Security Bootstrapping of Resource-Constrained Devices
draft-oflynn-core-bootstrapping-03

Abstract

The Internet of Things is marching its way towards completion. Nodes can use standards from the 6LoWPAN and ROLL WG to achieve IP connectivity. IEEE Standards ensure connectivity at lower layers for resource-constrained devices. Yet a central problem remains at a more basic layer without a suitable answer: how to initially configure the network. Without configuration the network never advances beyond a large box of nodes. Current solutions tend to be specific to a certain vendor, node type, or application.

This document outlines exactly what problems are faced in solving this problem. General problems faced in any low-power wireless network are outlined first; followed by how these apply to bootstrapping. A selection of currently proposed techniques is presented. From these a more generic approach is presented, which can solve the problem for a wide range of situations.

An emphasis is on performing this bootstrapping in a secure manner. This document does not cover operation of the network securely. This document does provide the basis for allowing the network to operate securely however, by providing standard methods for key exchanges and authentication.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts can be found at http://datatracker.ietf.org/drafts/current/.
Table of Contents

1. Introduction ... 5
 1.1. What is Bootstrapping? 5
 1.2. Why IETF? ... 5
2. Bootstrapping Architecture 6
 2.1. Areas of Bootstrapping 6
 2.2. Architecture 7
3. Communications Channel 8
 3.1. Supported Communication Channels 8
4. Bootstrap Security Method 8
 4.1. None ... 9
 4.2. Asymmetric with User Authentication, Followed by
 Symmetric ... 9
 4.3. Asymmetric with Certificate Authority, Followed by
 Symmetric ... 9
 4.4. Cryptographically Generated Address Based Address
 Ownership Verification 9
5. Bootstrap Protocols 9
 5.1. System Level Objectives 10
 5.2. EAP Authentication Framework 10
 5.3. PANA .. 12
 5.4. HIP-DEX ... 14
 5.5. 802.1X .. 15
6. Security Considerations 16
7. IANA Considerations 16
8. Acknowledgements ... 16
9. References .. 16
 9.1. Normative References 16
 9.2. Informative References 17
Appendix A. Examples of Node Configuration 19
 A.1. Smart Energy 19
 A.1.1. Initial Meter Installation 19
 A.1.2. Home Expansions 19
 A.2. Consumer Products 20
 A.2.1. Connecting DVD Remote to DVD Player 20
 A.2.2. Adding a TV to a network with a DVD player and
 remote ... 20
 A.2.3. Providing GPS Location Data 20
 A.3. Commercial Building Automation 20
 A.3.1. Light Installation 20
Appendix B. Example Exchanges 20
 B.1. Smart Energy: Meter Manufacture 20
 B.2. Smart Energy: Meter Installation 20
 B.3. Smart Energy: Home Expansion 21
 B.4. Consumer: Connecting DVD Remote to DVD Player 21
 B.5. Consumer: Adding a TV to a network with a DVD player
 and remote 22
B.6. Consumer: Providing GPS Location Data 24
B.7. Commercial: Building Automation 24
Authors’ Addresses ... 24
1. Introduction

Familiarity with constrained network types is assumed here. Documents produced in the 6LoWPAN, ROLL, and CoRE Working Groups (WGs) would be a useful reference for the reader. In particular RFC 4919 [RFC4919] from 6LoWPAN, RFC 5548 [RFC5548] and RFC 5673 [RFC5673] from ROLL, CoAP [I-D.ietf-core-coap] from CoRE, and a paper by Romer and Mattern [ROMER04]. Familiarity with application specific examples such as Zigbee or Smart Energy groups is assumed.

A summary of those will be presented, as far as network requirements are concerned. The general network requirements will be further concentrated into requirements surrounding only the bootstrapping issues.

A number of solutions which are currently in use will be presented. Requirements on each solution will be stated to enable their use as a security bootstrapping protocol.

1.1. What is Bootstrapping?

Node configuration is known as bootstrapping in this document. Bootstrapping is any processing required before the network can operate. Typically this will require a number of settings to be transferred between nodes at all layers. This could include anything from link-layer information (i.e., wireless channels, link-layer encryption keys) to application-layer information (i.e., network names, application encryption keys).

