Abstract

Currently, email lacks conventions ensuring SMTP clients can be identified by an authenticated domain. Unfortunately many hope to use DKIM as an alternative, but it is independent of intended recipients and domains accountable for having sent the message. This means DKIM is poorly suited at establishing abuse assessments of unsolicited commercial email otherwise known as SPAM, nor was this initially DKIM’s intent. DKIM lacks message context essential to ensure fair assessment and to ensure this assessment is not poisoned (Who initiated the transaction and to whom).

DKIM was instead intended to establish increased levels of trust based upon valid DKIM signatures controlling acceptance and what a user sees within the FROM header field. But DKIM failed to guard against pre-pended header fields where any acceptance based on valid DKIM signatures is sure to exclude header field spoofing, especially that of the FROM. This weakness allows malefactors to exploit DKIM signature acceptance established by high-volume DKIM domains to spoof ANY other domain, even when prohibited within the Signer’s network.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 24, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction ... 4
2. Safe Incremental Deployment? 5
3. Exploiting Trust ... 8
4. Maintaining Trust ... 9
5. Responding to Defects and Exploitation 9
6. Conflating DKIM Fragments with Email Messages 9
7. SMTP Can’t .. 11
8. DKIM Vulnerability .. 11
9. Prefix Vulnerability Testing 13
10. Barriers to an Authenticated Domain 14
11. Domains as a Basis for Managing Traffic 14
12. XMPP Shows the Way Forward 15
13. Removal of Frequency of Prefixed Header Field Statistics... 15
14. IANA Considerations 15
15. Security Considerations 15
16. Acknowledgements .. 16
17. References - Informative 16

Appendix A. DKIM Examples 19
Authors’ Addresses ... 22
1. Introduction

Currently, IPv4 address reputation provides the primary basis for defending open SMTP services (acceptance without prior arrangement). Use of IP addresses in this role becomes impractical when dealing with IPv6 [RFC2460] due to data requirements and an inability to defend detection of subscription violations. There are currently 18,210,980,092,416,010 /64 equivalent IPv6 prefixes routed. [v6-BGP-Rpts]. In comparison, for IPv4 there are 2,644,737,232 IP addresses routed. While IPv4 is reaching its maximum, IPv6 has about 0.1% of the available /64 prefix routed and this continues to grow rapidly. Unlike IPv4, there is no practical means to scan reverse DNS namespace within IPv6 since each /64 prefix may contain any number of PTR records ranging up to 184,000,000,000,000,000,000.

A technique commonly employed to automate IPv4 address categorization of suitable hosts is to check whether reverse PTR records appear to represent valid hostnames. Those that represent 4 decimal numbers are often considered unacceptable, for example. Our processing of reverse DNS namespace in cooperation with network providers now excludes about 38%, or about 1,000,000,000 IPv4 addresses. Comparing IPv6 /64 prefixes with the remainder of routable IPv4 addresses shows there are 11.3 million times more IPv6 /64 prefixes needing categorization. In addition, there is no practical means to facilitate this effort.

IP address reputation requires logging associated connections to permit review. Whether describing reputations as only positive or only negative, errant exclusion or inclusion of either poses similar risk. Tracking currently routed IPv6 /64 prefixes using a single bit requires 6 million billion bytes or 5,650 Terra-bytes just to track simple use. Even feedback by IPv6 address prefix will expose mailboxes that detect subscription policy violations.

Some also suggest there will not be a significant increase in the number of servers running over IPv6 and since their overall number should be comparable, email should still be dealing with a similar number of IP addresses. Unlike IPv4, IPv6 does not constrain the number of IP addresses assigned to a network interface. This feature allows each connection from a server to originate from a different IP address, perhaps one for each user. The potential increase allowed by IPv6 may prove explosive, even those only from good actors.

Members within organizations such as M3AAWG are suggesting SMTP error response schemes to establish DKIM or SPF as acceptance requirements to better ensure a domain offers a basis for acceptance to replace that of the IP address used by SMTP clients. Due to the understandable IPv6 reputation services’ inability to scale, domain
based alternatives are being sought. Some at least understand DKIM is unable to support negative reputation schemes. However, reliance on a mechanism unable to sustain close scrutiny of negative assertions makes sustained differentiation of positive and negative views less tenable.

