A YANG Model for User-Network Interface (UNI) Topologies
draft-ogondio-opsawg-uni-topology-00

Abstract

This document defines a YANG data model for representing an abstract view of the Service Provider network topology containing the points from which its services can be attached (e.g., basic connectivity, VPN, SDWAN). The data model augments ietf-network model by adding the concept of service-attachment-points. The service-attachment-points are an abstraction of the points to which network services (such as L3 VPNs or L2 VPNs) can be attached.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 22, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document.
The User-Network Interface (UNI) is an important architectural concept in many implementations and deployments of services such as VPNs or managed VoIP services.

This document defines a YANG data model for representing, managing and controlling the User Network Interface (UNI) topology. The data model augments ietf-network module [RFC8345] by adding the concept of service attachment points. The service attachment points are abstraction of the points where network services such as L3 VPNs or L2 VPNs can be attached.

This document does not make any assumption about the service provided by the network to the users. VPN service is used for illustration purposes.

In the context of Software-Defined Networking (SDN) [RFC7149] [RFC7426], the defined YANG data model in this document can be used to exchange information between control elements, so as to support VPN service provision and resource management discussed in [I-D.ietf-opsawg-l3sm-l3nm]. Through this model, the service orchestration layer can learn the capability and available endpoint(s) of interconnection resource of the underlying network.
The service orchestration layer can determine which endpoint of
interconnection to add to L2VPN or L3VPN service. With the help of
other models (e.g., L3SM model [RFC8299] and L3NM model) and
mechanism, hierarchical control elements could determine the
feasibility of an end-to-end path and to derive the sequence of
domains and the points of interconnection to use.

This document explains the scope and purpose of a uni topology model
and its relation with the service models and describes how it can be
used by a network operator. The document also shows how the topology
and service models fit together.

The YANG data model in this document conforms to the Network
Management Datastore Architecture (NMDA) [RFC8342].

1.1. Terminology

This document assumes that the reader is familiar with the contents
of [RFC6241], [RFC7950], [RFC8309], and [RFC8453] and uses
terminologies from those documents. Tree diagrams used in this
document follow the notation defined in [RFC8340].

This document uses the following terms:

Service Provider (SP): The organization (usually a commercial
undertaking) responsible for operating the network that offers a
service (e.g. a VPN) to customers.

Customer Edge (CE): An equipment that is dedicated to a particular
customer and is directly connected to one or more PE devices via
attachment circuits. A CE is usually located at the customer
premises, and is usually dedicated to a single service (e.g VPN),
although it may support multiple VPNs if each one has separate
attachment circuits. A CE device can be a router, bridge, switch,
etc.

Provider Edge (PE): An equipment owned and managed by the SP that
can support multiple services (e.g. VPNs) for different
customers, and is directly connected to one or more CE devices via
attachment circuits. A PE is usually located at an SP point of
presence (PoP).

Attachment point (AP): Describe a service’s end point characteristics
and its reference to a Termination Point (TP) of the Provider Edge
(PE) Node; used as service access point for VPN service, for
example.
1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. UNI Topology Model Usage

Management operations of a service provider network can be automated using a variety of means such as interfaces based on YANG modules. Considering the architecture in Figure 1, the goal is to be able to show via a YANG-based interface an abstracted network view from the network controller to the service orchestration layer.

```
+---------------+
|   Customer    |
+---------------+
Customer Service Models |

+---------------+
|   Service     |
| Orchestration |
+---------------+
Service Network Models |

+---------------+
|     Network   |
|   Controller  |
+---------------+

+----------------------------------+
| Network                          |
+----------------------------------+

Figure 1

The service orchestration layer does not need to know about the internals of the network. Hence, the abstraction’s need is to be able to get the set of nodes, and the attachment points associated with the nodes from which network services can be requested. Let us consider the example of a typical Service Provider network (Figure 2), with PE and P nodes. The Service orchestration layer would see a set of PEs, and a set of client-facing ports to which CEs can be connected (or are actually connected). Service orchestration layer will have also access to a set of Customer Service Model, e.g., a L3SM or L2SM models in the customer-facing interface and a set of Network models, e.g., L3NM model and Network topology models. In this
use case, it is assumed that the network controller is unaware of what happens beyond the PEs towards the CEs and responsible for the management and control of the network between PEs.

```
----|---- *----|----*
-| PE | -| PE |-*
----|---- *----|----* \ /
 ----|----
 | P |
 ----|---- / \
 ----|---- *----|----*
 -| PE | -| PE |-*
 ----|---- *----|----* \ /
 ----|---- *----|----*
 | P |
 ----|---- / \
 ----|---- *----|----*

Figure 2
```

Hence, the abstracted view of the network controller can look like Figure 3.