Bootstrapping is complete when settings have been securely transferred prior to normal operation in the network.

1.2. Why IETF?

The bootstrapping problem is not specific to any MAC or PHY. This problem exists across any two nodes which have no previous knowledge of each other. In particular, this problem is complicated when the nodes are resource-constrained and may not have an advanced user interface. The IETF is instrumental in defining standards which will be used by The Internet of Things. Ensuring these standards can be used across nodes and networks requires some form of bootstrapping which any node can use.

Existing standards will be used as much as possible in this document. The method proposed here should work across many different underlying layers. It could be used to allow two nodes on the same physical network to join at the physical layer, or allow two nodes on an incompatible physical network to join at the IPv6 layer.
2. Bootstrapping Architecture

2.1. Areas of Bootstrapping

In order to provide a flexible architecture, the bootstrapping method is split into five distinct areas and two distinct phases. The five areas are a ‘user interface’, ‘bootstrap profile’, ‘security method’, ‘bootstrap protocol’, and the ‘communications channel’.

The phases are provisioning phase and bootstrapping phase. In the provisioning phase, statically configured parameters (e.g., certificates) needed for the bootstrapping phase is provisioned. In the bootstrapping phase, dynamically configured information is set up using the statically configured information provided in the provisioning phase.

The user interface provides both user input and user output. Simple nodes may only have a push-button and LED, more complex nodes may have a graphical display and keyboard. The user interface provides interaction between the user and bootstrapping methods. The user interface would be used during bootstrapping as an OOB channel. It may also be used to specify bootstrapping policies.

The user interface provides the interaction between the user and the bootstrap protocol. The user interface will vary depending on the capabilities of the node. Examples might include a push-button and LED on simple nodes, to full-blown graphical user interfaces. Note that a ‘bootstrapping tool’ used to initially deploy a network is just a special user interface. This allows a very uniform protocol in deployment and use of networks.

User interface is out-of-scope and will not be further discussed.

Two nodes communicate through some channel. For our purposes this is split into the ‘control channel’ and ‘data channel’. The control channel is used for the bootstrap protocol, and the data channel is used during normal network operation. A node may support multiple control or data channels. When the control and data channels are the same, the bootstrapping is done In Band (IB). When the control and data channels are different, the bootstrapping is performed Out Of Band (OOB). An 802.15.4 network for instance would use an 802.15.4 control channel for IB bootstrapping, but a control channel of perhaps IrDA or USB for OOB bootstrapping.

The ‘bootstrap profile’, i.e. statically configured parameters during the provisioning phase, defines what information should be exchanged during the process. A single node may run the protocol multiple times with different profiles. If the user wishes to associate a new
lightswitch, the protocol is first run with the ‘802.15.4 Wireless Profile’, through which it learns the channel and PAN-ID. The node then runs a ‘Security Exchange Profile’ to learn the needed encryption keys. Finally it runs a ‘Lightswitch Association Profile’ through which it learns which light to associate with.

The ‘security method’ defines supported security methods for bootstrapping. The supported security methods will depend on the control channel and bootstrap profile. In one node if the control channel is secure, then a simple clear-text security method is supported. For example when a physical connection between two nodes is used, the control channel is considered secure. However when the control channel is not secure, this clear-text security method is not supported. The ‘bootstrap profile’ additionally defines allowed security methods. Higher security nodes may outlaw ever performing a clear-text exchange, even if the control channel is deemed secure.

The ‘bootstrap protocol’ defines the actual messages exchanged during bootstrapping. The messages are used to transfer between nodes data, node information, and network state. The selected security method runs on top of the control channel, such as EAP-GPSK etc.

2.2. Architecture

Security bootstrapping architecture is structured in a hierarchy of nodes going from the least resource constraint to the most resource constraint. At the top there is a root node. The root node is called Coordinator or Trust Center in Zigbee and 6LoWAN Border Router (6LBR) in 6LoWPAN ND.