At this April’s Rocky Mountain IPv6 Task Force summit in Denver, the second day government track sessions raised concerns about there being no means available to defend SMTP over IPv6. There are proposals within the IETF aimed at establishing DKIM as a basis for reputation schemes in the Repute WG (i.e. section 3.2 of [I-D.ietf-repute-email-identifiers] which introduces DKIM domains being used along with SMTP client IP addresses and rfc5321.helo also identifying the SMTP client. Identifying the SMTP client encompasses both "Who Initiated" and "To Whom" message elements to support fair negative assertions. However, DKIM does not encompass this essential information. In addition, DKIM’s inability to detect invalid prefixed header fields also means any positive DKIM reputation assertion can prove highly harmful by increasing trust in possible deceptions.

2. Safe Incremental Deployment?

[RFC5863] DKIM Development, Deployment, and Operation introduction states: "DomainKeys Identified Mail (DKIM) allows an organization to claim responsibility for transmitting a message, in a way that can be validated by a recipient." Based on actual use of DKIM, Trendmicro published a blog [TM-Blog] "Possible Phishing with DKIM". Dave Crocker dismissed DKIM’s phishing role in [Crocker-Blog] by stating: "DKIM’s sole job is to attach an identifier that can be believed, specifically a domain name that can be unrelated to any other identifier in the message. That domain name is used for associating the reputation of the domain owner with the message."..."The DKIM specification mandates that input to DKIM must be valid according to RFC5322. In requiring this, it is placing a burden on the containing system to ensure that a message is well-formed. It is not DKIM’s job to do the basic message validation; it’s the job of the requesting software."

Refuting this, [RFC6376] section 3.8 use of SHOULD does not mandate compliance with [RFC5322] expressing a concern that the message signature might become invalid if any fix-ups are applied nor will the message structure non-compliance affect the validity of a DKIM signature as currently defined. Dave Crocker’s response also misconstrues the statement "DKIM was intended to authenticate domain relationships with an email message bound at a minimum to that of the From header field." as meaning "DKIM verifies the From header field."
This is wrong, as is the assertion of the signature associating the reputation of the domain owner with the message instead of just a signed message fragment. Most will assume a reference to "message" implies the entire email message. This conflation appears in several documents, including section 5.4 in [RFC5863].

In essence, dismissing the phishing concern overlooks operational strategies suggested in deployment documents where DKIM supplants often problematic message filtering. Such likely use makes it essential for DKIM validation to exclude messages containing invalidly repeated header fields. This generalization is also used in [RFC5863] which suggests messages having valid signatures from trusted sources can be white-listed to avoid additional content processing. Here again there is no mention of concerns related to inclusion of pre-fixed header fields. Pre-fixed header field concerns were not mentioned until section 8.15 in [RFC6376] was added, but even then this section offers no mitigation strategy when DKIM signatures ensure delivery by bypassing additional filtering. Several email providers, including Yahoo, have implemented exactly this strategy, delivering content straight to the in-box when a valid and trusted DKIM signature is present in a message.

Barry Leiba’s response [Leiba-Blog] to the assertion DKIM enables phishing suggests the attack is overstated because: "1) It relies on the sender's ability to get a DKIM signature on a phishing message, and assumes the message will be treated as credible by the delivery system. 2) It ignores the facts that delivery systems use other factors in deciding how to handle incoming messages and that they will downgrade the reputation score of a domain that's seen to sign these sorts of things. 3) It ignores the fact that high-value domains, with strong reputations, will not allow the attackers to use them for signing. 4) The attack creates a message with two "from" lines, and such messages are not valid. It ignores the fact that delivery systems will take that into account as they score the message and make their decisions."

