Link Relations and HTTP Header Linking
draft-nottingham-http-link-header-04

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79. This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 29, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.
This document specifies relation types for Web links, and defines a registry for them. It also defines how to send such links in HTTP headers with the Link header-field.
1. Introduction

A means of indicating the relationships between resources on the Web, as well as indicating the type of those relationships, has been available for some time in HTML [W3C.REC-html401-19991224], and more recently in Atom [RFC4287]. These mechanisms, although conceptually similar, are separately specified. However, links between resources need not be format-specific; it can be useful to have typed links that are independent of the format, especially when a resource has representations in multiple formats.

To this end, this document defines a framework for typed links that isn’t specific to a particular serialisation or context of use. It does so by re-defining the link relation registry established by Atom to have a broader scope, and adding to it the relations that are defined by HTML.

Furthermore, an HTTP header-field for conveying typed links was defined in [RFC2068], but removed from [RFC2616], due to a lack of implementation experience. Since then, it has been implemented in some User-Agents (e.g., for stylesheets), and several additional use cases have surfaced. Because it was removed, the status of the Link header is unclear, leading some to consider minting new application-specific HTTP headers instead of reusing it. This document addresses this by re-specifying the Link header with updated but backwards-compatible syntax.

[[Feedback is welcome on the ietf-http-wg@w3.org mailing list, although this is NOT a work item of the HTTPBIS WG.]]
resources that are identified by IRIs [RFC3987], and is comprised of:
 o A context IRI, and
 o A link relation type (Section 4), and
 o A target IRI.

A link can be viewed as a statement of the form "(context IRI) has a
(relation type) resource at (target IRI)."

Note that in the common case, the context IRI will also be a URI
[RFC3986], because common protocols (such as HTTP) do not support
dereferencing IRIs. Likewise, the target IRI will be converted to a
URI in serialisations that do not support IRIs (e.g., the Link
header).

This specification does not place restrictions on the cardinality of
links; there can be multiple links from and to a particular IRI, and
multiple links of different types between two given IRIs.

Additionally, this specification does not define a general syntax for
expressing links, nor mandate a specific context for any given link;
it is expected that applications of links will specify both aspects.
One such application is communication of links through HTTP headers,
specified in Section 5.

Such applications may further constrain or extend links (e.g.,
associating a media type hint).

4. Link Relation Types

A link relation type identifies the semantics of a link. For
example, a link with the relation type "copyright" indicates that the
resource identified by the target IRI is a statement of the copyright
terms applying to the current context IRI.

Relation types are not to be confused with media types [RFC4288];
they do not identify the format of the representation that results
when the link is dereferenced. Rather, they only describe how the
current context is related to another resource.

As such, relation types are not format-specific, and MUST NOT specify
a particular format or media type that they are to be used with.
Likewise, the context IRI for a given link is usually determined by
the serialisation of the link (e.g., the Link header, a HTML
document, etc.); a relation type SHOULD NOT specify the context IRI.

Consuming implementations SHOULD ignore relation types that they do
not understand or have no need to process.
There are two kinds of relation types; registered and extension.

4.1. Registered Relation Types

Commonly-used relation types with a clear meaning that are shared across applications can be registered as tokens for convenience and to promote reuse. For example, "self" and "alternate" are registered relation types, because they are broadly useful.

This draft establishes an IANA registry of such relation types; see Section 6.2.

Registered relation types MUST conform to the token rule, and SHOULD conform to the sgml-name rule for compatibility with deployed implementations;

\[
\text{sgml-name} = \text{ALPHA} \cdot (\text{ALPHA} \mid \text{DIGIT} \mid \text{"."} \mid \text{"-"})
\]

Names that differ only in case from existing entries (e.g., "Foo" and "foo") MUST NOT be registered.

Registered relation types MUST be compared in a case-insensitive fashion.

Although they are specified as tokens, applications wishing to internally refer to an extension relation type using a URI MAY do so by considering it relative to the base URI "http://www.iana.org/assignments/relation/". However, the URI form of a registered relation type SHOULD NOT be serialised when an application specifies the use of a relation type, because a consuming implementation may not recognise it.

4.2. Extension Relation Types

Applications that don’t merit a registered relation type may use an extension relation type. An extension relation type is a URI [RFC3986] that, when dereferenced, SHOULD yield a document describing that relation type.