At the next level there are interior Routers. Routers are able to run a routing protocol between other routers and the root. Router are called 6LowWAN Routers (6BR) in 6LoWPAN ND.

At the lowest level there are the nodes. The nodes do not run a routing protocol. They can connect to the nearest router over a single radio link. The nodes are called End Device in Zigbee and host in in 6LoWPAN ND.

Routers first join the network as a node and go through security bootstrapping operations in order to create a Master Session Key (MSK). Next routers execute routing protocol, e.g. [I-D.ietf-roll-rpl] specific steps to create session keys with their neighbors and to establish upstream and downstream next hop parents.

At each node hierarchy level described above, there are lower-layer and higher-layer protocols to bootstrap their ciphering keys, where the lower-layer refers to layers below IP layer including IEEE
802.15.4 MAC layer and LoWPAN adaptation layer and the higher-layer refers to IP layer and the above. In general, required bootstrapping procedures depend on the bootstrapping protocols to use. Section 5 describes the bootstrapping procedures where EAP (Extensible Authentication Protocol) [RFC3748] and other protocols are used as the bootstrapping protocols.

3. Communications Channel

The communications channel is the method used between two nodes to communicate. There are two main communication channels: the ‘control’ and ‘data’ channels. The control channel is used during bootstrapping, and the data channel is used during network operation.

3.1. Supported Communication Channels

There is no limit on what communications channels are supported. The following gives an example of several supported channels:

- IEEE 802.15.4
- Power-Line Communications
- IrDA
- RFID
- Some simple physical link
- Cellular
- Ethernet
- IPv6
- Wi-Fi

Depending on the node’s function, it may use different channels as the data or control channel. Nodes may have multiple data and/or control channels as well.

4. Bootstrap Security Method

The bootstrap security method defines allowable security methods. A node may choose to support or use a subset of these methods. This is NOT the security architecture used for the application, but only the
security used during bootstrapping. Typically some high-security method is used to generate a shared secret, which then switches to simpler symmetric encryption to secure the actual bootstrapping channel. The techniques negotiated should take advantage of hardware resources available, such as hardware encryption accelerators on an end node.

4.1. None

This is the simplest security method. No encryption or authentication is provided, messages are exchanged completely in clear-text. It is assumed some other layer provides security, such as a physical connection between devices.

4.2. Asymmetric with User Authentication, Followed by Symmetric

A Diffie-Hellman style key exchange is used to generate a shared secret. The authentication will be provided by the user, by confirming cryptographic signatures between two devices. With the shared secret generated through the DH, some symmetric encryption is used to secure the actual bootstrapping channel.

4.3. Asymmetric with Certificate Authority, Followed by Symmetric

Public key exchanges are used (aka: DH again), but with a Certificate Authority. Once a shared secret exists, symmetric encryption is used to secure the actual bootstrapping channel.

4.4. Cryptographically Generated Address Based Address Ownership Verification

A node may generate the global unique address using different techniques other than the stateless address autoconfiguration. For example, Cryptographically Generated Addresses (CGA) [RFC3972] is a type of global unique address that can be used to verify the address ownership. When the node uses CGA, it MUST execute SeND protocol [RFC3971]. In a 6LOWPAN network, a modified 6LOWPAN ND Protocol [I-D.ietf-6lowpan-nd] must be executed between the node and the edge router.

5. Bootstrap Protocols

In this section we first present system level objectives that security bootstrapping protocols are expected to achieve. Next, we present EAP authentication framework and then describe three different protocols.
5.1. System Level Objectives

Authentication/re-authentication: nodes joining the network MUST at the first place authenticate to the trust center. In order to achieve secure multi-hop routing, the node MUST authenticate to its upstream and downstream neighbors. A bootstrapping solution MUST support re-authentication of resource-constrained devices and re-keying of dynamically generated keys.

Data Confidentiality: the data communication between two endpoints MAY be encrypted using the derived key, avoiding being eavesdropped by a non-trusted third part.

