IPv6 IPv4 translation FTP considerations
draft-liu-behave-ftp64-04.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on February, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
Abstract

The File transfer protocol, which is defined by the RFC 959, has a long history, but still widely used today. The original version of FTP specification defines IPv4 FTP which means it assumes the IP version is IPv4. RFC 2428 defines IPv6 extensions of FTP, introducing EPRT and EPSV command.

In the IPv6-IPv4 translation scenario, considerations should be applied to FTP client, server and translation box to ensure FTP protocol work properly. This document gives guidelines for the FTP client, server and the translation box to ensue FTP working properly in the IPv4-IPv6 transition scenario.

Table of Contents

1. Introduction..3
2. Conventions used in this document............................4
3. Client considerations..4
4. Server considerations..5
5. FTP ALG considerations.......................................5
 5.1. FTP ALG limitations....................................5
 5.2. FTP ALG consideration................................6
6. Security Considerations......................................7
7. IANA Considerations...7
8. Acknowledgments...7
9. References..7
 9.1. Normative References....................................7
 9.2. Informative References................................7
Author’s Addresses..8
1. Introduction

Figure 1 illustrated the IPv6-IPv4 translation FTP scenario.

Figure 1 IPv6-IPv4 translation FTP scenario.

The IPv6 FTP client situated in an IPv6 network and tries to communicate with an IPv4 server that situated in an IPv4 network using a translation box in the middle.

It should be noted that in some scenario, the FTP client that running on the IPv6 host maybe legacy IPv4 FTP client. In this case, the communication will not succeed by only introducing translation box in the network. That case is out the scope of this document.

FTP has two operation modes: passive mode and active mode. In passive mode, the server provides port used for the client to connect to. In active mode, the server connects back to the client, using the IP address and port number which provide by the client.

RFC 2428 specifies IPv6 extension of FTP. Two new commands, EPRT/EPSV are specified. The EPRT command is an extension of PORT, it could provide IPv6 address and port number to the server. The EPSV command is an extension of PASV, when issue this command, the server should responses its port number used for the client to connect.

Many serves do not support EPSV command today, but most of them could support PASV mode. This document provides guidelines for client and server to avoid the problems when an IPv6 FTP client communicating with an IPv4 server through a translation box.
2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119.

3. Client considerations

According to RFC 2428, the IPv6 client SHOULD support EPSV and EPRT command. Furthermore, it specifies that when the control and data connections are being established between the same two machines, the EPSV command MUST be used. From the backward compatibility’s perspective, this document suggests that the IPv6 FTP client SHOULD support both EPSV and PASV. The reason is that during the early stage of IPv6 transition, many FTP servers will be located in the IPv4 Internet which may not support EPSV command. This requirement implies that the IPv6 FTP client supports both IPv4 and IPv6 protocol version. This requirement is reasonable since backward compatibility to IPv4 is one of the basic requirements for any IPv6 applications especially in the early stage of IPv6 transition.

Normally, there are two kinds of FTP clients: the dedicated FTP client software and FTP client the embedded in other applications. For example, gftp is a kind of dedicated ftp client software that running on Linux. Conversely, IE also could be used as FTP client, but it belongs to FTP client embedded in other application.

Most of today’s dedicated IPv4 FTP client software uses passive mode as the default mode. According to RFC 2428, for IPv6 FTP client, EPSV command MUST be used when the control and data connection established between the same two machines. The reasons that both IPv4 and IPv6 FTP client prefer passive mode includes: 1. Active mode of FTP may introduce security issues. For example, the attacker may use PORT/EPRT command to specify a victim host’s IP and port, then the FTP serve will continually to send TCP SYN to the victim host to try to establish data connection. This kind of attack is recognized as FTP reflects attack. 2. Passive mode of FTP may benefit when traverse firewalls or NAT. using passive mode also eliminate FTP ALG in the middle box.

As an exception, IE uses active mode in default. But IE can be configured to use passive mode.

