Redundancy provisioning for VPLS Inter-domain
draft-liu-l2vpn-vpls-inter-domain-redundancy-04

Abstract

In many VPLS deployments based on RFC4762, inter-domain connectivity has been deployed without node redundancy, or with node redundancy in a single domain. This document describes a solution for inter-domain VPLS based on RFC4762 with node and link redundancy in both domains.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 3, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect
Table of Contents

1. Introduction .. 3
2. Conventions used in this document 3
3. Motivation .. 3
4. Network Use Case ... 4
5. PW redundancy application procedure for inter-domain 5
 5.1. ICCP switchover condition 6
 5.1.1. Inter-domain PW failure 6
 5.1.2. PE node isolation .. 6
 5.1.3. PE node failure ... 6
 5.2. Inter-domain redundancy with two-PWs 6
 5.3. Inter-domain redundancy with four-PWs 6
6. Security Considerations .. 8
7. IANA Consideration ... 8
8. Acknowledgements .. 8
9. References ... 9
 9.1. Normative references ... 9
 9.2. Informative References 9
Authors’ Addresses ... 9
1. Introduction

In many VPLS deployment based on [RFC4762], inter-domain connectivity has been deployed without node redundancy, or with node redundancy in a single domain. This document describes a solution for inter-domain VPLS based on [RFC4762] with node and link redundancy in both domain. The domain in this document refers to AS, or other administrative domains.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119.

3. Motivation

Inter-AS VPLS offerings are widely deployed in service provider networks today. Typically, the ASBRs and associated physical links that connect the domains carry a multitude of services. As such, it is important to provide link and node redundancy, to ensure service high availability and meet end customer service level agreements (SLAs).

Several current deployments of inter-AS VPLS are implemented using Inter-AS Option A, where VLANs are used to hand-off the services between the two domains. In these deployments, link/node redundancy is achieved using MC-LAG (Multi-Chassis Link Aggregation) and [I-D.ietf-pwe3-iccp]. This, however, places two restrictions on the interconnect: the two domains must be interconnected using Ethernet links, and the links must be homogeneous, i.e. of the same speed, in order to be aggregate-able. These two conditions cannot always be guaranteed in live deployments. For instance, there are many scenarios where the interconnect between the domains uses POS (Packet over Sonet/SDH), thereby ruling out the applicability of MC-LAG as a redundancy mechanism. As such, from a technical point of view, it is desirable to use PWs to interconnect the VPLS domains, and to offer resiliency using PW redundancy mechanisms.

MP-BGP can be used for VPLS inter-domain protection, as described in [RFC6074], using either Option B or Option C inter-AS models. However, with this solution, the protection time relies on BGP control plane convergence. In certain deployments, with tight SLA requirements on availability, this mechanism may not provide the desired failover time characteristics. Furthermore, in certain situations MP-BGP is not deployed for VPLS. The redundancy solution
described in this draft reuses ICCP [I-D.ietf-pwe3-iccp] and PW redundancy [I-D.ietf-pwe3-redundancy] to provide fast convergence.

Furthermore, in the case where Label Switched Multicast is not used for VPLS multicast [I-D.ietf-l2vpn-vpls-mcast], the solution described here provides a better behavior compared to inter-AS option B: with option B, each PE must perform ingress replication to all other PEs in its local as well as the remote domain. Whereas, with the ICCP solution, the PE only replicates to local PEs and to the ASBR. The ASBR then sends traffic P2P to the remote ASBR, and the remote ASBR replicates to its local PEs. As a result, the load of replication is distributed and is more efficient than option B.

The two PW redundancy modes defined in [I-D.ietf-pwe3-redundancy-bit], namely independent mode and master/slave mode, are applicable in this solution. In order to maintain control plane separation between the two domains, the independent mode is preferred by operators. While the master/slave mode provides some enhanced capabilities and, hence, is included in this draft.

4. Network Use Case

There are two network use cases for VPLS inter-domain redundancy: two-PWs redundancy case, and four-PWs redundancy case.

Figure 1 presents an example use case with two inter-domain PWs. PE3/PE4/PE5/PE6 may be ASBRs of their respective AS, or VPLS PEs within its own AS. A deployment example of this use case is where there are only two physical links between the two domains and PE3 is physically connected with PE5, and PE4 is physically connected with PE6.
5. PW redundancy application procedure for inter-domain

PW redundancy application procedures are described in section 9.1 of [I-D.ietf-pwe3-iccp]. When a PE node encounters a failure, the other PE takes over. This document reuses the PW redundancy mechanism defined in [I-D.ietf-pwe3-iccp], with new ICCP switchover conditions as specified in the following section.

There are two PW redundancy modes defined in [I-D.ietf-pwe3-redundancy-bit]: Independent mode and Master/Slave mode. For the inter-domain four-PW scenario, it is required for the PEs to ensure that the same mode is supported on the two ICCP peers in the same RG.
5.1. ICCP switchover condition

5.1.1. Inter-domain PW failure

When a PE receives advertisements from the active PE, in the same RG, indicating that all the inter-domain PW status has changed to DOWN/STANDBY, then if it has the highest priority (after the advertising PE), it SHOULD advertise active state for all of its associated inter-domain PWs.

5.1.2. PE node isolation

When a PE detects failure of all PWs to the local domain, it SHOULD advertise standby state for all its inter-domain PWs to trigger remote PEs to switchover.