Data Integrity: the data communication between two endpoints MUST NOT be altered by some intermediate nodes. The nodes should be able to detect the non-integral data.

Keys and key freshness: the keys used for data communication MUST have a lifetime, in order to keep their freshness. A bootstrapping solution MUST support both symmetric and asymmetric key authentication. If distribution of a key to be used for a resource-constrained device is required, a bootstrapping solution MUST support secure key distribution to prevent the key from eavesdropping, alternation and replay attacks.

Multi domain support: A bootstrapping solution MUST be able to allow resource-constrained devices that may be subscribed to different administrative domains to be connected to the same access network at the same time.

Identities: A bootstrapping solution MUST be able to allow a resource-constrained device to use various types of identities used for authentication, including device identities, user identities or combinations of different types of identities. Also a bootstrapping solution MUST be able to allow a resource-constrained device to change its identities used for authentication over time.

Authentication infrastructure: A bootstrapping solution MUST be able to operate with or without an authentication infrastructure.

5.2. EAP Authentication Framework

In EAP, there are three distinct entities: the client or EAP peer, the authenticator and the authentication or EAP server [RFC5247].

The EAP peer is the node that requires to be authenticated before being admitted to the network. The authentication server is the device authenticating the node for bootstrapping. The authenticator
is the device that is admitting the node to the network and it resides in between the peer and authentication server.

EAP client and EAP server exchange EAP messages to execute the authentication algorithm, a.k.a. EAP method. The authenticator is responsible for forwarding EAP messages between the client and server. In 802.1X, EAP messages are carried in Layer 2 and in PANA in IP or Layer 3. EAP messages between the authenticator and authentication server are carried using AAA protocols (RADIUS or Diameter).

At the end of a successful EAP method execution a master session key (MSK) is generated at both the EAP peer and EAP server. Authenticator receives MSK from EAP server at the end of EAP method execution using key transport. MSK is used in deriving a session key between the node and the authenticator using a protocol called secure association protocol (SAP). Derivation of the session key terminates bootstrapping of a node.

Additional keying material derived between EAP client and server that is exported by the EAP method is called Extended Master Session Key (EMSK). EMSK is not used in session key derivation but it could be used for the needs of other applications in higher layer protocols.

In the architecture introduced in Section 2.2 the node or router is the peer and the root is the authenticator. When the supplicant and authenticator are one hop away the authenticator can be reached directly. However, this is rarely the case. In other cases the authenticator authenticates neighboring supplicants first. The router nodes that are authenticated become relay authenticators in the next phase and they relay authentication messages from the supplicants to the authenticator and vice versa. This continues until all nodes are authenticated.

EAP is a lock-step protocol, i.e. it executes in pairs of EAP-Request messages sent by the server and EAP-Response messages sent by the peer. At the end, the server indicates the status of authentication, usually by EAP-Success message which also carries the MSK. The first EAP-Request/Response pair is used for the server to request the identity and the peer to provide it. In the other pairs of EAP exchanges EAP method is executed.

Several EAP methods have been standardized each for different purposes. To authenticate devices with certificates, EAP Transport Layer Security (TLS) v1.2 specified in [RFC5216] which supports certificate-based mutual authentication is used.

Smart Energy Profile 2.0 Application Protocol Specification [SE2.0]
mandates each device to be factory programmed with a certificate. The certificate is bound to a unique network ID, e.g., the device's MAC address or EUI-64 address. During EAP-Identity exchange the EAP peer provides its EUI-64 address as an identity to EAP server. This enables the server to validate the device certificate.

5.3. PANA

PANA (Protocol for carrying Authentication for Network Access) [RFC5191] defines an EAP transport over UDP where a PANA Client (PaC) is an EAP peer and a PANA Authentication Agent (PAA) is an EAP authenticator. There are three bootstrapping scenarios using PANA.

