Definitions for Textual Conventions and OBJECT-IDENTITIES for Pseudo-Wires Management

draft-nadeau-pw-tc-mib-00.txt

1.0 Abstract

This memo describes Textual Conventions and OBJECT-IDENTITIES used for managing Pseudo-Wire services.

Table of Contents

1.0 Abstract..1
1.0 Abstract..1
2.0 Introduction..2
3.0 Terminology..2
4.0 The SNMP Management Framework.........................3
5.0 Definitions...3
6.0 Security Considerations.................................4
2.0 Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines Textual Conventions used in IETF PW and PW-related MIBs.

Comments should be made directly to the MPLS mailing list at pwe3@ietf.org.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [BCP14].

For an introduction to the concepts of Pseudo-Wires, see [PWREQ] and [PWFRM].

3.0 Terminology

This document uses terminology from the document describing the Pseudo-Wires Requirements [PWE3REQ].

4.0 The SNMP Management Framework

The SNMP Management Framework presently consists of five major components:

- An overall architecture, described in RFC 2271 [SNMPArch].

- Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIV1 and described in RFC 1155 [SMIV1], RFC 1212 [SNMPv1MIBDef] and RFC 1215 [SNMPv1Traps]. The second version, called SMIV2, is described in RFC 1902 [SMIV2], RFC 1903 [SNMPv2TC] and RFC 1904 [SNMPv2Conf].

- Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in RFC 1157 [SNMPv1]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [SNMPv2c] and RFC 1906 [SNMPv2TM]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [SNMPv2TM], RFC 2272 [SNMPv3MP] and RFC 2574 [SNMPv3USM].

- Protocol operations for accessing management information. The
first set of protocol operations and associated PDU formats is
described in RFC 1157 [SNMPv1]. A second set of protocol operations
and associated PDU formats is described in RFC 1905 [SNMPv2P0].

- A set of fundamental applications described in RFC 2273
 [SNMPv3App] and the view-based access control mechanism described in
 RFC 2575 [SNMPv3VACM].

A more detailed introduction to the current SNMP Management Framework
can be found in RFC 2570 [RFC2570].

Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.

This memo specifies a MIB module that is compliant to the SMIV2. A
MIB conforming to the SMIV1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIV2 will be converted into textual descriptions in
SMIV1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.

5.0 Definitions

PW-TC-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, Unsigned32, transmission
 FROM SNMPv2-SMI

 TEXTUAL-CONVENTION
 FROM SNMPv2-TC;

pwTCMIB MODULE-IDENTITY
 LAST-UPDATED "200107121200Z" -- 12 July 2001 12:00:00 GMT
 ORGANIZATION "Multiprotocol Label Switching (MPLS) Working Group,
 Pseudo Wire Edge to Edge Emulation (PWE3) Working
 Group"
 CONTACT-INFO
 "MPLS Working Group Mailing List: mpls@uu.net
 PWE3 Working Group Mailing List: pwe3@ietf.org"

 DESCRIPTION
 "This MIB Module provides Textual Conventions
 and OBJECT-IDENTITY Objects to be used PW services."

 -- Revision history.
REVISION "200107121200Z" -- 12 July 2001 12:00:00 GMT
DESCRIPTION "Initial version."

::= { pwMIB 1 } -- pwMIB To Be Assigned by IANA

pwMIB OBJECT IDENTIFIER
 ::= { transmission 7777 } -- To be assigned by IANA ??

-- Textual Conventions defined below are organized alphabetically

PwGroupID ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "An administrative identification mechanism for grouping a
 set of service-specific pseudo-wire services. May only
 have local significance"
 SYNTAX Unsigned32

PwVcID ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Virtual Circuit Identifier. Uniquely identifies a VC
 locally. Also uniquely identifies a VC at its end points."
 SYNTAX Unsigned32

PwVcIndex ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Virtual Circuit Index. Locally unique index for indexing
 one of several MIB tables associated with a particular VC."
 SYNTAX Unsigned32

PwVcInstance ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Virtual Circuit Instance. Use in conjunction with
 PwVcIndex when it is required to have more than one
 instance of a particular VC. The primary application
 for instances is APS where there are primary and backup
 VCs."
 SYNTAX Unsigned32

END

6.0 Security Considerations

This memo defines textual conventions and object identities for use
in MPLS MIB modules. Security issues for these MIB modules are
addressed in the memos defining those modules.
7.0 References

8.0 Author’s Addresses

Thomas D. Nadeau
Cisco Systems, Inc.
250 Apollo Drive
Chelmsford, MA 01824
Email: tnadeau@cisco.com

Dave Danenberg
Litchfield Communications, Inc.
76 Westbury Park Rd
Princeton Building East
Watertown, CT 06795
Email: dave_danenberg@litchfieldcomm.com

David Zelig
Corrigent Systems LTD.
126, Yigal Alon st.
Tel Aviv, ISRAEL
Phone: +972-3-6945273
Email: davidz@corrigent.com

Andrew G. Malis
Vivace Networks, Inc.
2730 Orchard Parkway
San Jose, CA 95134
Email: Andy.Malis@vivacenetworks.com

9.0 Full Copyright Statement

"Copyright (C) The Internet Society (2001). All Rights Reserved. This
document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns."
This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.