home Address in the IP-Address configuration option.

The following procedure happens when the DHCP server is on the AR. The DHCP server sends a DHCP Offer with the PMIP assigned Home Address in the yiaddr field to the DHCP client. The DHCP client sends a DHCP Request to the DHCP server, which replies with a DHCP Ack. Note that the DHCP messages are exchanged directly between the DHCP client and the DHCP server.

In the case when AR acts as a DHCP relay agent, the DHCP Discover is tunneled to the DHCP server on the HA. The DHCP server sends a DHCP Offer with the PMIP assigned Home Address in the yiaddr field to the DHCP relay agent, which forwards to the DHCP client. The DHCP Request and DHCP Ack messages are exchanged between the DHCP client and DHCP server via the DHCP relay agent.

6. At this step, the mobile device’s IP stack is configured with an IP address that has a forwarding path between the AR/PMA and HA. Also, the host configuration such as DNS servers is configured at this time. Now that the IPCP or DHCP procedure has completed, the mobile device is ready to receive or send IP packets. If DHCP is used, the DHCP client renews the IP address by sending a DHCP Request directly to the DHCP server. The lease for the IP address is extended when a DHCP Ack from the DHCP server is received by the DHCP client.

4.1.2. Proxy Registration Renewal

```
+-----+        +-------+                  +-----+
|    |        | AR /  |                  |     |
| MD |        | PMA   |                  |  HA |
+-----+        +-------+                  +-----+
               |                        |
               |       1                |
               |----------------------->|
PMIP Renewal  |               |                        |
               |               |       2                |
               |<-----------------------|
```

The network connection maintenance procedure is described below. As long as the mobile device remains attached to the AR, the Proxy Mobile IPv4 session is maintained by re-registration exchange between the AR and HA.

1. Before the PMIP registration lifetime expires and the AR has not receive any indication that the mobile device detached from the network, the PMA sends PRRQ to the HA to extend the duration of the mobility binding of the mobile device. The PRRQ is similar as the initial PRRQ (i.e. HA field set to the assigned HA and CoA field set to the PMA), though the Home Address field is always set to the assigned IP address of the mobile device. The mobile device’s IP stack can continue to send and receive IP packets using the Home Address anchored at the HA.

2. The HA sends the PRRP in response to the PRRQ received from the PMA. After the PMA processes the PRRP, the forwarding path between AR and HA remains intact.

4.1.3. Proxy Handover Support

![Diagram of AR Handover]

Figure 3: AR Handover
The AR handover procedure is described below. There are three phases. First, authentication and authorization happens when mobile device attaches to the new AR in the network. The successful authentication triggers the Proxy Mobile IPv4 signaling. In the last phase, the forwarding path between new AR and HA is set up for the mobile device to send and receive IP packets using the same Home Address anchored at the HA.

1. The mobile device establishes L2 link with the base station (not shown) and performs access authentication/authorization with the new AR using the security method for network re-attachment.

2. Triggered by successful authentication, the PMA sends an PRRQ to the HA. The HA’s IP address is obtained or known typically by the method used for fast reauthentication during AR handover (e.g. context transfer between the two ARs). Though other methods may be used. The PRRQ contains the CoA of the new PMA. The Home Address field is set to zero or the assigned IP address of the mobile device. The IP address is also obtained/known by the same method mentioned before.

3. The home agent updates the existing mobility binding entry for the mobile device upon processing the PRRQ. The home agent returns the Home Address, fetched from the binding, in the PRRP to the new PMA. After the PMA processes the PRRP, the forwarding path for the Home Address between the new AR and HA is established. The event completes the Proxy Mobile IPv4 signaling for AR handover.