1. Use of PANA for bootstrapping link-layer security.

In this case, PANA is used for network access authentication to bootstrap link-layer ciphering. Security for higher-layer (i.e., IP layer and above) protocols is bootstrapped from an IB or OOB mechanism other than PANA. For example, in a 6LoWPAN deployment PANA authentication can take place to bootstrap IEEE 802.15.4 MAC layer ciphering keys. In ZigBee IP, IEEE 802.15.4 MAC layer ciphering keys used as session keys are derived from a group key so called a Network Key that is securely distributed to each joining node upon successful PANA authentication using AES key wrap over PANA [I-D.ohba-pana-keywrap] where the key encryption key is derived from the EAP MSK (Master Session Key) [RFC3748].

2. Use of PANA for bootstrapping higher-layer security.

In this scenario, PANA is used as an OOB mechanism for higher-layer authentication to bootstrap ciphering keys for one or more higher-layer protocols independently of network access authentication. The PAA may reside in a higher-layer network element such as an ANSI C12.22 authentication host [C1222] and a CoAP server, or an independent server dedicated for service authentication for multiple higher-layer protocols. When bootstrapping ANSI C12.22 security for which no IB key management mechanism is available, ANSI C12.22 ciphering keys are directly derived from EAP key material established from PANA authentication. When bootstrapping CoAP security with DTLS protection, a PSK (Pre-Shared Key) credential in the combined usage of DTLS (Datagram Transport Layer Security) [RFC4347] and PSK mode of TLS [RFC4279] is derived from EAP key material and DTLS ciphering keys are generated as a result of a successful DTLS handshake. Similarly, when bootstrapping CoAP security with IPsec ESP protection, a PSK credential of IKEv2 [RFC5996] is derived from EAP key material and IPsec ESP ciphering keys are generated as a result of a successful IKEv2 handshake.
The ability to bootstrap multiple higher-layer protocols from a single execution of PANA authentication is important to save the computational resources for resource-constrained devices especially where public-key based authentication is used.

3. Use of PANA for bootstrapping both link-layer and higher-layer security.

This case is the combination of the other two cases, and the most optimized way for bootstrapping resource-constrained devices. This case is only applicable where both the network access authentication and the higher-layer authentication use the same authentication server with the same authentication credentials.

The second and third scenarios are generally referred to as Single Sign-On in section 4.2.2.2 of [NISTIR7628VOL1], where the root keys for higher-layer protocols can be derived from EAP EMSK (Extended Master Session Key) as an USRK (Usage-Specific Root Key) [RFC5295].

A PANA Relay Element (PRE) is needed to enable PANA messaging between a PANA Client (PaC) which is the node to be authenticated and a PANA Authentication Agent (PAA) which is the authenticator where the two nodes cannot reach each other by means of regular IP routing. This happens during authentication since only a link-local IPv6 address can be used prior to the completion of a successful authentication.

PRE which is one hop away from PaC receives PANA messages and relays the message contents (payload) by encapsulating it in a message parameter called Attribute Value Pair (AVP). PRE also needs to send header contents such as PaC’s IP address and UDP port number in a different AVP. PRE has IP routing established with PAA which could be several hops away. PAA sends its reply messages in which the payload is encapsulated in an AVP. It also adds the AVP containing PaC’s IP address and UDP port number. PRE sends creates a link local PDU using these AVPs and sends it to PaC.

The requirements for the use of PANA as a bootstrapping protocol can be stated as follows:

- A new entity called PANA Relay Element needs to be added to the PANA architecture. Behaviour of PANA Relay Element needs to be defined.

- New AVPs needed for PANA Relay Element operation for properly relaying messages from the client to the authenticator and vice versa are required to be specified.
An extension to PANA to securely distribute keys from the PANA Authentication Agent to the PANA Client using AES Key Wrap with Padding algorithm needs to be defined. This is needed in order to use PANA for group key distribution.

5.4. HIP-DEX

[RFC4423] introduces the Host Identity Protocol (HIP) where the Host Identity (HI) is a Cryptographic key (RSA, DSA, or ECC). A 128-bit length Host Identity Tag (HIT) is derived from the HI (hashed) and functions as an IPv6 address (/128 prefix) for applications. A four-packet Peer-to-Peer Host Identity Protocol Base EXchange (HIP BEX) establishes a security association (SA, similar to IKE), indexed by the HITs, but independent of the IP address. So HIP can be considered as a shim layer between the transport (TCP/UDP) and IP, providing authentication, data confidentiality, mobility in one basket.