Assertions about the phishing concern being overstated are wrong and item 3 is irrelevant. As for item 1, sending yourself a message from a high volume DKIM provider and then pre-fixing some header field and relaying the modified message to any number of recipients is simple and has a high probability of being accepted. As for item 2 and 4, it is common for trust in a DKIM signature to cause message filtering to be bypassed as suggested in [RFC5863]. As such, this assumes DKIM validation checks for invalid header fields. Although such validation is possible, seldom is the double listing of singleton header fields ever used which also suggest this will not affect a domain's signature rating. Having detection of invalidly repeated header fields being optional places all other domains at risk.
Barry’s response goes on to say: "Validity checking is an important part of the analysis of incoming email, but it is a separate function that’s not a part of DKIM. All messages, whether DKIM is in use or not, should be checked for being well-formed, and deviations from ‘correct’ form should increase the spam score of a message. That has nothing to do with DKIM."

Barry’s response is also logically incorrect. Undetected introduction of pre-fixed header fields is not likely included in a signature by a trusted domain. However, this trusted domain signature is still likely to enable a message with pre-fixed header fields to bypass content filtering as described by [RFC5863]. Since DKIM MUST process the entire header field stack from top to bottom and then bottom to top, failure to note when this stack does not meet DKIM’s input requirements and to then declare associated signatures valid represents evidence of a negligent protocol that failed to trivially validate its input.

Network architecture often assumes communication functions are organized into nested levels of abstraction called protocol layers with related meta-data organized in the same fashion. Rigid layering is considered a desirable means to force compliance with existing standards. In practice this requires careful review of overall protocol operation. Suggesting that layering is inadequate may call for an alternative organizational principle for protocol functionality, especially with respect to a store-and-forward transport. Meta-data being passed should not require resource intensive operations to be needlessly repeated, as is the case with the current DKIM specification.

Enforcing message structure compliance by a store-and-forward transport is impractical. DKIM’s aim is to achieve more deterministic message acceptance through trust and less on Bayesian processes. Not all errant structures are malicious, but use of DKIM makes it imperative to ensure invalidly repeated header fields do not produce valid signatures. This additional requirement imposed by DKIM is necessary to prevent abuse of the alternative processing enabled by DKIM. The optional double-listing of header fields means other domains may not prohibit the inclusion of deceptive prefixed header fields. Having prefixed header field checks in DKIM being optionally included places all domains at risk since DKIM signatures themselves are not visible but nevertheless may influence in-box delivery. It is also unreasonable to assume some other email protocol layer will ensure message structure compliance just to mitigate DKIM related abuse. This is a problem created by DKIM, that DKIM itself should be prepared to handle to support its safe incremental deployment.
3. Exploiting Trust

Trust established by a signing domain is being exploited to mislead recipients about who authored messages. DKIM’s trust related function may be generalized as better ensuring delivery to in-boxes as opposed to junk folder placement or silent discard. It is also apparent receivers expect DKIM signature validation ensures invalid header fields have not been pre-fixed. While it is possible for signing domains to support this expectation by including non-existent header fields in a list of header fields added to the signature’s hash, few implement this feature which offers a poor alternative for the overlooked exclusion of invalidly repeated header fields.

Perhaps signers consider this double listing wasteful of storage resources or they assume the validation process makes these checks without this non-intuitive double listing of header fields that are not permitted to repeat anyway. When a domain is very large, errant filtering is likely to entail costly customer support which affords this domain greater latitude and who are also likely sensitive to wasting their storage resources.

Regardless of possible underlying motivations, it is clear checks for valid header field message structure remains a general expectation of DKIM’s validation process. Although a valid header field check is essential for ensuring a safe result, it simply does not occur in most cases. Not every domain is seeking to establish the same level of trust, where those not checking for pre-fixed header fields and who have greater latitude place all other domains at risk. Checking message structure is explicitly not to be handled by the transport per [RFC1958], [RFC3439] and [RFC5321]. Modification to SMTP implementations such as Sendmail, Exim, or Postfix and the like are neither appropriate, nor likely beneficial within a relevant time frame.