From the above analysis, it is suggested that FTP client SHOULD use passive mode instead of active mode. For IPv6 FTP client, according to RFC 2428, it should use EPSV command. In the IPv4-IPv6 transition scenario, an IPv6 client may try to communicate with an IPv4 server.
In this case, the IPv4 server may not support EPSV command and the EPSV command may fail. This document suggests that the IPv6 FTP client SHOULD retry with PASV command when EPSV command fails. The IPv4 FTP server will respond to PASV command with a message that contains an IPv4 address and port number of the FTP server that used for the client to connect to. The client MUST ignores the IPv4 address provided in the response; it should use the control connection’s IP address to connect to the server to establish the data connection. The approach that simply ignoring PASV respond message’s IP address and use control channel’s IP address could not only simply the FTP client software’s implementation but also can avoid the problems caused by using the IPv4 address that included in the response message. For example, if the FTP client has a private IPv4 connection and a public IPv6 connection, if it tries to use the IPv4 connection to establish data connection with the server, it will never succeed.

4. Server considerations

This document does not enforce any requirement for FTP server since this document considers the IPv6 FTP client communicating with IPv4 FTP server scenario. The IPv4 FTP server maybe just an ordinary IPv4 FTP server.

5. FTP ALG considerations

This document argues that since FTP is a protocol that could avoid ALG by slightly adjusting the operation of the IPv6 FTP client it is not recommended the translation box to implement FTP ALG.

Adjusting the operation of IPv6 client is feasible because IPv6 is not widely deployed and there are not much IPv6 FTP client deployed right now. It is a good chance to give this guideline before the widely deployment of IPv6 and IPv6 FTP client.

5.1. FTP ALG limitations

Implementing FTP ALG in the translation box may have some limitations, such as:

1) FTP ALG may case to increase the complexity of translation box, since FTP ALG needs to understand FTP protocol and translate the application layer payload and update the header of FTP control packets. ALG could also cause the decline of the translation box’s performance.
2) From the evolution perspective, if the network continues to provide support of FTP ALG all the time, the ALG function of the translation box will become more and more complex.

5.2. FTP ALG consideration

Although this document does not recommend implementing FTP ALG in the translation box but in some exceptional scenario the operator may want to deploy FTP ALG in their translation box for special purpose, this document also gives guidelines for FTP ALG implementation in translation box.

1. Passive mode

In passive mode, the IPv6 FTP client may send EPSV which may not recognized by the IPv4 FTP server. The FTP ALG may translate EPSV to PASV and the corresponding response messages should also be translated.

2. Active mode

For active mode, the IPv6 FTP client may issue EPRT command which contains the client’s IPv6 address and port number that used for the server to connect. The FTP ALG should translate EPRT command to PORT command. The FTP ALG should translate the client’s IPv6 address to the corresponding IPv4 address. The IPv6-IPv4 mapping maybe created by the translation box during the initiating of FTP connection in statefull translation mode. In stateless translation mode, there is no need to create mapping dynamically. If the translation box using port multiplexing, the port number in the EPRT command should also be translated.

3. Default connection port

According to RFC 959 if no EPSV or EPRT command issued, the server may connects to the client’s control connection’s port use source port 20. The FTP ALG should intercept this TCP connection and translate the corresponding port number if translation box translates the IPv6-IPv4 port number.

4. The control connection and data connection belongs to different machines

The FTP protocol can support the scenario that the control connection and data connection belongs to different machines. The FTP ALG function of current version of this document does not address this scenario.
6. Security Considerations

TBD

7. IANA Considerations

None

8. Acknowledgments

TBD

9. References

9.1. Normative References

9.2. Informative References

Author’s Addresses

Dapeng Liu
China Mobile research institute
Unit2, 28 Xuanwumenxi Ave, Xuanwu District,
Beijing 100053, China

Phone: (8610)13911788933
Email: liudapeng@chinamobile.com

Zhen Cao
China Mobile research institute
Unit2, 28 Xuanwumenxi Ave, Xuanwu District,
Beijing 100053, China

Phone: (8610)15120015799
Email: caozhen@chinamobile.com