4. At this step, which happens around the same time as step 2, the mobile device’s IP stack may detect L2 link going down and up after access re-authentication. The mobile device’s IP stack may attempt to validate its IP address connectivity. See ARP Section 8.1, ICMP Section 8.2 and DHCP Section 8.3 considerations for details. Because the forwarding path is established between the new PMA and HA, the mobile device can receive or send IP packets using the Home Address.
4.1.4. Resource Cleanup

The resource cleanup procedure for the old AR is described below. This is necessary when the old AR needs to delete its PMIP and other associated states for the mobile device that has moved to another AR. Therefore, this is an optional procedure for Proxy Mobile IP. The alternative method is based on the new PMA notifying the old PMA to clean up resources is out of scope of this document.

1. Triggered by the update of the mobility binding entry for a mobile device that has moved to a new AR, the HA may send a Registration Revocation (as specified in RFC 3543 [12]) to the old PMA in order to clean up unused resources in an expeditious manner.

2. The old PMA removes the PMIP states for the mobile device.

3. The old PMA sends revocation acknowledgement to the HA.

4.2. Establishment of Bi-Directional Tunnel

The PMA and HA set up a tunnel between them for the Home Address after the PMIP registration message exchange.

4.2.1. Packet Forwarding

The bi-directional tunnel between the PMA and the HA allows packets to flow in both directions, while the mobile device is connected on
the visited network. All traffic to and from the mobile device travels through this tunnel.

While the PMA is serving a mobile device, it MUST be able to intercept all packets sent from the mobile device and forward them out the tunnel created for supporting that mobile device. Typically, forwarding takes into account the Layer 2 information such as the source MAC address or ingress interface. This allows overlapping IP addresses to be supported for the packet from the mobile device.

Any packets received on the tunnel from HA, the PMA de-encapsulates before forwarding to the mobile device on its link. Typically, the forwarding is based on the destination IP address and ingress HA tunnel (which may have GRE Key). This allows overlapping IP addresses to be supported for the packet destined to the mobile device.

The tunnel operation between the PMA and HA is same as between FA and HA in RFC 3344. The IP TTL, fragmentation, re-assembly, etc. logic remain the same. The tunnel mode is IPinIP by default or GRE as an option.

4.2.2. Forwarding Between Devices on same PMA

When the communication peers are both attached to the same PMA, the packet is forwarded as specified in Section 4.2.1. The traffic between them are still routed via the HA without taking local shortcut on the PMA.

4.3. Security Association Between the PMA and the HA

The security relationship for protecting the control message exchanges between the PMA and the HA may be either per node (i.e. same security association for all mobile devices) or per MN (i.e. unique security association per mobile device). The method of obtaining the security association is outside of scope of this document.

For per node SA support, FA-HA Authentication Extension or IPSec is used to authenticate the signaling. This method is used also in Registration Revocation [12]. Use of IPSec Encapsulating Security Payload (ESP) is optional. This method is indicated by the Proxy Mobile IPv4 Extension in the message.

For per MN SA support, MN-HA Authentication Extension and/or MN-AAA Authentication Extension are used to authenticate the signaling.
4.4. Registration Sequencing

Since the proxy registration request is sent from different sources (i.e. different PMAs), a method of determining the sequence of the messages is required on the HA. The Identification field in the registration message provides replay protection and sequencing when the timestamp method is used. This mechanism allows the HA to know the sequence of messages from the same PMA or different PMAs based on the Identification field. The HA can also synchronize the PMA’s clock by using the Identification mismatch error code in the proxy registration reply. This reply message would not be necessary when the PMA’s clocks are synchronized using Network Time Protocol [13] or some other method. Note that the use of nonce for sequencing and replay protection is outside of scope.

4.5. Mobile Device Interface Configuration

Typically, the mobile device’s interface needs to be configured with an IP address, network prefix, default gateway, and DNS server addresses before the network connection can be enabled to be used for communication. For some IP stacks, the default gateway IP address has to be on the same subnet as the mobile device’s IP address. If the Home Agent’s IP address is on the same subnet as the Home Address, then it is used as the default gateway. Otherwise, the Configuration Option Exchange extensions [14] should be used to obtain the default gateway. The DNS server addresses may also be obtained via the extensions. Alternatively, the PMA can supply its known DNS server addresses to the mobile device.