The HIP-BEX involves many crypto primitives that are difficult to run on constrained nodes. HIP Diet Exchange (HIP-DEX) [I-D.moskowitz-hip-rg-dex] is a way to make HIP lightweight. Basically, HIP-DEX a variant of the HIP-BEX specifically designed to use as few crypto primitives as possible yet still provide the same class of security features as HIP-BEX.

HIP-DEX can be used for mutual authentication between two endpoints. After mutual authentication, the two endpoints establish a shared secret, which is fresh and fed into the encryption algorithm for data confidentiality. So HIP-DEX can achieve the authentication, key freshness and data confidentiality objectives of security bootstrapping.

When a node wants to authenticate to the network using HIP and Diet-HIP, it should be able to complete the HIP-BEX or HIP-DEX with the trust anchor or some delegate. In HIP, it does not matter how many domains, and nodes can authenticate each other as long as they have the secret.

In the architecture introduced in Section 2.2 the node and router could be the HIP end-points. Depending on who initiates the HIP Diet Exchange, the node or router could act as the HIP initiator and HIP responder respectively. And the initiator and responder can be multiple hops way from each other, as long as there is an IP connectivity between them.

An important requirement for the HIP-DEX to work in the architecture, the initiator should be able to get the IP address of the responder, either using DNS infrastructure or local configuration.
5.5. 802.1X

IEEE 802.1X defines how EAP packets can be transported over in Layer 2, i.e. Ethernet frames [802.1x] by encapsulating EAP packets into EAP Over Lan (EAPOL) frames between EAP peer, called supplicant and the authenticator. EAPOL can also be used in 802.11 wireless links.

To enable IEEE 802.15.4 devices to use EAP authentication, EAP packets encapsulated in EAPOL frames can be carried as payload in 802.15.4 data frames [802.15.4]. EAPOL is well defined and widely used and it lends itself to be easily carried in 802.15.4 data frames. For this, Frame Type subfield of the Frame Control Field of IEEE 802.15.4 MAC header needs to be set to a special value to indicate the type of the payload, i.e. 802.1X encapsulated EAP packets. EAPOL packets are encoded following common EAPOL PDU structure defined in [802.1x] into the data payload field of 802.15.4 data frames.

Authentication proceeds as follows: authenticator authenticates the supplicants that are on the next hop first. This enables a secure link between the authenticator and these first-hop nodes. First-hop nodes or router become Relay Authenticators in the next phase of authentication. Relay authenticators tunnel EAPOL frames to the authenticator in the secure link established. This way all the supplicants are gradually authenticated.

The keys established from a successful EAP method (such as PSK mode of TLS), the node runs neighbor discovery protocol to get an IPv6 address assigned [I-D.ietf-6lowpan-nd]. Data transfer can be secured using DTLS or IPSec. Keys derived from EAP TLS are used in either generating DTLS ciphering keys after a successful DTLS handshake or IPSec ESP ciphering keys after a successful IKEv2 handshake.

802.1X can achieve the authentication, key freshness and data confidentiality objectives of security bootstrapping. Multi domain operation is intrinsically supported due to the use of EAP and AAA.

The requirements for the use of 802.1X defined EAPOL as a bootstrapping protocol can be stated as follows:

- A special value in the Frame Type subfield of the Frame Control Field of IEEE 802.15.4 MAC header to indicate the type of the payload,

- Group addresses for 802.15.4 corresponding to EAPOL Group Address Assignments defined in Table 11.1 of [802.1x], especially to be used in EAPOL-Start packet.
Which MAC frames of beacon, data, acknowledgment and MAC command as defined in [802.15.4] with what security levels are mapped to controlled port, which MAC frames with what security levels are mapped to uncontrolled port and which MAC frames are never mapped to any of controlled/uncontrolled port (i.e., the payload of those frames are used by the MAC-ayer itself and never used by upper layers).

