IGP Flexible Algorithm Optimization for Network Slicing
draft-peng-lsr-flex-algo-opt-slicing-00

Abstract

IGP Flex Algorithm proposes a solution that allows IGPs themselves to compute constraint-based paths over the network, and it also specifies a way of using Segment Routing (SR) Prefix-SIDs and SRv6 locators to steer packets along the constraint-based paths. This document extends the use of the IGP Flex Algorithm to satisfy network slicing scenarios.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 30, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

1. Introduction

IGP Flex Algorithm [I-D.ietf-lsr-flex-algo] proposes a solution that allows IGPs themselves to compute constraint based paths over the network, and it also specifies a way of using Segment Routing (SR) Prefix-SIDs and SRv6 locators to steer packets along the constraint-based paths. It specifies a set of extensions to ISIS, OSPFv2 and OSPFv3 that enable a router to send TLVs that identify (a) calculation-type, (b) specify a metric-type, and (c) describe a set of constraints on the topology, that are to be used to compute the best paths along the constrained topology. A given combination of calculation-type, metric-type, and constraints is known as an FAD (Flexible Algorithm Definition).

[I-D.peng-teas-network-slicing] proposes a solution to extend the control plane of transport network to instantiate the Network Slice Instance (NSI) in transport network. A new identifier, AII, instead of existing TE affinity or other identifiers, is introduced to represent a TN-slice and specify the dedicated resource for the TN-slice.

This document extends the FAD of IGP Flex Algorithm to let IGPs compute constraint based paths limited in specific TN-slice.
2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. SR Policy Using Slice-based Resources

[I-D.ietf-spring-segment-routing-policy] details the concepts of SR Policy and steering into an SR Policy. These apply equally to the MPLS and IPv6 (known as SRv6) data plane instantiations of Segment Routing with their respective representations of segments as SR-MPLS SID and SRv6 SID as described in [RFC8402]. The color of SR policy defines a TE purpose, which includes a set of constraints such as bandwidth, delay, TE metric, etc.

The overlay service can select underlay SR policy according to a meaningful color value. From the perspective of service, color is the key to get the expected SLA, and it is a global administrative configuration or setting that could be exchangeable between two devices for SR policy on-demand next-hop triggering. The service never concern whether the underlay network has been partitioned as multi-domains, or multi-topologies. That is, color has not semantic local within one domain, or one topology. Instead, any type of resources such as topology, computation, storage could be selected by the color template. In this sense, TN-slices are also high-level resources that could be selected by color template. A simple way to achieve this is to contain the specific AII information in the color template, to restrict the TE path to the corresponding TN-slice.

4. SR PolicyOptimization with IGP Flex-algo

Indeed, FA-id defined in [I-D.ietf-lsr-flex-algo] is a short mapping of SR policy color to optimaze segment stack depth for the IGP area partial of the entire SR policy. The overlay service that want to be carried over a particual SR-FA path must firstly let the SR policy supplier know that requirement. There are two possible ways to map a color to an FA-id. One is explicit mapping configuration within color template, the other is dynamic to replace a long segment list to short FA segment by headend or controller once the creterias contained in the color-template equal to that contained in FAD.

[I-D.ietf-lsr-flex-algo] described that Application specific Flex-Algorithm participation advertisements MAY be topology specific or MAY be topology independent, and also emphasize that Segment Routing Flex-Algorithm participation advertisement is topology independent,
i.e., when a router advertises participation in an SR-Algorithm, the participation applies to all topologies in which the advertising node participates. Here the topology means Multi-Topology Routing (MTR) described in [RFC5120], [RFC4915], [RFC5340]. [RFC8402] also mentioned that multiple SIDs MAY be allocated to the same prefix so long as the tuple <prefix, topology, algorithm> is unique. In fact, this will lead to many forwarding tables, such as table per topology, table per each combined tuple <topology, algorithm>.

According to [I-D.peng-teas-network-slicing], we donot use MTR to identify the TN-slice and partition the virtual topology for the TN-slice. Instead, a slice-based identifier AII is introduced to represent a TN-slice, and the first feature of AII is a TE criteria for TE service just like AG/EAG. In order to make the contents of the color template and mapping FAD consistent, AII is also necessary put into FAD.

Although the network operator may change the AII information within the FAD for the specific FA-id, there is only one forwarding table with constant table ID, i.e., FA-id. Note that there are also independent forwarding tables per AII, but not those per tuple <AII, FA-id>. That is, FA-id has not semantic local within AII, as the same as color.