Larger domains often obtain their size by offering relatively easy access. These domains afford malefactors a simple method to have their deceptive messages reach their victim’s in-box due to common use exposing DKIM’s vulnerability. DKIM’s validation process does not explicitly ensure against invalidly repeated header fields due to the optional hash inclusion. This hashing allowance permits the spoofing of other domains with pre-fixed header fields making DKIM harmful by misleading recipients about who authored a message based on acceptance established by a DKIM signature. DKIM validation MUST be modified to ensure against invalidly repeated header fields to ensure trust established by a signing domain is not exploited to mislead recipients.
4. Maintaining Trust

Not every subsystem or protocol layer should be expected to repeat previous security checks to establish proper layering, however critical checks important for enforcing new relationships within a message should not be assumed, especially those involving a trivial effort. With high levels of abuse resulting from email's open nature, delegating checks in a structured manner better conserves essential resources. However, email's highly distributed store and forward protocol could not function if rigid message structures were enforced by the transport. Such enforcement does not scale and will impede necessary change when new authentication or presentation requirements involve small structural adjustments. For example, internationalization introduced a format negotiation not assured to survive beyond the next hop.

5. Responding to Defects and Exploitation

As with aviation, the success of email has risen to great heights. As within the world of aviation, faults threatening security, that when discovered, demand our attention and diligence to effect repair. Email has become an integral component in general commerce and the maintenance of security such as reporting system failures, break-in attempts, and facilitating account access recovery.

Reporting or predicting failure should not be viewed as exhibiting a lack of respect for achieved accomplishments. Noting and repairing faults only signify the importance of email's prominent role. As with most security related protocols, responding to noted defects is fairly common. Not responding to discovered defects in a security related protocol would be shocking. Simply publishing this draft appears to have already increase the level of multiple FROM header field abuse seen where it is now at 21% of signed DKIM messages.

6. Conflating DKIM Fragments with Email Messages

DKIM signs only fragments of an email message, so it is more proper to refer to "DKIM Signed Fragments", and not "DKIM Signed Messages". Normal DKIM signature validation offers a simple PASS/FAIL associating it with a specific domain. When a recipient receives a PASS status, only the last FROM header field message fragment is ensured to have been included in the DKIM signature process. Other message fragments, including the message body, are optional and may not have been included. The FROM header field is normally visible UNLESS there are multiple FROM header fields. In which case, the signed FROM header field fragment is likely invisible, as is the DKIM
signature fragments that hide which other message fragments had been encompassed by the DKIM signature process.

DKIM’s trust related role is to better ensure message delivery to a user’s in-box. Unless DKIM ensures this trust is not used to perpetrate deception, no positive assertions regarding a DKIM domain is safe. As a result, DKIM can not be used with either positive or negative reputation assertions in its current form.

The FROM header field is the Author identifier in section 11.1 of [I-D.kucherawy-dmarc-base]. The DMARC specification offers normative language that a message SHOULD be rejected when multiple FROM header fields are detected. This requirement would not be necessary or impose protocol layer violations if DKIM did not offer valid signature results when repeated header fields violate [RFC5322]. [RFC5322] declaring a message structure invalid will not preclude the occurrence of invalid messages, and [RFC5321] clearly states it will not enforce [RFC5322] message structure due to practical constraints. Instead of relying on optional policies such as DMARC making partial guesses that ignore DATE or SUBJECT spoofing for example where the Subject might introduce click-able links, critical violations of the message header field structure that pertain to enhanced trust can be protected by DKIM simply defining any associated signatures invalid. Unlike DMARC, proper signature definition does not cross protocol layers, especially since no other layer enforces [RFC5322] and no other layer determines the validity of a DKIM signature.

Since multiple DKIM signatures can occur, simple annotation of which fragments and domains associate with a valid signature is precluded. The ONLY message fragment ensured by a DKIM signature is the FROM header field. Just as DMARC concluded only the FROM header field is closely observed by recipients, DKIM initially reached this conclusion as well. While no absolute assurance of header field validity is asserted, the domain together with it’s reputation permits recipients to increase their trust in what is observed in the FROM header field. This trust further increases when the DKIM domain is authoritative for the FROM header field domain.