Extension relation types MUST be compared in a case-sensitive fashion, character-by-character.

5. The Link Header Field

The Link entity-header field provides a means for conveying one or more links in HTTP headers. It is semantically equivalent to the <LINK> element in HTML, as well as the atom:link feed-level element
Link: <http://example.com/TheBook/chapter2>; rel="previous"; title="previous chapter"

indicates that chapter2 is previous to this resource in a logical navigation path.

Each link-value conveys one target IRI as a URI-Reference (after conversion, if necessary) inside angle brackets ("<>"). If the URI-Reference is relative, it MUST be resolved as per [RFC3986]. Note that any base IRI from the body’s content is not applied.

By default, the context of a link conveyed in the Link header field is the IRI associated with the representation it occurs in. When present, the anchor parameter overrides this with another URI, such as a fragment of this resource, or a third resource (i.e., when the anchor value is an absolute URI).

Normally, the relation type of a link is conveyed in the "rel" parameter’s value. The "rev" parameter has also been used for this purpose historically by some formats, and is included here for compatibility with those uses, but its use is not encouraged nor defined by this specification.

Note that extension relation types are REQUIRED to be absolute URIs in Link headers, and MUST be quoted if they contain a semicolon (";"), or comma (",").
The title parameter is used to label the destination of a link such that it can be used as a human-readable identifier (e.g. a menu entry). The title* parameter MAY be used to instead to encode this label in an alternate character set, and/or contain language information as per [RFC2231]. When using the enc2231-string syntax, producers MUST NOT use a charset value other than 'ISO-8859-1' or 'UTF-8'.

Note that link-values may convey multiple links between the same target and context IRIs; for example

 Link: <http://example.org/>; rel=index; rel="start http://example.net/relation/other"

Here, the link to "http://example.org/" has the registered relation types "index" and "start", and the extension relation type "http://example.net/relation/other".

6. IANA Considerations

6.1. Link Header Registration

This specification updates the Message Header Registry entry for "Link" in HTTP [RFC3864] to refer to this document.

Header field: Link
Applicable protocol: http
Status: standard
Author/change controller: IETF (iesg@ietf.org)
 Internet Engineering Task Force
Specification document(s):
 [this document]

6.2. Link Relation Type Registry

This specification establishes the Link Relation Type Registry, located at <http://www.iana.org/assignments/relation/>, and updates Atom [RFC4287] to refer to it in place of the "Registry of Link Relations".

The requirements for registered relation types are described in Section 4.1.

Relation types may be registered on the advice of a Designated Expert (appointed by the IESG or their delegate), with a Specification Required (using terminology from [RFC5226]).
Registration requests consist of the completed registration template below, typically published in an RFC or Open Standard (in the sense described by [RFC2026], section 7). However, to allow for the allocation of values prior to publication, the Designated Expert may approve registration once they are satisfied that an RFC (or other Open Standard) will be published.

The registration template is:

- Relation Name:
- Description:
- Reference:

Upon receiving a registration request (usually via IANA), the Designated Expert should request review and comment from the apps-discuss@ietf.org mailing list (or a successor designated by the APPS Area Directors). Before a period of 30 days has passed, the Designated Expert will either approve or deny the registration request, communicating this decision both to the review list and to IANA. Denials should include an explanation and, if applicable, suggestions as to how to make the request successful.

The Link Relation Type registry’s initial contents are:

- Relation Name: alternate
 - Description: Designates a substitute for the link’s context.
 - Reference: [W3C.REC-html401-19991224]

- Relation Name: appendix
 - Description: Refers to an appendix.
 - Reference: [W3C.REC-html401-19991224]

- Relation Name: bookmark
 - Description: Refers to a bookmark or entry point.
 - Reference: [W3C.REC-html401-19991224]

- Relation Name: chapter
 - Description: Refers to a chapter in a collection of resources.
 - Reference: [W3C.REC-html401-19991224]

- Relation Name: contents
 - Description: Refers to a table of contents.
 - Reference: [W3C.REC-html401-19991224]

