dhcp option for CoAP Proxy Discovery
draft-ma-core-dhcp-pd-00

Abstract

CoAP utilizes DNS to discovery the IP address of the CoAP server. However DNS is heavy for the most resource constrained end-points. In this case the assistance from CoAP proxy or research directory (RD) is needed for CoAP transaction. This specification proposes to define one new dhcp option for proxy/RD discovery for the most resource constrained end-points.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 3, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
 1.1. Conventions used in this document 3
2. dhcp option for proxy discovery 3
3. Security Considerations 4
4. IANA Considerations .. 4
5. Normative References .. 4
Authors’ Addresses .. 4
1. Introduction

CoAP [I-D.ietf-core-coap] is a RESTful protocol designed for constrained devices. The ultimate goal of CoAP is to enable the "Web of Things" concept, which connects the smart sensor network with the global internet.

CoAP utilizes DNS for CoAP server IP address discovery. However in some circumstances, DNS is heavy to be implemented in the resource constrained nodes. In this case the assistance from CoAP proxy is needed for CoAP transaction.

Also in many M2M scenarios, direct discovery of resources is not practical due to sleeping nodes, disperse networks, or networks where multicast traffic is inefficient. These problems can be solved by employing an entity called a Resource Directory (RD) [I-D.shelby-core-resource-directory], which hosts descriptions of resources held on other servers, allowing lookups to be performed for those resources.

Before the CoAP sensor makes use of the CoAP proxy or RD, it must know the location of the proxy or RD. There can be multiple ways to discover the proxy’s location, including both static and dynamic methods. Static configuration is a straightforward way for the client to access the server. However, in many situations, static configuration is not enough to meet the requirements.

1.1. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]

2. dhcp option for proxy discovery

dhcp [RFC2131] provides dynamic methods to deliver configuration information to the end node. dhcp options [RFC2132] are defined to specify server information. This document specifies one new dhcp option for CoAP proxy/rd discovery.

The CoAP proxy/rd option specifies a list of CoAP proxy or Research Directory servers available to the client. Servers SHOULD be listed in order of preference.

The code for the name server option is x. The minimum length for this option is 4 octets, and the length MUST always be a multiple of 4.
CoAP proxy(rd option)

3. Security Considerations

 TBD.

4. IANA Considerations

 This document needs to register one new dhcp option number at IANA.

5. Normative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank, "Constrained Application Protocol (CoAP)",
 draft-ietf-core-coap-07 (work in progress), July 2011.

 [I-D.shelby-core-resource-directory]
 draft-shelby-core-resource-directory-01 (work in progress), September 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",

Authors’ Addresses

Yuanchen Ma
Hitachi (China) Research and Development Corporation
301, Tower C North, Raycom, 2 Kexuyuan Nanlu, Haidian District
Beijing 100190
China

Email: ycma@hitachi.cn

Xuan He
Hitachi (China) Research and Development Corporation
301, Tower C North, Raycom, 2 Kexuyuan Nanlu, Haidian District
Beijing 100190
China

Email: xhe@hitachi.cn

Zhen Cao
China Mobile
Unit2, 28 Xuanwumenxi Ave, Xuanwu District
Beijing 100053
China

Email: zehn.cao@gmail.com