4.6. Dynamic HA Discovery

The PMA can perform dynamic HA discovery by sending the registration with Home Agent field set to 0.0.0.0 or 255.255.255.255. The Home Agent responds with its IP address in the Home Agent field as specified in Dynamic HA Assignment [15].

5. Proxy Mobile IPv4 Extensions

The following extensions provide Proxy Mobile IPv4 support by indicating the proper authentication and sequencing operation.

5.1. PMIPv4 Per-Node Authentication Method Extension

The Proxy Mobile IPv4 Authentication Method extension indicates alternative methods for authenticating the registration besides the default MN-HA Authentication Extension as specified in RFC 3344. This extension MUST be included in the Registration Request and
Registration Reply when the security association for authenticating the message is between the PMA and HA on a per node basis. This means that a common key or set of keys (indexed by the SPI) are used for message authentication by the PMA and HA. The key is independent of the mobile device which is identified in the registration.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |   Sub-Type    |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Method     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

PMIPv4 Per-Node Authentication Method Extension

Type

Proxy Mobile IPv4 Extension (non-skippable value to be assigned by IANA)

Sub-Type

1 (PMIPv4 Per-Node Authentication Method)

Length

1

Method

1 (FA-HA Authentication)

2 (IPSec Authentication)

5.2. Proxy Mobile IPv4 Device ID Extension

The Proxy Mobile IPv4 Device extension identifies the L2 address of the device. For example, this is the MAC address and Mobile Equipment Identifier for the mobile device’s interface that is attached to the an IEEE or cellular network, respectively. The information MAY be included in the Registration Request when the PMA is aware of it.
PMIPv4 Device ID Extension

Type

Proxy Mobile IPv4 Extension (non-skippable value to be assigned by IANA)

Sub-Type

2 (PMIPv4 Device ID)

Length

The length of the extension in octets, excluding Type, Sub-Type, and Length fields.

ID-Type

1: Ethernet MAC address
2: Mobile Equipment Identifier (MEID)
3: Electronic Serial Number (ESN)

Identifier

A variable-length octet sequence that contains an identifier of the type indicated by the ID-Type field.

6. PMIP Access Network Type Extension

The Proxy Mobile IPv4 Access Network Type extension indicates the type of network (e.g. WLAN, cdma2000 EvDO) that the mobile device is attached. This extension SHOULD be included in the Registration Request when the PMA is aware of the information. The HA does not include the extension in the associated Registration Reply.
PMIP Access Network Type Extension

Type

Mobile IPv4 Extension (non-skippable value to be assigned by IANA)

Sub-Type

3 (Access Network Type)

Length

1

Net-Type

1: 3GPP2 cdma2000 1xRTT
2: 3GPP2 cdma2000 HRPD
3: 3GPP2 UMB
4: WiMAX
5: WiFi
6: 3GPP UTRAN
7: 3GPP LTE

7. PMIP Heartbeat Extension

The Proxy Mobile IPv4 Heartbeat extension provides a mechanism for the PMA to detect the connectivity and liveliness of the HA. This extension SHOULD be included in the Registration Request when the PMA wants to check the connectivity to the HA that can manage PMIP.
registrations. The HA includes the extension in the associated Registration Reply to acknowledge the heartbeat. When the HA does not respond to the heartbeats, the PMA can assume that the HA is not reachable and can take recovery action on behalf of attached mobile devices. The use of this extension requires per-node security association and not correlated to any mobile device (i.e. no NAI extension in the message).

```
+----------------+----------------+ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
|     Type      |   Sub-Type    | +----------------+----------------+
| +----------------+----------------+ +----------------+----------------+
```

PMIP Heartbeat Extension

Type

Mobile IPv4 Extension (non-skippable value to be assigned by IANA)

Length

0

Sub-Type

4 (Heartbeat)

8. Appearance of Being at Home Network

Since the Mobile Node is not aware of its mobility and does not participate in handover signaling, the network elements emulate the home network to the mobile device attached on the network. From the mobile device’s perspective, it operates as it is at the home network. However, the network is directing the mobile device’s traffic to and from its current location and when it moves to a new location.