- Relation Name: copyright
 - Description: Refers to a copyright statement that applies to the link’s context.
o Reference: [W3C.REC-html401-19991224]

o Relation Name: current
 o Description: Refers to a resource containing the most recent item(s) in a collection of resources.
 o Reference: [RFC5005]

o Relation Name: describedby
 o Description: Refers to a resource providing information about the link’s context.
 o Documentation: <http://www.w3.org/TR/powder-dr/>

o Relation Name: edit
 o Description: Refers to a resource that can be used to edit the link’s context.
 o Reference: [RFC5023]

o Relation Name: edit-media
 o Description: Refers to a resource that can be used to edit media associated with the link’s context.
 o Reference: [RFC5023]

o Relation Name: enclosure
 o Description: Identifies a related resource that is potentially large and might require special handling.
 o Reference: [RFC4287]

o Relation Name: first
 o Description: An IRI that refers to the furthest preceding resource in a series of resources.
 o Reference: <http://www.iana.org/assignments/link-relations/first>

o Relation Name: glossary
 o Description: Refers to a glossary of terms.
 o Reference: [W3C.REC-html401-19991224]

o Relation Name: help
 o Description: Refers to a resource offering help (more information, links to other sources information, etc.)
 o Reference: [W3C.REC-html401-19991224]

o Relation Name: index
 o Description: Refers to an index.
 o Reference: [W3C.REC-html401-19991224]

o Relation Name: last
o Description: An IRI that refers to the furthest following resource in a series of resources.
 o Reference: <http://www.iana.org/assignments/link-relations/last>

o Relation Name: license
 o Description: Refers to a license associated with the link’s context.
 o Reference: [RFC4946]

o Relation Name: next
 o Description: Refers to the next resource in an ordered series of resources.
 o Reference: [W3C.REC-xml101-19991224]

o Relation Name: next-archive
 o Description: Refers to the immediately following archive resource.
 o Reference: [RFC5005]

o Relation Name: payment
 o Description: Indicates a resource where payment is accepted.
 o Reference: <http://www.iana.org/assignments/link-relations/payment>

o Relation Name: prev
 o Description: Refers to the previous resource in an ordered series of resources. Synonym for "previous".
 o Reference: [W3C.REC-xml101-19991224]

o Relation Name: previous
 o Description: Refers to the previous resource in an ordered series of resources. Synonym for "prev".
 o Reference: [W3C.REC-xml101-19991224]

o Relation Name: prev-archive
 o Description: Refers to the immediately preceding archive resource.
 o Reference: [RFC5005]

o Relation Name: related
 o Description: Identifies a related resource.
 o Reference: [RFC4287]

o Relation Name: replies
 o Description: Identifies a resource that is a reply to the context of the link.
 o Reference: [RFC4685]
7. Security Considerations

The content of the Link header-field is not secure, private or integrity-guaranteed, and due caution should be exercised when using it.

Applications that take advantage of typed links should consider the attack vectors opened by automatically following, trusting, or otherwise using links gathered from HTTP headers. In particular, Link headers that use the "anchor" parameter to associate a link's context with another resource should be treated with due caution.

8. Internationalisation Considerations

Target IRIs may need to be converted to URIs in order to serialise them in applications that do not support IRIs. This includes the Link HTTP header.

Similarly, the anchor parameter of the Link header does not support
IRIs, and therefore IRIs must be converted to URIs before inclusion there.

Relation types are defined as URIs, not IRIs, to aid in their comparison. It is not expected that they will be displayed to end users.

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Notes on Using the Link Header with HTML4

HTML motivated the original syntax of the Link header, and many of
the design decisions in this document are driven by a desire to stay
compatible with these uses.

In HTML4, the link element can be mapped to links as specified here
by using the "href" attribute for the target URI, and "rel" to convey
both the relation type, as in the Link header. The context of the
link is the URI associated with the entire HTML document.

HTML4 also has a "rev" parameter for links that allows a link’s
relation to be reversed. The Link header has a "rev" parameter to
allow the expression of these links in HTTP headers, but its use is
not encouraged, due to the confusion this mechanism causes as well as
conflicting interpretations among HTML versions.

All of the link relations defined by HTML4 have been included in the
link relation registry, so they can be used without modification.
However, extension link relations work differently in HTML4 and the
Link header; the former uses a document-wide "profile" URI to scope
the relations, while the latter allows the use of full URIs on
individual relations.