```
+----|----+ +----|----+
-| PE |---------| PE |-*
+----|----+ +----|----+
| |
+----|----+ +----|----+
-| PE |---------| PE |-*
+----|----+ +----|----+
+----|----+ +----|----+
-| PE |---------| PE |-*
+----|----+ +----|----+

Figure 3
```

3. Yang Module Structure Details

The abstract (base) network data model is defined in the "ietf-network" module of [RFC8345].

The UNI-topology builds on the network data model defined in the "ietf-network" module [RFC8345], augmenting the nodes with service-attachment points, which anchor the links and are contained in nodes). The structure of the ietf-uni-topology module is shown in Figure 4. The notation syntax follows the syntax used in [RFC8340].
module: ietf-uni-topology
augment /nw:networks/nw:network/nw:node:
  +--rw service-attachment-point* [attachment-id]
    +--rw attachment-id               nt:tp-id
    +--rw type?                        identityref
    +--rw admin-status?                boolean
    +--rw oper-status?                 boolean
    +--rw encapsulation-type?         string

Figure 4

4. YANG module

This module imports types from [RFC8343] and [RFC8345].

<CODE BEGINS>  file "ietf-uni-topology@2019-11-19.yang"
module ietf-uni-topology {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-uni-topology";
  prefix uni;

  import ietf-interfaces {
    prefix if;
    reference
      "RFC 8343: A YANG Data Model for Interface Management";
  }

  import ietf-network-topology {
    prefix nt;
    reference
      "Section 6.2 of RFC 8345: A YANG Data Model for Network Topologies";
  }

  import ietf-network {
    prefix nw;
    reference
      "Section 6.1 of RFC 8345: A YANG Data Model for Network Topologies";
  }

organization
  "IETF OPSA (Operations and Management Area) Working Group ";
contact
  " Editor:   Oscar Gonzalez de Dios
      <mailto:oscar.gonzalezdedios@telefonica.com>
  Editor: Samier Barguil
      <mailto:alejandro.aguado_martin@nokia.com>
  Editor:   Qin Wu

**This YANG module defines a model for representing, managing and controlling the User Network Interface (UNI) topology. Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.**

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself for full legal notices.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here.

```
revision 2019-11-19 {
 description
 "Initial version";
 reference
 "draft-ogondio-opsawg-uni-topology";
}
```

```
grouping uni-information-group {
 list service-attachment-point {
 key "attachment-id";
 leaf attachment-id {
 type nt:tp-id;
 description
 "Name of the Interface";
 }
 leaf type {
 type identityref {
 base if:interface-type;
 }
 config false;
 description
```
"The type of the interface.  
When an interface entry is created, a server MAY initialize the type leaf with a valid value, e.g., if it is possible to derive the type from the name of the interface.  
If a client tries to set the type of an interface to a value that can never be used by the system, e.g., if the type is not supported or if the type does not match the name of the interface, the server MUST reject the request.  
A NETCONF server MUST reply with an rpc-error with the error-tag ‘invalid-value’ in this case.";
reference
  "RFC 2863: The Interfaces Group MIB - ifType";
}
leaf admin-status {
  type boolean;
  description
    "Administrative Status UP/DOWN";
}
leaf oper-status {
  type boolean;
  description
    "Operational Status UP/DOWN";
}
leaf encapsulation-type {
  type string;
  description
    "Encapsulation type.  By default, the encapsulation type is set to 'untagged'.";
  description
    "service-edge-point refers to the available ports on the network.";
}

description
  "UNI Information";
}

<CODE ENDS>

Figure 5
5. IANA Considerations

This document registers the following namespace URIs in the IETF XML registry [RFC3688]:

| Registrant Contact: The IESG. |
| XML: N/A, the requested URI is an XML namespace. |

This document registers the following YANG module in the YANG Module Names registry [RFC6020]:

| name: ietf-uni-topology |
| maintained by IANA: N |
| prefix: uni |
| reference: RFC XXXX |

6. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC5246].

The NETCONF access control model [RFC6536] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

- /nw:networks/nw:network/nw:node/uni:service-attachment-point/uni:attachment-id
This subtree specifies the configurations of the nodes in a UNI network topology. Unexpected changes to this subtree could lead to service disruption and/or network misbehavior.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

- /nw:networks/nw:network/nw:node/uni:service-attachment-point

Unauthorized access to this subtree can disclose the operational state information of the nodes in a UNI topology.

7. Implementation Status

This section will be used to track the status of the implementations of the model. It is aimed at being removed if the document becomes RFC.

8. Acknowledgements

Thanks to Adrian Farrell and Daniel King for the suggestions on the names.

9. References

9.1. Normative References


9.2. Informative References

[I-D.ietf-opsawg-l3sm-l3nm]


Authors’ Addresses

Oscar Gonzalez de Dios (editor)
Telefonica
Madrid
ES
Email: oscar.gonzalezdedios@telefonica.com

Samier Barguil
Telefonica
Madrid
ES
Email: samier.barguilgiraldo.ext@telefonica.com

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China
Email: bill.wu@huawei.com

Mohamed Boucadair
Orange
Caen
France
Email: mohamed.boucadair@orange.com