5. IGP Flex-algo Enhancement with AII

FAD that contains AII information will enhance the capability of Flex-algo to support network slicing. For example, Loop Free Alternate (LFA) paths for a given Flex-Algorithm can include Prefix-SIDs advertised specifically for the given algorithm, and especially Adjacency-SIDs for the specific AII. When different FA planes share the same link resource, Adjacency-SID per AII (according to [I-D.peng-teas-network-slicing]) can distinguish the flow of different slices well and provide different treatment.

The following figure shows an example of Flex-algo enhancement with AII.

```
[S1]--------[D]--------[S2]
 |           |          |
 |           |          |
[A]---------[B]--------[C]
```

Figure 1: Flex-algo Enhancement with AII
Suppose that node S1, A, B, D and their inter-connected links belongs to FA-id 128 plane as well as AII-1, and S2, B, C, D and their inter-connected links belongs to FA-id 129 plane as well as AII-2. The IGP metric of link B-D is 100, and all other links have IGP metric 1. In FA-id 128 plane, from S1 to destination D, the primary path is S1-D, and the TI-LFA backup path is segment list \{node(B), adjacency(B-D)\}. Similarly, in FA-id 129 plane, from S2 to destination D, the primary path is S2-D, and the TI-LFA backup path is segment list \{node(B), adjacency(B-D)\}. With the help of AII parameter contained in the FAD, the above TI-LFA path of FA-id 128 plane will be translated to \{node-SID(B)@FA-id128, adjacency-SID(B-D)@AII-1\}, and TI-LFA path of FA-id 129 plane will be translated to \{node-SID(B)@FA-id129, adjacency-SID(B-D)@AII-2\}. So that node B can distinguish the flow of FA-id 128 and FA-id 129 with different treatment (e.g., QoS) and send to the same outgoing link B-D.

For inter-domain case, different domain can config different FA-id independently, but they can contain the same AII to construct an E2E slice-based SR policy. IGP flex-algo is responsible for creating constraint based paths within the domain according to FAD including AII parameter, and BGP-LU or SDN controller is responsible for selecting inter-domain links according to color template including AII parameter. AII is easy to address the requirement of E2E Slicing view.

6. AII of FAD Sub-TLV

6.1. ISIS AII of FAD Sub-TLV

ISIS AII of FAD Sub-TLV is used to advertise the AII information that is used during the Flex-Algorithm path calculation. It is a Sub-TLV of the ISIS FAD Sub-TLV. It has the following format:

```
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Type     |    Length     |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               AII                             |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2: ISIS AII of FAD Sub-TLV format

where:

Type: TBD1.
Length: 4 octets.

AII: Administrative Instance Identifier as defined in [I-D.peng-teas-network-slicing].

ISIS AII of FAD Sub-TLV MAY NOT appear more than once in an ISIS FAD Sub-TLV. If it appears more than once, the ISIS FAD Sub-TLV MUST be ignored by the receiver.

6.2. OSPF AII of FAD Sub-TLV

OSPF AII of FAD Sub-TLV is used to advertise the AII information that is used during the Flex-Algorithm path calculation. It is a Sub-TLV of the OSPF FAD TLV. It has the following format:

```
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Type             |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                              AII                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 3: OSPF AII of FAD Sub-TLV format

where:

Type: TBD2.

Length: 4 octets.

AII: Administrative Instance Identifier as defined in [I-D.peng-teas-network-slicing].

OSPF AII of FAD Sub-TLV MAY NOT appear more than once in an OSPF FAD TLV. If it appears more than once, the OSPF FAD TLV MUST be ignored by the receiver.

7. IANA Considerations

7.1. ISIS IANA Considerations

This document defines the following Sub-Sub-TLVs in the "Sub-Sub-TLVs for Flexible Algorithm Definition Sub-TLV" registry:

Type: TBD1
Description: Administrative Instance Identifier

Reference: This document (Section 6.1)

7.2. OSPF IANA Considerations

This document registers following Sub-TLVs in the "TLVs for Flexible Algorithm Definition TLV" registry:

Type: TBD2

Description: Administrative Instance Identifier

Reference: This document (Section 6.2)

8. Security Considerations

This specification inherits all security considerations of [I-D.ietf-lsr-flex-algo].

9. Acknowledgements

TBD

10. Normative References

[I-D.ietf-lsr-flex-algo]

[I-D.ietf-spring-segment-routing-policy]

[I-D.peng-teas-network-slicing]

Authors’ Addresses

Peng Shaofu
ZTE Corporation
No.68 Zijinghua Road, Yuhuatai District
Nanjing
China

Email: peng.shaofu@zte.com.cn

Chen Ran
ZTE Corporation
No.50 Software Avenue, Yuhuatai District
Nanjing
China

Email: chen.ran@zte.com.cn

Greg Mirsky
ZTE Corp.

Email: gregimirsky@gmail.com