When acceptance is predicated on the DKIM signature, as occurs with DMARC, preserving trust associated with the FROM header field in conjunction with the DKIM domain is destroyed whenever multiple FROM header fields are permitted by not invalidating these DKIM signatures. DMARC over reaches when rejecting email based upon message format as with [RFC6854] group syntax in the FROM header field. While DMARC is likely limited to those domains only conveying transactional messages, implementing DMARC policy should not require the reexamination of messages to determine whether DKIM signatures are safely considered valid. A processing concern was also given as
a reason why DMARC did not ensure a potentially dangerous Subject header field had not been prefixed. Such message reexamination that is necessary prior to employing a valid signature status represents poorly considered protocol layering. Such checks being made during the DKIM validation would likely reduce processing overhead with a minor risk of adding a few microseconds.

7. SMTP Can’t

In keeping with Architectural Principles of the Internet expressed in [RFC1958], [RFC3439], SMTP [RFC5321] recommends against rejecting messages based upon perceived defects in the message structure. This liberal acceptance permits evolutionary change in message specifications starting at [RFC0822] that was based on [RFC0733] replaced by [RFC2822] and again by [RFC5322], [RFC6152], [RFC6532], and [RFC6854]; the second to last paragraph in section 3 of [RFC5321] provides a definitive statement messages should not be rejected due to perceived defects in the [RFC0822] message structure. The initial reference to [RFC0822] in this paragraph offers two foot notes with the second referencing the latest version of [RFC0822] which is [RFC5322] which itself has recently been updated. The impact of initially removing text specifically indicating which header fields are not to repeat is unknown. This information was implied within the then-new ABNF notation. Clarifying text for this requirement did not return until the [RFC0822] revision 19 years later which also indicates this specification’s success at providing a foundation that allowed email to flourish.

There are many SMTP servers that have been in operation for decades with years passing between security patches. Such an accomplishment is most remarkable considering the volume of traffic being handled, often from highly malicious sources. This amazing stability and scalability with high levels of security would not have been possible if SMTP had been expected to validate message formats.

Expecting SMTP to validate message formats to protect against vulnerabilities pertaining to protocols such as DKIM does not scale. The general use of DKIM permits signature checks subsequent to acceptance where only the status of signatures determines internal placement. As such, it becomes critical to ensure a DKIM signature is never declared valid having malformed header field stacks. To accomplish this, the DKIM specification must change.

8. DKIM Vulnerability

DKIM permits a vulnerability by not checking the message header field
stack for invalid repeats when signing or verifying a signature. The DKIM signature process must walk both down and then up the header field stack while selecting the header fields to be included in the hash process of the signature. The DKIM process will even ignore prefixed FROM header fields which is the only header field always included.

The WG concluded that "listing non-existent header fields as signed" hack added in non-normative language together with opinions that checking for invalidly repeated header fields was not to be considered DKIM’s problem. See section 8.15 of [RFC6376] where this issue was expressed as not an attack against the trust DKIM intends to convey, and thus not a concern for DKIM. Nevertheless, improperly formed messages may display only the first of multiple header fields that, as a result of erroneous assumptions of there being no invalidly repeated header fields, the prefixed header fields are likely to be displayed in lieu of those signed while not impacting DKIM’s signature validity.

DKIM incorrectly assumed the header field stack’s starting condition, which DKIM itself is best able to determine, and is an option in the OpenDKIM implementation. This is likely to astonish most recipients that DKIM failed to make a robust effort to maintain the trust it is attempting to convey. Three members of the WG authored proposed changes aimed specifically at addressing this issue [DKIM-MH-Attack]. At the time, some expressed concerns about whether this might set back DKIM’s standardization process. As such, DKIM Signers may sign malformed messages (e.g., violate [RFC5322]) and be in compliance with DKIM specifications. In addition, receivers may verify these messages as having valid signatures despite multiple instances of a header field only permitted to occur once and also be in compliance with DKIM specifications. See addendum for examples of the possible abuse this permits.