An unmodified mobile device on a shared link learns the MAC address of another host on the home network via ARP ([16]), obtains an IP address and other host configuration via DHCP ([11]), and sends link-local multicast and broadcast packets. The network’s response to the host is equivalent to the situation when host is on the home network. When the link state changes, some hosts use ARP, ICMP, and/or DHCP to
detect if it has changed the point of attachment on the network.

8.1. ARP Considerations

For IEEE 802 type of access networks (e.g. WLAN, WiMAX Ethernet Convergence Sublayer), the mobile device sends ARP request for the CN and default gateway on the same network. The purpose of maintaining an ARP entry is to allow the delivery of the packet from the mobile device to the CN using the destination MAC address. The ARP procedure for resolving IP and MAC address mapping is not needed for 3GPP2’s cdma2000 and WiMAX IP Convergence Sublayer networks.

The access router is always the L2 endpoint for the mobile device. The destination MAC address in the packet does not need to be set to the CN’s MAC address. As long as the packet can be received by the access router, it will be forwarded toward the CN via the home network node (further details in Section 4.2.1). The ARP table in the mobile device does not need to be populated with CNs’ MAC addresses for the packet to reach the CNs.

A mobile device has ARP entries for default gateway and hosts on the same subnet. Regardless of what the MAC addresses are, the AR receives the packets sent from the mobile device.

8.2. ICMP Considerations

For movement detection, certain types of network stack on the mobile device will send an ICMP request [17] to the default gateway after detecting the link went down and up. The IP TTL in the message is set to 1 to check if the default gateway is still directly reachable on the access network. The PMA should send an ICMP reply when it is providing Proxy Mobile IPv4 service for the mobile device. This response confirms to the mobile device that it has remained on the home network after link state change.

General ICMP traffic is handled as normal IP packets and tunneled between PMA and HA.

8.3. DHCP Considerations

DHCP [11] is used to obtain an IP address and other host configuration parameters for a mobile device. The mobile device is expected to behave as a normal DHCP client when connected to the network with Proxy Mobile IPv4 service. There are two DHCP phases: bootup and renewal/release. The bootup procedure relies on the DHCP relay agent to obtain a lease on the IP address for the DHCP client from the DHCP server. The DHCP client directly renews and releases the lease with the DHCP server.
In Proxy Mobile IPv4, the mobile device boots up on a network that is not the home network associated with the leased IP address. Also, the mobile device can move to other networks that are not related to that IP address. Yet, the DHCP client on the mobile device continues to operate as a stationary device that is directly on the network associated with its IP address. The PMA and HA create the transparency of the remote home network and mobility events by providing the expected network response to the DHCP client.

There are several methods for the network infrastructure to interface with the mobile device such that the mobile device believes it is always fixed on the same network. The following methods are identified here, though others may be used as well:

DHCP Server in the AR:

The mobile device boots up and initiates DHCP. The procedure is described in Figure 1. The DHCP client renews or releases the IP address directly with the DHCP server in the AR. When the mobile device is on a different AR than the AR/DHCP server, the DHCP message from the client needs to be able to be forwarded to the DHCP server in the previous AR or handled by the DHCP server in the new AR. When the DHCP lease time expires for the mobile device’s IP address or the DHCP release message is received on the current AR, the AR sends PMIPv4 de-registration to the HA.

DHCP Relay Agent in the AR:

The mobile device boots up and initiates DHCP. The procedure is described in Figure 1. The DHCP client renews or releases the IP address directly with the DHCP server in the HA. When the mobile device is on a different AR, the DHCP message from the client are tunneled to the DHCP server in the HA. When the DHCP lease time expires for the mobile device’s IP address or the DHCP release message is received on the current AR, the HA deletes the mobility binding entry for the mobile device and sends registration revocation [12] to the AR.