5.1.3. PE node failure

When a PE node detects that the active PE, that is member of the same RG, has gone down, if the local PE has redundant PWs for the affected services and has the highest priority (after the failed PE), it advertises the active state for all associated inter-domain PWs.

5.2. Inter-domain redundancy with two-PWs

In this use case, it is recommended that the operation be as follows:
- ICCP deployment option: ICCP is deployed on VPLS edge nodes in both domain;
- PW redundancy mode: independent mode only;
- Protection architectures: 1:1 (1 standby, 1 active).

The switchover rules described in section 5.2 apply. Before deploying this inter-domain VPLS, the operators MUST negotiate to configure same PW high/low priority at the two PW end-points. E.g, in figure 1, PE3 and PE5 MUST both have higher/lower priority than PE4 and PE6, otherwise both PW1 and PW2 will be in standby state.

5.3. Inter-domain redundancy with four-PWs

In this use case, there are generally three options to provide 1:1 protection or 3:1 protection. The inter-domain PWs that connect to the same PE should have proper PW priority to advertise same active/standby state. E.g, in figure 2, both PW1 and PW3 connected to PE3 would advertise active/standby state.

For 1:1 protection model, the operation would be as follows:
The switchover rules described in section 5.2 apply. In this case, the operator does not need to do any coordination of the inter-domain PW priority. The PE detecting one PW DOWN should set the other PW to STANDBY if available, and then synchronize the updated state to its ICCP peer. When a PE detects that the PWs from ICCP peer PE are DOWN or STANDBY, it should switchover as described in section 5.2.1.

There are two variants of the 3:1 protection model. We will refer to them as option A and B. For option A of the 3:1 protection model, the support of ‘request switchover’ bit is required. The operation is as follows:

- ICCP deployment option: ICCP is deployed on VPLS edge nodes in both domain;
- PW redundancy mode: Independent mode with ‘request switchover’ bit support;
- Protection architectures: 3:1 (3 standby, 1 active).

In this case, the procedure on the PE for the PW failure is per section 6.3 of [I-D.ietf-pwe3-redundancy-bit], and with the following additions:

- When the PE detects failure of the active inter-domain PW, it should switch to the other local standby inter-domain PW if available, and send an updated LDP pseudowire status message with the ‘request switchover’ bit set on that local standby inter-domain PW to remote the PE;
- Local and remote PE should also update the new PW status to their ICCP peers, respectively, in Application Data Messages with PW-RED Synchronization Request TLV for corresponding service, so as to synchronize the latest PW status on both PE sides.
- While waiting for the acknowledgment, the PE that sent the ‘request switchover’ bit may receive a switchover request from its ICCP peer’s PW remote endpoint by virtue of the ICCP synchronization. The PE MUST compare IP addresses with that PW remote peer. The PE with a higher IP address will ignore the request and continue to wait for the acknowledgement from its peer in the remote domain. The PE with the lower IP address MUST clear ‘request switchover’ bit and set ‘Preferential Forwarding’ local status bit, and update the PW status to ICCP peer.
- The remote PE receiving ‘request switchover’ bit will acknowledge the request and activate the PW only when it is ready to take over as described in section 5.2, otherwise, it MUST ignore the request.
The node isolation failure and node failure is described in section 5.2.

For option B of 3:1 protection model, master/slave mode support is required, and should be as follows:
- ICCP deployment option: ICCP is deployed on VPLS edge nodes in only one domain;
- PW redundancy mode: master/slave only;
- Protection architectures: 3:1 (3 standby, 1 active).

When master/slave PW redundancy mode is employed, the network operators of the two domains must agree on which domain PEs will be master, and configure the devices accordingly. The inter-domain PWs that connect to one PE should have higher PW priority than the PWs on the other PE in the same RG. The procedure on the PE for PW failure is as follows:
- The PE with higher PW priority should only enable one PW active, and the other PWs standby.
- When the PE detects active PW DOWN, it should enable the other local standby PW to be active with preference. Only when the two inter-domain PWs connect to the PE are DOWN, the ICCP peer PE in the same RG would switchover as described in section 5.2.

The node isolation failure and node failure is described in section 5.2.

6. Security Considerations

This draft will have the same security properties of [I-D.ietf-pwe3-iccp] and [RFC4762].

7. IANA Consideration

No IANA allocation is required in this draft.

8. Acknowledgements

The authors wish to acknowledge the contributions of Daniel Cohn and Yubao Wang.

Daniel Cohn
Orckit-Corrigent
Email: danielc@orckit.com

Yubao Wang
ZTE Corporation
9. References

9.1. Normative references

[I-D.ietf-pwe3-iccp]

[I-D.ietf-pwe3-redundancy-bit]

9.2. Informative References

[I-D.ietf-l2vpn-vpls-mcast]

[I-D.ietf-pwe3-redundancy]

Authors’ Addresses

Zhihua Liu
China Telecom
109 Zhongshan Ave.
Guangzhou 510630
P.R.China
Email: zhliu@gsta.com

Lizhong Jin
ZTE Corporation
889 Bibo Road
Shanghai 201203
P.R.China
Email: lizhong.jin@zte.com.cn

Ran Chen
ZTE Corporation
68 Zijinghua Road
Nanjing 210012
P.R.China
Email: chen.ran@zte.com.cn

Dennis Cai
Cisco
3750 Cisco Way,
San Jose, California 95134
USA
Email: dcai@cisco.com

Samer Salam
Cisco
595 Burrard Street, Suite 2123
Vancouver, BC V7X 1J1
Canada
Email: ssalam@cisco.com