1. Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

2. Copyright Notice

Copyright (C) The Internet Society (2001). All Rights Reserved.

3. Abstract

There is a need for Tunnel end-point discovery within and across Autonomous Systems. BGP is the only protocol that is widely-spoken across Autonomous Systems and can carry this information. This document defines how BGP speakers can convey Tunnel end-point reachability information.

4. Introduction
Two end-points of a Tunnel need to know the end-point information and its binding to a network address at the remote point. Normally, this can be statically shared and configured. But in case of a large network where there may be a need for a large number of tunnels, the number of tunnel end-points that need to be exchanged and maintained, grows. It then needs to be exchanged and maintained using an inter-AS protocol.

5. The IPv4-Tunnel SAFI

This document defines a new SAFI called the IPv4-Tunnel SAFI. The <AFI, SAFI> [IANA-AFI] [IANA-SAFI] value pair used to identify this SAFI is (AFI=1, SAFI=TBD).

The tunnel end point address will be carried as an NLRI in the MP_REACH attribute for this SAFI. The NLRI Format will be a 2-byte Reserved field followed by a 4-byte IPv4 address.

6. BGP Attribute

The BGP SSA Attribute [BGP-SSA] will be used to carry the Tunnel end-point information.

The Value Field of the BGP SSA Attribute, MUST contain at least one of the following valid Type codes for this SAFI. It MAY contain one or more TLVs with these Type codes.

Type 1: L2TPv3 Tunnel information
Type 2: mGRE Tunnel information
Type 3: IPSec Tunnel information
Type 4: MPLS Tunnel information

6.1. L2TPv3 Tunnel information TLV

The L2TPv3 Tunnel Information TLV has a type of 1. The value part of the L2TPv3 Tunnel Information Type contains the following:

- Preference (2 Octets)
- Flags (1 Octet)
- Cookie Length (1 Octet)
- Session ID (4 Octets)
- Cookie (Variable)

The L2TPv3 Tunnel Information TLV looks as follows:
where

Length A 2 Octet field that specifies the length of the L2TPv3 attribute in octets. The value contained in this Length field MUST not exceed the total length of the BGP SSA [SSA] Attribute minus the total length of any prior TLVs.

Preference A 2 Octet field containing a Preference associated with the TLV. The Preference value indicates a preferred ordering of tunneling encapsulations according to the sender. The recipient of the information SHOULD take the sender’s preference into account in selecting which encapsulation it will use. A higher value indicates a higher preference.

Flags A 1 Octet field containing flag-bits. The leftmost bit indicates whether Sequence numbering is to be used or not. The remaining bits are reserved for future use.

Cookie Length Cookie Length is a 1 Octet field that contains the length of the Variable length Cookie.

Session ID A 4 Octet field containing a non-zero identifier for a session.

Cookie Cookie is a variable length (maximum 64 bits), value used by L2TPv3 to check the association of a received data message with the
session identified by the Session ID.

The default value of the Length Field for the L2TPv3 Tunnel information TLV is between 8 and 16 bytes, depending on the length of the Cookie field specified in Cookie length. If the length of the TLV is greater than that value, the subsequent portion of the Value field contains one or more sub-TLVs.

A Sub-TLV when present is of the following format:

```
0                   1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Sub-Type     | Length        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Value (Variable)         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

where Sub-Type & Length are of 1-Octet each & the Value field is variable as specified by the Length.

6.2. mGRE Tunnel Information TLV

The mGRE Tunnel Information Type has a Type 2. The value part of the mGRE Tunnel Information Type contains the following:

- Preference (2 Octets)
- Flags (1 Octet)
- mGRE Key (0 or 4 Octets)

The mGRE Tunnel Information TLV looks as follows:

```
0                   1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Type = 0x02              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Length  (2 octets)       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Preference (2 octets)    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S|K|  Flags                  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
<table>
<thead>
<tr>
<th>mGRE Key (4 Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>++++++++++++++++++++</td>
</tr>
</tbody>
</table>

Length A 2 Octet field that specifies the length of the mGRE information in octets. The value contained in this Length field MUST not exceed the total length of the BGP SSA [SSA] Attribute minus the total length of any prior TLVs.

Preference A 2 Octet field containing a Preference associated with the TLV. The Preference value indicates a preferred ordering of tunneling encapsulations according to the sender. The recipient of the information SHOULD take the sender’s preference into account in selecting which encapsulation it will use. A higher value indicates a higher preference.

Flags A 1 Octet field containing flag-bits. The leftmost bit indicates whether Sequence numbering is to be used or not. The 2nd bit indicates whether an mGRE Key is present or not. The remaining bits are reserved for future use.

mGRE Key A 4 Octet field containing an optional mGRE Key.

If the Length field of the TLV contains a value greater than 3 Octets plus the value specified in the Key Length, the subsequent portion of the Value field contains one or more sub-TLVs.

A Sub-TLV when present is of the following format:

```
0    1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
++++++++++++++++++++++++++++++
| Sub-Type   | Length   |
++++++++++++++++++++++++++++++
| Value (Variable) |
++++++++++++++++++++++++++++++
```

where Sub-Type & Length are of 1-Octet each & the Value field is variable as specified by the Length.

6.3. IPSec Tunnel Information TLV
The IPSec Tunnel Information Type has a Type 3. The format of the IPSec Tunnel Information TLV is TBD.

6.4. MPLS TLV

The MPLS TLV has a Type 4. The format of the MPLS TLV is TBD.

7. Capability Advertisement

A BGP speaker that wishes to exchange the IPv4-Tunnel SAFI, MUST use the MP_EXT Capability Code as defined in [BGP-MP], to advertise the corresponding (AFI, SAFI) pair.

A BGP speaker MAY participate in the distribution of IPv4-Tunnel information.

8. Operation

A BGP Speaker that receives the Capability for the IPv4-Tunnel SAFI, MAY advertise the IPv4-Tunnel prefixes to that peer.

In the UPDATE message for this SAFI sent to a peer, a BGP speaker MUST only advertise the SAFI-specific attribute [SSA] TLVs that are defined as valid for this SAFI.

If a BGP Speaker receives an SSA TLV that it does not recognize, it will accept it and propagate it to other peers.

9. Deployment Considerations

In order for the Tunnels to come up between two end-points, the BGP Speakers advertising the Tunnel end-points using the IPv4 Tunnel SAFI, MUST exchange at least one common encapsulation option.

10. Security Considerations

This extension to BGP does not change the underlying security issues.

11. Acknowledgements

We would like to thank Jim Guichard, Arjun Sreekantiah, Shyam Suri, Chandrashekhar Appanna, John Scudder and Mark Townsley for their comments and suggestions.

12. References

13. Author’s Addresses

Gargi Nalawade
Cisco Systems, Inc
170 West Tasman Drive
San Jose, CA 95134
mailto:gargi@cisco.com

Ruchi Kapoor
Cisco Systems, Inc
170 West Tasman Drive
San Jose, CA 95134
mailto:ruchi@cisco.com

Dan Tappan
Cisco Systems, Inc
170 West Tasman Drive
San Jose, CA 95134
mailto:tappan@cisco.com

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF’s procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

15. Full Copyright Statement

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

16. Expiration Date

This memo is filed as <draft-nalawade-kapoor-tunnel-safi-00.txt>, and expires December, 2003.