8.4. PPP IPCP Considerations

When the mobile device access the network via PPP [7], LCP CHAP is used to authenticate the user. After authentication, the NAS (which is the AR/PMA) sends the proxy Mobile IPv4 Registration Request to the HA. The HA responds with the Home Address in the proxy Registration Reply. The NAS informs the mobile device to use the Home Address during IPCP [10]. When mobile device moves to a new NAS, the same procedure happens and mobile device has the same IP address for communication.
The message exchange is illustrated in Figure 1.

8.5. Link-Local Multicast and Broadcast Considerations

Depending on configuration policies, the PMA may tunnel all packets destined to Link-Local Multicast or Broadcast to the HA. The HA looks up the hosts which are in the same subnet and send a duplicated packet to each of them.

9. Proxy Mobility Agent Operation

The PMA performs the functions of a Mobile Node entity as described in RFC 3344 with the exceptions identified below.

- No agent discovery (i.e. agent solicitation and advertisement) is supported
- D-bit (De-encapsulation by MN) in the Registration Request is always set to zero

The main responsibility of the PMA is to set up and maintain the routing path between itself and the HA for a mobile device that is attached on the network. When it detects a mobile device is no longer attached, the routing path is torn down. It is possible that the PMA functions may be split up in implementations such as WiMAX (Section 12).

The PMA needs to know the following information at a minimum for sending a proxy registration:

1. NAI of the mobile device
2. MN-HA security association when per-mobile device security association is used
3. FA-HA Mobility Security Association or IPSec Security Association when per-node security association is used. Note, these associations are specific only between PMA and HA, and cryptographically unrelated to the associations between the MN and other network nodes.
4. HA Address

The information is typically downloaded from AAA server during access authentication.
10. Home Agent Operation

The Home Agent has the functionalities as described in RFC 3344 [1]. In addition, the following features are introduced by Proxy Mobile IPv4:

1. Sequencing between PRRQs from multiple PMAs. There is a period after handover that may result in both the new PMA and old PMA sending PRRQs. If the old PMA has not detected that the mobile device moved, it sends a PRRQ when re-registration timer expires. The timestamp and authentication are valid for the message. The HA would process the PRRQ and set up forwarding to the old PMA. This problem remains until the new PMA sends a re-registration message. The problem can be avoided by the use of Registration Revocation [12]. However, it can still happen when the revocation message does not reach the old PMA until after it had sent the PRRQ. For example, the revocation message was dropped in transit. In this case, the HA will send a revocation registration to the new PMA after setting up forwarding to the old PMA. This should cause the new PMA to disconnect the mobile device, which needs to re-connect to the network. The sequence of events should lead to the new PMA sending a PRRQ to the HA. The problem is resolved eventually by revoking the PMIP states at the old PMA. A method of maintaining sequence between PMAs would be desirable.

2. Authentication of PRRQs based on per Node Security Association (FA-HA AE or IPsec AH/ESP). The presence of MN-HA AE or MN-AAA AE in the PRRQ is not necessary in this case. Since PMIP is based on signaling between the PMA and the HA, the security for the message can be authenticated based on the peers’ relationship. The HA can authorize PMIP service for the mobile device at the PMA by contacting the AAA server.

3. The ability to process the Proxy Mobile IPv4 Extensions defined in this document for enhanced capabilities of PMIP.

10.1. Processing Proxy Registration Requests

When a proxy registration request is received, the HA looks up the mobility binding entry indexed by the NAI. If the entry exists, HA compares the Sequence Numbers between the message and MBE, if present. If the value in the message is zero or greater than or equal to the one in MBE, HA accepts the registration. The HA replies with a sequence number that is one greater than larger value of either the MBE or Proxy Registration Request. If the registration is denied, then HA sends error code "Administratively prohibited (65)".
If the HA is not enabled with Proxy Mobile IPv4 or it cannot process the Proxy Mobile IPv4 Extensions defined in this document, it sends a registration reply with error code PMIP_UNSUPPORTED (Proxy Registration not supported by the HA). In the case when the PMA is not allowed to send a proxy registration request to the HA, the HA sends a proxy registration reply with error code PMIP_DISALLOWED (Proxy Registrations from this PMA is not allowed).

