DHCPv6/SLAAC Address Configuration Switching for Host Renumbering
draft-liu-6renum-dhcv6-slaac-switching-00.txt

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 7, 2013.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Abstract

Sometimes stateful DHCPv6 address configuration and SLAAC may be both available in one network. In ND protocol, there is a M (ManagedFlag) flag defined in RA message, which indicates the hosts the DHCPv6 service is available. But for some reason, the ND protocol didn’t
define the flag as prescriptive but only advisory. This draft proposes to use two reserved bits in RA message to let the network control the hosts that which address configuration mode should be used. This feature is useful for management, especially in a renumbering event.

Table of Contents

1. Introduction .. 3
2. DHCPv6/SLAAC interaction 3
 2.1. Host behavior defined in standards 3
 2.2. Test of desktop operating systems’ behavior 4
 2.2.1. Test environment 4
 2.2.2. Test scenarios and results 5
 2.2.3. Conclusion.. 6
3. Requirement of Address Configuration Switching in Renumbering 6
4. Proposed Standard Update 7
 4.1. Adding a “DHCPv6Required” Flag 7
 4.2. Adding a “ReleaseDHCPv6” Flag 7
5. Security Considerations 8
6. IANA Considerations .. 8
7. References ... 8
 7.1. Normative References 8
 7.2. Informative References 8
8. Acknowledgments .. 8
Authors’ Addresses ... 9
1. Introduction

In IPv6, both of the DHCPv6 [RFC3315] and Neighbor Discovery [RFC4861] protocols can provide automatic IP address configuration for the hosts. They are known as stateful address auto-configuration and SLAAC (stateless address auto-configuration)[RFC4862], and are suitable for different scenarios respectively.

Sometimes the two address configuration modes may be both available in one network. This would add more or less additional complexity for both the hosts and the network management. In ND protocol, there is a M (ManagedFlag) flag defined in RA message, which indicates the hosts the DHCPv6 service status in the network. So with using the flag, the two separated address configuration modes are somehow correlated. But for some reason, the ND protocol didn’t define the flag as prescriptive but only advisory. This may vary the behavior of hosts when interpreting the M flag. (Note that, there is another O "OtherConfigFlag" flag also indicates the DHCPv6 service status, but it is not in the scope of this draft since it is not about address configuration.)

In RFC5887(Renumbering Still Needs Work), it also concerned the M flag issue, it said, "Until this ambiguous behaviour is clearly resolved by the IETF, operational problems are to be expected, since different host operating systems have taken different approaches." In this draft, we provided a brief test result in section 3 to identify "different host operating systems have taken different approaches".

This issue may cause inconvenience to the networks that need strong management (for example, the enterprise networks), because the host behavior of address configuration is somehow un-controlled by the network side so that it may violate the management policies. So in section 4, we proposed to use one of the reserved bits in RA message to let the network control the hosts that which address configuration mode should be used. We believe this feature is useful for management, especially in a renumbering event.

2. DHCPv6/SLAAC interaction

2.1. Host behavior defined in standards

In earlier SLAAC specification [RFC2462], the host behavior of interpreting M flag is as below:
"On receipt of a valid Router Advertisement, a host copies the value of the advertisement’s M bit into ManagedFlag. If the value of ManagedFlag changes from FALSE to TRUE, and the host is not already running the stateful address autoconfiguration protocol, the host should invoke the stateful address autoconfiguration protocol, requesting both address information and other information. If the value of the ManagedFlag changes from TRUE to FALSE, the host should continue running the stateful address autoconfiguration, i.e., the change in the value of the ManagedFlag has no effect. If the value of the flag stays unchanged, no special action takes place. In particular, a host MUST NOT reinvoke stateful address configuration if it is already participating in the stateful protocol as a result of an earlier advertisement."

But for some reason, the updated SLAAC specification [RFC4862] removed the relative description, it said in the RFC "considering the maturity of implementations and operational experiences. ManagedFlag and OtherConfigFlag were removed accordingly. (Note that this change does not mean the use of these flags is deprecated.)" So it feels like the IETF encourages operating system vendors to behave as they prefer to do. In the following section 2.2, we provided a test about current desktop operating systems’ behavior of DHCPv6/SLAAC interaction.

2.2. Test of desktop operating systems’ behavior

2.2.1. Test environment

![Diagram showing test environment](image-url)
As the figure 1 shows, it is a simple LAN environment. The DHCPv6 server is a Linux (Ubuntu 10.04)-based PC installing dibbler-server. Host1 is a Windows 7 PC, while host2 is a Linux (Ubuntu 12.04, kernel 3.2.12) PC. (Editor’s note: we intended to include Mac OS for test, but for some reason we haven't done yet, however, current test results have already showed the behavior of Oses varying.)

Note that, we only tested M flag behavior, O flag was not included. Because O flag is about other configuration beyond address configuration, it is out of the scope of this draft.