Increased awareness of an OpenDKIM option related to header field structure checking is needed. Unfortunately, this OpenDKIM option is not mandated by any DKIM specification although it offers the necessary checks. This option simply makes checks against meta-information collected during DKIM signature verification. This is done by asserting the "conf->conf_reghdrs" Lightweight Directory Access Protocol (LDAP) option which enables this check with an overhead likely measured in nanoseconds.

Use of DKIM lacking this check exposes a vulnerability in the message evaluation process. Rather than ensuring essential checks are made prior to producing a result, a wasteful hack was later suggested where extra non-existent header fields could be included in the list of signed header fields. Any pre-pended header field added after
signing would thereby change resulting hashes and invalidate the signature. Not all domains are attempting to achieve the same level of trust and may be more sensitive to incurring incremental storage requirements. Some domains may even inadvertently sign invalidly repeated header fields because this check had not been required in the DKIM process. These same DKIM domains are also likely to establish themselves as being Too Big To Block. These TBTB domains can then be used to spoof other domains that may have otherwise established a high level of trust by implementing the hack where, due to this defect in DKIM, can still do nothing in their defense from the perspective of now deceived recipients.

This vulnerability in DKIM represents an exploit allowing serious attacks caused by erroneous assumptions made in DKIM’s signature process. There is also a header field, which because of its label, potentially misleads recipients into believing it contains valid "Authentication-Results" [RFC5451] which it commonly does not. Common phrases such as "Authentication-Results", "pass", and "fail", rather than use of result codes belies introductory claims this header is not intended for direct human consumption. The author of [RFC5451] believes no message structure status should be included in tabulated results conveyed in this header field. Since the information conveyed in the "Authentication-Results" header can not be meaningfully changed, and since it has become apparent due to an error in DKIM versioning, there is no reasonable approach for repairing this flaw other than ensuring DKIM includes a check for invalid message structures where it then does not return a valid signature status.

9. Prefix Vulnerability Testing

Acceptance based on DKIM signature reputations whenever an invalid prefix check is not made affords malefactors a trivial method to phish or spoof users. It seems many providers follow the advice given in [RFC5863] without understanding the nature of the oversight, whether intentional or not, that was made in the DKIM RFC which seems based on a poor understanding of checks to be applied by SMTP. Testing for a vulnerability to issue involves sending a signed message to a mailbox controlled by the DKIM tester. The DKIM tester then strips out header fields added by the incoming server, and prefixes a bogus From or Subject header field to the message. Many email clients will make a URL declaration within the Subject header field click-able. The modified message is then sent without any additional DKIM signatures being added to the inbox being tested. If the message is placed into the inbox, another version of the message should be sent with the DKIM signature header field removed. When the message having the DKIM signature removed is placed into the spam
folder, it confirms the receiver uses the handling described in [RFC5863].

10. Barriers to an Authenticated Domain

Some advocate use of DKIM as a means to obtain domain references based on the increased prevalence of this protocol. DKIM is independent of the domain actually sending the message and the recipient by design. Unfortunately, DKIM also does not attempt to protect against likely abuses that are also beyond the control of the signing domain in which DKIM signature validity conveys no assurance pre-fixed header fields have not changed what recipients see. As such, DKIM signing domains can not be held accountable for incidents of abuse appearing to violate subscription policies or that spoof other domains.

Because of DKIM’s vulnerability to header field spoofing, it would not be safe to express positive reputations either. Any such assurance could be exploited by malefactors to deceive those trusting DKIM results. In short, a DKIM signed domain as currently defined, can not be safely used in any context, other than the most rigid exclusion of any unsigned content which is well beyond any existing implementation. DKIM can not be safely used for email reputation as currently defined.