A PMA receiving these error codes SHOULD not retry sending proxy Mobile IPv4 messages to the HA that sent replies with these error codes.

11. Mobile Device Operation

As per this specification, a mobile device would function as a normal IPv4 host. The required behavior of the node will be consistent with the base IPv4 specification [1]. The mobile station will have the ability to retain its IPv4 address as it moves from one point of network attachment to the other without ever requiring it to participate in any mobility related signaling.

When booting up for the first time, a mobile device obtains an IPv4 address using DHCP or IPCP.

As the mobile device roams, it is always able to communicate using the obtained IP address on the home network. The PMA on the currently attached network signals to the HA to ensure proper forwarding path for mobile device’s traffic.

11.1. Initial Network Access

When the mobile device accesses the network for the first time and attaches to a network on the PMA, it will present its identity in the form of NAI to the network as part of the network access authentication process.

Once the address configuration is complete, the mobile device will always be able to use that IP address anywhere in the network.

11.2. Mobile Device Mobility

When a mobile device moves to a new PMA from another PMA, the following occurs:
The mobile device may perform a network access authentication with the new AR/PMA. If the authentication fails, the mobile device will not be able to use the link. After a successful authentication, the new PMA will have the identifier and the other profile data of the mobile device. The new PMA can also obtain mobile device’s information using a context transfer mechanism.

Once the network access authentication process is complete, the mobile device may sense a change in the Link Layer and use ARP, DHCP, and/or ICMP to detect if it is still on the same subnet. These mechanisms are handled by the network as described in "Appearance of Being At Home Network" (Section 8) section.

11.3. Sending and Receiving Packet

All packets that are sent from the mobile device to the Corresponding Node (CN) will be sent as normal IPv4 packets setting the Source Address of the IPv4 header to the Home Address and the Destination Address to the corresponding node’s IP address. In proxy Mobile IPv4 operation, the default gateway for the mobile device is set up to reach the PMA.

Similarly, all packets sent to the mobile device’s IP Address by the corresponding node will be received by the mobile device in the original form (without any tunneling overhead).

For Proxy Mobile IP, the packet from the mobile device is transported to the HA to reach the destination regardless of the destination IP address. For a CN with an IP address on the same network as the mobile device but is physically located elsewhere, the HA will tunnel the packet to the CN. Otherwise, the HA forwards the traffic via normal routing.

No special operation is required by the mobile device to either send or receive packets.

Mobile devices attached to the same PMA may be using different HAs for transporting their traffic.

12. Proxy Mobile IPv4 Use Case in WiMAX

WiMAX Forum Network Working Group (NWG) uses Proxy Mobile IPv4 scheme to provide IPv4 connectivity and IP mobility. The relevant
specification from WiMAX Forum is [18].

The Proxy Mobile IPv4 protocol is used over NWG reference point 3 (R3). Most of the Proxy Mobile IPv4 related procedures and requirements are described in reference to mobility management over R3.

The Proxy Mobile IPv4 use case in WiMAX Forum specification is illustrated in the following diagram:

WiMAX NWG network configuration for PMIP use

As shown in the figure above, WiMAX NWG uses the split PMA model.
The PMIP Client is colllocated with the NAS (a.k.a. Authenticator ASN). The NWG architecture divides the network into two parts. The Access part is termed as Access Service Network (ASN). The Core part is termed as Core Service Network (CSN). The MN attaches to a 802.16 radio in the ASN. the radio (base station) connects to a ASN-GW (NAS) which then authenticates and authorizes the MN. The AAA infrastructure is used to authenticate and authorize the MN.

Note that, during initial network entry by the MN, the PMA can be an integrated PMA with all the functions collocated in the Access Router (ASN-GW). Due to mobility, the FA part of the PMA may have to be relocated to a more optimized location for better bearer management. However, to describe the WiMAX specific use case for Proxy Mobile IPv4, we will use the split PMA model since it is more generic representation of the WiMAX NWG mobility framework.