6. Security Considerations

TBD.

7. IANA Considerations

This memo includes no request to IANA.

8. Acknowledgements

Thanks to Zach Shelby for editing, comments, and overall assistance. Special thanks also to Rene Struik and Carsten Borman for their comments that helped us improve the writing.

9. References

9.1. Normative References

[802.15.4] IEEE Std 802.15.4-2006, "Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs)", September 2006.

9.2. Informative References

Internet-Draft draft-oflynn-core-bootstrapping November 2010

progress), October 2010.

[I-D.moskowitz-hip-rg-dex]
Moskowitz, R., "HIP Diet EXchange (DEX)",
draft-moskowitz-hip-rg-dex-02 (work in progress),
July 2010.

[I-D.narten-iana-considerations-rfc2434bis]
Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs",
draft-narten-iana-considerations-rfc2434bis-09 (work in
progress), March 2008.

[I-D.ohba-pana-keywrap]
Chakrabarti, S., Cragie, R., Duffy, P., Ohba, Y., and A.
Yegin, "Protocol for Carrying Authentication for Network
Access (PANA) Extension for Key Wrap",
draft-ohba-pana-keywrap-01 (work in progress),
October 2010.

[NISTIR7628VOL1]
The Smart Grid Interoperability Panel - Cyber Security
Working Group, "Guidelines for Smart Grid Cyber Security:
Vol. 1, Smart Grid Cyber Security Strategy, Architecture,

[RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

[RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 July 2003.

 Neighbor Discovery (SEND)", RFC 3971, March 2005.

[RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",

[RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279,
 December 2005.

[RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Appendix A. Examples of Node Configuration

Before any detail on methods is explored, the following section will provide various examples this document could cover. Exact requirements will be brought forward in subsequent sections. For the reader’s general understanding this section is placed to give an idea of an acceptable usage scenario.

A.1. Smart Energy

A.1.1. Initial Meter Installation

The meter is initially loaded with code and network keys through a physical interface at the factory. The meter is installed at a customers home, and configured by the installer through the backbone link (via GSM modem, etc). Both operations can be performed through methods defined herein.

A.1.2. Home Expansions

The user wishes to join a thermostat onto the network. They press a button on the thermostat, which enters join mode. They press a button on the smart meter, which allows nodes to join the network. The devices both have displays, so they display a certain number which the user verifies match on both devices. The thermostat has now securely joined the network.
A.2. Consumer Products

A.2.1. Connecting DVD Remote to DVD Player

The user pushes a join button on the DVD remote and DVD player. The devices find each other, and blink in unison to indicate to the user which two devices will join. The user presses the button to confirm this, and the two devices are now joined together.

A.2.2. Adding a TV to a network with a DVD player and remote

The user then presses the join button on the DVD player and TV. The devices again find each other and blink in unison, with the addition that the remote control also blinks to indicate it is present in the network.

A.2.3. Providing GPS Location Data

A user has a simple GPS receiver (that has no user interface) they wish to broadcast location data with. The user switches on their camera, and enters a PIN from the base of the GPS. The user can now view GPS information such as satellite health from their camera. In addition photos are automatically tagged with location information.

A.3. Commercial Building Automation

A.3.1. Light Installation

The electrician installs the light fixture. Each light has a barcode printed on it. They use a handheld barcode scanner tool, which acts as the commissioning tool. When they scan a barcode with the tool, the tool asks the electrician to enter some additional information such as light fixture location. The tool securely registers the light fixture on the network, along with setting parameters inside the light fixture.

Appendix B. Example Exchanges

The following details how the protocol handles certain conditions and situations through examples. Note that each example is a more detailed description of the examples in Appendix A.