11. Domains as a Basis for Managing Traffic

A manageable basis for assessments can leverage a smaller number of related domains, compared to IPv6 or even IPv4 addresses. Although technically the domain name space can be larger than the massively large IPv6 address space, in practice it is not. One hundred thousand domains control 90% of Internet traffic out of approximately 100 million domains active each month. The top 150 domains control 50% of the traffic, and the top 2,500 domains control 75%. This level of domain consolidation permits effective fast-path white-listing. Improvements achieved using domains to consolidate the threat landscape can easily justify added cryptographic authentication burdens. Even APL resource records [RFC3123] can authenticate EHLO using a single DNS transaction, but this would not allow IPv6 email to be more easily managed when facing extensive use of transitional technologies such as ISATAP, Teredo, 6to4, NAT64, and DNS64, as well as the solutions offered by cryptographic technology.
12. XMPP Shows the Way Forward

In addition to SMTP [RFC5321] using StartTLS [RFC3207], XMPP
[RFC6122] uses StartTLS [RFC6120] over a different port with many of
the features used by web servers such as [RFC2560] as one means to
increase scalability. [I-D.ietf-dane-smtp] or
[I-D.dukhovni-smtp-opportunistic-tls] offer several other interesting
innovations. DANE [RFC6698] offers greater transparency than that
afforded by Certificate Authorities [RFC3647]. With general
availability without added expense, StartTLS/DANE can also exchange
client certificates. Client certificates offer a safe basis for
acceptance or rejection without any need to examine email header
field stacks. Header stack examination is needed with DKIM because
only a fragment of the message is signed. In comparison, StartTLS
encompasses the entire message stream which identifies both the
sender and recipient. Encompassing the entire message allows domain
reputation to be effective at mitigating abuse via negative
reputations which DKIM can not support.

Many administrators overlook a serious problem made much worse by
chatty protocols that impose processing delays. Examining server
logs will not reveal any problem either, because the limited resource
being consumed is the number of outstanding connections TCP is able
to support. Reaching this limit will prevent new connections from
being instantiated but this is not logged as an event. Over time
administrators may hear complaints email is not being delivered or
just see an ever growing percentage of spam.

Conveying the Frequency of Occurrence information invited many forms
of retribution distracting from this issue. A test for the
vulnerability is all that should matter. As always, Murphy’s law
will apply.

14. IANA Considerations

This document requires no IANA consideration.

15. Security Considerations

This draft intends to describe serious security concerns raised with
use of DKIM that is exacerbated with IPv6 email. The contained
recommendations are expected to reduce these security concerns. To
better ensure security, the DKIM specification must change.
Recommendations [DKIM-MH-Attack] rejected by the DKIM WG were aimed at repairing this defect by simply requiring the definition for a valid DKIM signature to ensure no invalidly repeated header fields are present. It is also clear that the non-normative language describing the non-intuitive approach of listing non-existent header fields has not been widely embraced, especially by domains sensitive to storage requirements. The overall storage requirement was one of the weighing factors in selecting between IIM and DKIM. IIM’s inclusion of the public key within the message was considered an unnecessary waste of storage. It seems many also consider the prophylactic listing of non-existent header fields an unnecessary waste as well. Based upon the current data, the present DKIM specification did not result in something that can retain trust, and that leads to protocol layer violations as seen with DMARC.

Section 8.15 of [RFC6376] states: "It is up to the Identity Assessor or some other subsequent agent to act on such messages as needed, such as degrading the trust of the message (or, indeed, of the Signer), warning the recipient, or even refusing delivery." Despite DKIM ignoring critical aspects essential for retaining trust, DKIM now suggests this is to be fixed by some undefined process. Since virtually all DKIM domains will not employ prophylactic double listing of signed header fields, an Identity Assessor is neither a timely nor reasonable remedy either. To be absolutely clear, the DKIM specification must change to ensure valid signatures do not include invalidly repeated header fields.

16. Acknowledgements

The authors wish to acknowledge valuable contributions from the following: Dave Crocker, Murray Kucherawy, and Barry Leiba.

17. References - Informative

[Crocker-Blog]

[DKIM-MH-Attack]
http://trac.tools.ietf.org/wg/dkim/trac/ticket/24,
"Multiple-header-attack alternative proposal", April 2011.

[I-D.dukhovni-smtp-opportunistic-tls]
Dukhovni, V. and W. Hardaker, "SMTP security via opportunistic DANE TLS",
draft-dukhovni-smtp-opportunistic-tls-01 (work in progress), July 2013.