Therefore, when using the profile mechanism in HTML4, it is necessary
to map the profiled link relations to URIs when expressed in Link
headers. For example, in HTML:

```html
<html>
  <head profile="http://example.com/profile1/">
    <link rel="foo" href="/bar">
  </head>

[...]
```

could be represented as a header like this;

```
Link: <@bar>; rel="http://example.com/profile1/foo"
```

Profile authors should note this when creating profile URIs; it may be desirable to use URIs that end in a delimiter (e.g., "/" or "#"), to make extracting the specific relation in use easier.

Surveys of existing HTML content have shown that unregistered link relation types that are not URIs are (perhaps inevitably) common. Consuming HTML implementations should not consider such unregistered short links to be errors, but rather relation types with a local scope (i.e., their meaning is specific and perhaps private to that document).

HTML4 also defines several attributes on links that are not explicitly defined by the Link header. These attributes can be serialised as link-extensions to maintain fidelity.

Appendix B. Notes on Using the Link Header with Atom

Atom conveys links in the `atom:link` element, with the "href" attribute indicating the target IRI and the "rel" attribute containing the relation type. The context of the link is either a feed IRI or an entry ID, depending on where it appears; generally, feed-level links are candidates for transmission as a Link header.

When serialising an `atom:link` into a Link header, it is necessary to convert target IRIs (if used) to URIs.

Atom defines extension relation types in terms of IRIs. This specification defines them as URIs, to aid in their comparison.

Atom allows registered link relation types to be serialised as absolute URIs, because a base URI is defined for the registry. Such relation types SHOULD be converted to the appropriate registered form (e.g., "http://www.iana.org/assignments/relation/self" to "self") so
that they are not mistaken for extension relation types.

Note also that while the Link header allows multiple relations to be associated with a single link, atom:link does not. In this case, a single link-value may map to several atom:link elements.

As with HTML, atom:link defines some attributes that are not explicitly mirrored in the Link header syntax, but they may also be used as link-extensions.

Appendix C. Acknowledgements

This specification lifts the idea and definition for the Link header from RFC2068; credit for it belongs entirely to the authors of and contributors to that document. The link relation registrations themselves are sourced from several documents; see the applicable references.

The author would like to thank the many people who commented upon, encouraged and gave feedback to this draft, especially including Frank Ellermann, Roy Fielding and Julian Reschke.

Appendix D. Document history

-04

- Defined context as a resource, rather than a representation.
- Removed concept of link directionality; relegated to a deprecated Link header extension.
- Relation types split into registered (non-URI) and extension (URI).
- Changed wording around finding URIs for registered relation types.
- Changed target and context URIs to IRIs (but not extension relation types).
- Add RFC2231 encoding for title parameter, explicit BNF for title*.
- Add i18n considerations.
- Specify how to compare relation types.
- Changed registration procedure to Designated Expert.
- Softened language around presence of relations in the registry.
- Added describedby relation.
- Re-added ’anchor’ parameter, along with security consideration for third-party anchors.
-03

- Inverted focus from Link headers to link relations.
- Specified was a link relation type is.
- Based on discussion, re-added 'rev'.
- Changed IESG Approval to IETF Consensus for relation registrations (i.e., require a document).
- Updated RFC2434 reference to RFC5226.
- Registered relations SHOULD conform to sgml-name.
- Cautioned against confusing relation types with media types.

-02

- Dropped XLink language.
- Removed 'made' example.
- Removed 'rev'. Can still be used as an extension.
- Added HTML reference to introduction.
- Required relationship values that have a ; or , to be quoted.
- Changed base URI for relation values.
- Noted registry location.
- Added advisory text about HTML profile URIs.
- Disallowed registration of relations that only differ in case.
- Clarified language about IRIs in Atom.
- Added descriptions for 'first', 'last', and 'payment', referring to current IANA registry entries, as these were sourced from e-mail. Will this cause self-referential implosion?
- Explicitly updates RFC4287.
- Added 'type' parameter.
- Removed unnecessary advice about non-HTML relations in HTML section.

-01

- Changed syntax of link-relation to one or more URI; dropped Profile.
- Dropped anchor parameter; can still be an extension.
- Removed Link-Template header; can be specified by templates spec or elsewhere.
- Straw-man for link relation registry.

-00
Initial draft; normative text lifted from RFC2068.

Author's Address

Mark Nottingham

Email: mnot@mnot.net
URI: http://www.mnot.net/