B.1. Smart Energy: Meter Manufacture

B.2. Smart Energy: Meter Installation
B.3. Smart Energy: Home Expansion

B.4. Consumer: Connecting DVD Remote to DVD Player

Supported User Interface Profiles

<table>
<thead>
<tr>
<th>Profile</th>
<th>DVD Player</th>
<th>Remote Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>simple</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>numerical</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>alphanumerical</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Graphical</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Supported Bootstrap Transport Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>DVD Player</th>
<th>Remote Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>802.15.4</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>IrDA</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Supported Security Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>DVD Player</th>
<th>Remote Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>EAP</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Asymmetric, User</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Asymmetric, CA</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

The DVD player and remote control have a number of ways in which they could be joined together. The remote control does not have any unique identifier printed on it, thus no pre-shared key can be identified. This leaves either an unsecure joining method, or some asymmetric security method.

The remote control has a button on it for ‘join’, as does the DVD player. The user pushes the button on the DVD player, and then pushes the button on the remote control. Based on the UI profile, this causes the following to occur:
o DVD Player scans for existing network in advertise mode. Finding none, it starts a new network and that network enters advertise mode.

o The DVD remote scans for a network, and then finds the DVD player’s network.

o The devices generate a shared secret (i.e.: Diffie-Hellman), and both blink their LED in a unique pattern based on this shared secret.

o The user confirms both devices are blinking the same pattern, as both LEDs are blinking in unison.

o The DVD player displays ‘JOIN OK’ on it’s LCD panel.

B.5. Consumer: Adding a TV to a network with a DVD player and remote

This network will have three devices: a TV, a DVD Player, and a Remote Control. The user will run the bootstrap protocol between the TV and Remote Control in this example, although it could also be run between the TV and DVD player.

<table>
<thead>
<tr>
<th>Profile</th>
<th>TV</th>
<th>Remote Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>simple</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>numerical</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>alphanumeric</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Graphical</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Supported Bootstrap Transport Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>TV</th>
<th>Remote Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>802.15.4</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>IrDA</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>
The TV and remote control have a number of ways in which they could be joined together. The remote control does not have any unique identifier printed on it, thus no pre-shared key can be identified. This leaves either an unsecure joining method, or some asymmetric security method.

The remote control has a button on it for ‘join’, as does the TV. In this example two sequence will be considered: where the TV button is pressed first, and where the remote control button is pressed first.

If the TV join button is pressed first:

- TV scans for existing networks in advertise mode. Finding none, it starts a new network and that network enters advertise mode.
- The remote scans for a network, and then finds the TV’s network.
- The remote informs the TV it is on an existing network, and thus will require the TV to join this network.
- The devices generate a shared secret, and both blink their LED in a unique pattern.
- The DVD player in addition blinks, so the user is informed that if they confirm the join action the resulting network will have all three devices in it.
- The user confirms both devices are blinking the same pattern, as both LEDs are blinking in unison.
- The TV displays ‘JOIN OK’ onscreen, along with any information about the network it just joined.

If the remote control join button is pressed first:

- Remote control scans for existing networks in advertise mode. Finding none, it advertises it’s network.
The TV scans for a network, and then finds the remote control’s network.

The devices generate a shared secret, and both blink their LED in a unique pattern.

The DVD player in addition blinks, so the user is informed that if they confirm the join action the resulting network will have all three devices in it.

The user confirms both devices are blinking the same pattern, as both LEDs are blinking in unison.

The TV displays ‘JOIN OK’ onscreen, along with any information about the network it just joined.

B.6. Consumer: Providing GPS Location Data

B.7. Commercial: Building Automation

Authors’ Addresses

Colin Patrick O’Flynn
Atmel Corporation
Colorado Springs, Colorado
USA

Phone:
Email: colin.oflynn@atmel.com

Behcet Sarikaya
Huawei USA
1700 Alma Dr. Suite 500
Plano, TX 75075

Email: sarikaya@ieee.org

Yoshihiro Ohba
Toshiba
Tokyo, Japan

Email: yoshihiro.ohba@toshiba.co.jp
Zhen Cao
China Mobile
Beijing, China

Email: caozhen@chinamobile.com

Robert Cragie
Pacific Gas and Electric
89 Greenfield Crescent
Wakefield, UK WF4 4WA

Email: robert.cragie@gridmerge.com