WiMAX NWG specification [18], defines key bootstrapping scheme for use with proxy Mobile IPv4. The spec uses per MN security association for proxy Mobile IPv4 operation. The relevant keys (e.g. MN-HA key) are derived using EAP keying framework. For more information, please refer to section 4.3 of [18], stage-3 specification.

Mobile IPv4 Registration Revocation is optionally supported in WiMAX. The security association for this is per Node. It is provided with FA-HA AE. The FA-HA key is also bootstrapped via the same key hierarchy that is described in section 4.3 of [18].

The proxy Mobile IPv4 operation in WiMAX NWG is aligned with the basic proxy Mobile IPv4 operation as described in section 4 of this document. There are specific considerations for WiMAX NWG 1.0.0 use of proxy Mobile IPv4. These are listed below:

1. Use of per MS SA for proxy Mobile IPv4 registration. In this case, MN-HA AE is used.
2. Use of split PMA to handle FA relocation while PMIP Client remains anchored with the NAS (Authenticator ASN).
3. The Proxy Mobile IPv4 Extensions defined in this document are not used in NWG 1.0.0 specification. These extensions may be used in future versions of the NWG specification.
4. GRE key identifier is optionally used between the HA and the PMA.
5. The PMIP Client and the FA interact via the WiMAX specific reference point and protocol (aka R4). For more information please refer to the NWG 1.0.0 specification.
6. In order to handle inter ASN (inter Access Router) handover, and still allow the MN to use the same DHCP server’s IP address that was sent in DHCP OFFER/ACK, the DHCP server (aka proxy) functions in the ASN is required to be configured with the same IP address.

7. The MN - AR (trigger for proxy Mobile IPv4) interaction is based on DHCP. DHCPDISCOVER from the MN triggers proxy Mobile IPv4 process in the ASN.

13. Proxy Mobile IPv4 Use Case in 3GPP2

3GPP2 uses Proxy Mobile IPv4 scheme to provide mobility service for the following scenarios (as shown in the figures below):

1. Mobility between the Base Station (BS) and Access Gateway (AGW)

2. Mobility between the AGW and the Home Agent (HA).

As shown in the diagrams below in use case 1, the BS acts as the PMA and the AGW acts as the HA for proxy Mobile IPv4 operation. In use case 2, the AGW acts as the PMA while the HA assumes the role of the home agent.

RAN +-------+ Core
 | MN |------| BS/ | PMIPv4 | AGW/
 | |------| PMA |--------| HA
 +-----+ +------+

Integrated PMA

3GPP2’s PMIP4 use case 1 - BS-AGW interface mobility
3GPP2’s PMIP4 use case 2 - AGW-HA interface mobility

The figure below shows a simplified 3GPP2 architecture. For details please refer to the 3GPP2 Converged Access Network (CAN) architecture ([19]).

The Proxy Mobile IPv4 usage scenario in 3GPP2 (case 1) is illustrated in the following diagram:
Network Connection Setup (use case 1)

Description of the steps:

1a. MN performs layer 2 establishment with the BS/PMA and performs access authentication/authorization. During this phase, the MN runs EAP over UMB. The BS acts as the NAS in this phase.

1b. The BS exchanges AAA messages with the home AAA server via the AR (not shown in the figure) to authenticate the MN. As part of this step, the AR may download some information about the MN (e.g. user’s profile, handset type, assigned home agent address, and other capabilities of the MN). This information is passed to the PMA/BS (as necessary) to setup the PMIP tunnel in the next step(s).

2. The MN sends layer 2 signaling messages to the BS/PMA to trigger the PMIP tunnel setup process.

3. Triggered by step 2 the PMA/BS sends a PRRQ to the AGW/HA. The HA’s address is either received at step 1b from the Home AAA server (HAAA) or discovered by other means. The PRRQ contains the Care-of Address (CoA) of the PMA (collocated FA in this case). The HoA field is set to all zeros (or all ones). The PRRQ is protected by the
method described in this document. The derivation and distribution of the MN-HA or FA-HA key is outside the scope of this document.