[I-D.ietf-dane-smtp]
Finch, T., "Secure SMTP using DNS-Based Authentication of Named Entities (DANE) TLSA records.",
draft-ietf-dane-smtp-01 (work in progress), February 2013.

[I-D.ietf-repute-email-identifiers]
Borenstein, N. and M. Kucherawy, "A Reputation Response Set for Email Identifiers",
draft-ietf-repute-email-identifiers-10 (work in progress), September 2013.

[I-D.kucherawy-dmarc-base]
Kucherawy, M. and E. Zwicky, "Domain-based Message Authentication, Reporting and Conformance (DMARC)",
draft-kucherawy-dmarc-base-01 (work in progress), July 2013.

[Leiba-Blog]
http://staringatemptypages.blogspot.com/2011/06/

RFC 733, November 1977.

Appendix A. DKIM Examples

From Random User Tue Mar 12 12:07:37 2013
X-Apparently-To: just4spamlr@yahoo.com via 72.30.237.8; Tue, 12 Mar 2013 12:08:37 -0700
Return-Path: <Fake.user@gmail.com>
Received-SPF: neutral (192.83.249.65 is neither permitted nor denied by domain of gmail.com)
A3RleHQvcGxhaW4DAzACA3RleHQvaHRtbAMDMQ--
X-YMailISG: Po8J_9cWLDuz5QIo_tChc7OagZYPBIscsK7A2x8FMj835hEX
clyJxQr6oJy40ccmgmkm_ayJu65fKm.KJY73k6aprxb9a7b9j6P321pm1
6yGzxWFyندNCwcnt3FGshRe3vTjh8x051jxjIqfuSo0vo8J5r20r.Z._6vD
4wiGFDUwFHNWAwuzw.pwp7p25HiVvuuuyzSVvHoIFaqrQ9crR.rrk_3EU2
Xkv_fIn1GDFR8afzFPPmOGQ7Q0rHyOzQUBtDEFGdh1Q VOyLWipjwEC7264k
4MqxUH7zz_M5QOqj6dJslH0.iz5y9gp6y6kTUHAVF2_f_t1hMeRv3F7WJ6
lyIy2rZyALIME10c1NKQJOdctzgSFHnx_Smo415MvUcE1H7qg5S5FgWxKEQpd
JipyYIeCDVUCuAsoLmzbuGS1CEVLq7F4E1B7asaMWxkJ07QqXBR.QYDw3VF4A
20AcfnFrUvNN2tLaFukQzdk9c6SPFHSuCAswLPu2eRy4fj5ndXsd7v1yCS

Otis & Rand Expires April 24, 2014 [Page 19]
Internet-Draft DKIM-HARMFUL October 2013

Otis & Rand Expires April 24, 2014 [Page 20]
X-Received: by 10.220.221.143 with SMTP id ic15mr6773333vcb.32.1363115257152; Tue, 12 Mar 2013 12:07:37 -0700 (PDT)
Received: by 10.52.70.169 with HTTP; Tue, 12 Mar 2013 12:07:37 -0700 (PDT)
Date: Tue, 12 Mar 2013 09:07:37 -1000
Message-ID: <CA+VnpPKv0s-p2nKkAkNHs4V2Sx2e4w_6S9QF5p1p2ji+FMo4=Q@mail.gmail.com>
Subject: An example signed message
From: Random User <random.j.user.994@gmail.com>
To: just4spamd1r@yahoo.com
Content-Type: multipart/alternative; boundary=14dae9cdc33bb0ff5204d7bf00ff
Content-Length: 280

spoofed DKIM with valid signature

Authors’ Addresses

Douglas Otis
Trend Micro
10101 N. De Anza Blvd
Cupertino, CA 95014
USA
Phone: +1.408.257-1500
Email: doug_otis@trendmicro.com

Dave Rand
Trend Micro
10101 N. De Anza Blvd
Cupertino, CA 95014
USA
Phone: +1.408.257-1500
Email: dave_rand@trendmicro.com