2.2.2. Test scenarios and results

- Scenario 0

 Hosts get online, no RA received.
 - Windows 7: continued sending RS messages for a while, if there is no RA replied, it then began to send DHCPv6 solicit;
 - Linux-kernel_3.2.12(Ubuntu 12.04): it continued sending RS, and didn’t try to send DHCPv6 solicit;

- Scenario 1

 Hosts hadn’t configured addresses yet, then if RA messages with M=0 received, obviously they’ll do SLAAC; if M=1, which meant SLAAC and DHCPv6 were available simultaneously in the link, the behavior is as the following:
 - Windows 7: using both SLAAC and DHCPv6 to configure the addresses, regardless of whether the prefixes in SLAAC/DHCPv6 are identical of not;
 - Linux-kernel_3.2.12(Ubuntu 12.04): exactly the same action with Windows 7;

- Scenario 2

 Hosts were already SLAAC-configured only, then received RA messages with M=1:
 - Windows 7: using DHCPv6 to configure another address while keep the former SLAAC-configured address;
 - Linux(Ubuntu 12.04): no action. (Note that, it’s different with scenarios 1)
o Scenario 3

Hosts already configured by DHCPv6 only, then received RA messages:

- Windows 7: If M=1, it configured another address with SLAAC and kept the DHCPv6 configuration; else M=0, it released the DHCPv6 address and configured with SLAAC;
- Linux-kernel_3.2.12(Ubuntu 12.04): there’s no DHCPv6-only situation for it, only in scenario 1 when M=1 it would configured with SLAAC and DHCPv6 simultaneously.

o Scenario 4

Hosts already configured with SLAAC/DHCPv6 simultaneously, then RA messages with M=0 received:

(Note: sorry, we haven’t covered this scenario yet, will be added in the next version)

2.2.3. Conclusion

Obviously, the two operating systems interpreted the M flag quite differently. Windows 7 treats the flag as instruction, it even released DHCPv6 session when M=0. Linux was likely to treat the flag as advisory, when SLAAC was done, it won’t care about M=1.

3. Requirement of Address Configuration Switching in Renumbering

During IPv6 renumbering, the SLAAC-configured hosts can reconfigure IP addresses by receiving ND Router Advertisement (RA) messages containing new prefix information. The DHCPv6-configured hosts can reconfigure addresses by initialing RENEW sessions when the current addresses’ lease time is expired or receiving the reconfiguration messages initiated by the DHCPv6 servers.

The above mechanisms have an implicit assumption that SLAAC-configured hosts will remain SLAAC while DHCPv6-managed hosts will remain DHCPv6-managed. In [I-D.ietf-6renum-enterprise], it described several renumbering scenarios in enterprise network. For example, the network may split, merge, grow, relocate or reorganize. In these situations, it is possible that SLAAC-configured hosts may need to switch to DHCPv6-managed, or verse vice.

As discussed in section 2, the semantic of M bit is ambiguous, for example, M=0 is efficient for Windows 7 PCs to switch from DHCPv6-managed to SLAAC, but for Linux it is just invalid. So in the
following section 4, we proposed to use another two flags to indicate the hosts switching between SLAAC/DHCPv6.

4. Proposed Standard Update

4.1. Adding a "DHCPv6Required" Flag

We propose to add a flag in the standard RA message format[RFC4861], the "DHCPv6Required" D flag, which will occupy one bit in the reserved field as showed in the following figure 2.

4.2. Adding a "ReleaseDHCPv6" Flag

We propose to add one more flag in the standard RA message format, the "ReleaseDHCPv6" R flag, which will occupy one more bit in the reserved field as showed in the following figure 2.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type      |     Code      |          Checksum             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cur Hop Limit |M|O|D|R| Rsvd  |       Router Lifetime         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         Reachable Time                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Retrans Timer                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Options ...                                                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2 DHCPv6Required and ReleaseDHCPv6 flags in RA message

4.3. Host Behavior of Interpreting D/R Flag

When a host has not configured its addresses (just like scenario 0 in section 2.2) and receives RA messages with D=1, it MUST initiate a DHCPv6 stateful address autoconfiguration process and SHOULD NOT do SLAAC.

When a host has been SLAAC-configured, and receives D=1, it MUST initiate a DHCPv6 stateful address autoconfiguration process and SHOULD deprecate SLAAC-configured addresses.

When a host has been address-configured with DHCPv6, and receives RA messages with R=1, it SHOULD release current DHCPv6 address configuration and do SLAAC.
5. Security Considerations

No more security considerations than the Neighbor Discovery protocol [RFC4861].

6. IANA Considerations

None.

7. References

7.1. Normative References

7.2. Informative References

8. Acknowledgments

This work adopts some content from [I-D.ietf-6renum-gap-analysis].

This document was prepared using 2-Word-v2.0.template.dot.
Authors’ Addresses

Bing Liu
Huawei Technologies Co., Ltd
Huawei Q14 Building, No.156 Beiqing Rd.,
Zhong-Guan-Cun Environmental Protection Park, Hai-Dian District
EMail: leo.liubing@huawei.com