4. The AGW/HA registers the MN’s session, assigns a symmetric GRE key and returns this key in the PRRP to the BS/PMA.

5. The BS/PMA responds back to the MN with a layer 2 signaling message.

6. At this step, the MN is assigned an IP address and is connected to the network (via the AGW).

In use case 2 the same procedures are followed except the PMIPv4 tunnel is established between the AGW and the HA. In this case GRE tunneling may not be used.

13.1. HO considerations in 3GPP2

There are some special handover considerations in 3GPP2’s Proxy Mobile IPv4 use case. Below is an illustration of the specific use case:

```
+----+        +-------+      +-------+   +-------+
|    |        |       |      |       |   |       |
| MN |        | New   |      |  AGW/ |   | Old   |
|    |        | PMA/BS|      |  HA   |   | PMA/BS|
+----+        +-------+      +-------+   +-------+

1

2

3

4

5
```
Description of the steps:

1. MN attaches to the new BS (L2 gets established). There is an ongoing mobility binding entry (MBE) in the AGW for the MN. The PMA in the new BS sends a PRRQ to the AGW.

2. The AGW receives a Proxy Registration Request for a Mobile Node and detects that it has an existing Mobility Binding Entry (MBE). The AGW validates the PRRQ from the new BS and it updates the MBE for the MN. The MBE is kept tentative at this point.

3. The AGW sends Proxy Registration Reply to the new BS. No Registration Revocation is used in the 3GPP2’s use case.

4. A 3GPP2’s proprietary PMA movement notification message may be exchanged between the AGW and the old BS.

5. The MBE update with the new BS is committed at this step.

14. IANA Considerations

This specification reserves one number for the Proxy Mobile IPv4 Extension in Section 5 from the space of numbers for non-skippable mobility extensions (i.e., 0-127) defined for Mobile IPv4 [1] at http://www.iana.org/assignments/mobileip-numbers. This specification also creates a new subtype space for the type number of this extension. The subtype values 1 and 2 are defined in this specification. Similar to the procedures specified for Mobile IPv4 number spaces, future allocations from this number space require expert review [20].

14.1. Mobile IPv4 Extension Type

This document introduces the following Mobile IP extension type.

Name : Proxy Mobile IPv4 Extension
Type Value : TBD
Section :
Section 5

Name : Proxy Mobile IPv4 Extension
Type Value : TBD
Section :

14.2. Mobile IPv4 Error Codes

This document introduces the following error code that can be returned by the HA in a Proxy Registration Reply.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>First referenced</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMIP_UNSUPPORTED</td>
<td>TBD</td>
<td>Section 10.1</td>
</tr>
</tbody>
</table>

15. Security Considerations

The functionality in this document is protected by the Authentication Extensions described in RFC 3344 [1] or IPSec [21]. Each PMA needs to have an security association (e.g. MN-HA, FA-HA, IPSec AH/ESP) with the HA to register the MN’s IP address. The security association can be provisioned by the administrator, or dynamically derived. The dynamic key derivation and distribution for this scheme is outside the scope of this document.

16. Acknowledgements

The authors would like to thank the following individuals for their review, comments, and suggestions to improve the content of this document.

Shahab Sayeedi (Motorola), Alper Yegin (Samsung), Premec Domagoj (Siemens), Michael Hammer (Cisco), Jun Wang (Qualcomm), Jayshree Bharatia (Nortel), Semyon Mizikovsky (Alcatel-Lucent), Federico De
Juan Huarte (Alcatel-Lucent), and Paula Tjandra (Motorola).

17. References

Authors' Addresses

Kent Leung
Cisco Systems
170 West Tasman Drive
San Jose, CA 95134
US

Email: kleung@cisco.com
Full Copyright Statement

Copyright (C) The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).