Network Service Header TLVs
draft-quinn-sfc-nsh-tlv-03.txt

Abstract

This draft describes Network Service Header (NSH) MD-Type 2 metadata TLVs that can be used within a service function path.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 26, 2017.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

Network Service Header [NSH] is the SFC encapsulation protocol used to create Service Function Chains. As such, NSH provides two key elements:

1. Service Function Path identification

2. Metadata

NSH further defines two metadata formats (MD Types): 1 and 2. MD Type 1 defines fixed length, 16 byte metadata, whereas MD Type 2 defines a variable-length TLV format for metadata. This draft defines some common TLVs for use with NSH MD Type 2.

This draft does not address metadata usage, updating/chaining of metadata or other SFP functions. Those topics are described in NSH.

2. NSH Type 2 Format

A NSH is composed of a 4-byte Base Header, a 4-byte Service Path Header and Context Headers. The Base Header identifies the MD-Type in use:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ver|O|C|R|R|R|R|R|   Length  |    MD Type    | Next Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 1: NSH Base Header

Please refer to NSH [NSH] for a detailed header description.
When the base header specifies MD Type= 0x2, zero or more Variable Length Context Headers MAY be added, immediately following the Service Path Header. Therefore, Length = 0x2, indicates that only the Base Header followed by the Service Path Header are present. The number, indicated in the length field, of optional Variable Length Context Headers MUST be of an integer indicating length in 4-bytes words Figure 3 below depicts the format the context header.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          TLV Class            |C|    Type     |R|R|R|   Len   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Variable Metadata                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2: NSH TLV Format

3. NSH Type 2 TLVs

As per NSH, TLV Class 0-7 are reserved for standards use. In this draft we use TLV Class 0 for the following Types:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         TLV Class = 0x0       |C|    Type     |R|R|R|   Len   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Variable Metadata                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 3: NSH TLV Class=0x0

1. Forwarding Context

This TLV carries network-centric forwarding context, used for segregation and forwarding scope. Forwarding context can take several forms depending on the network environment. Commonly used data includes VXLAN/VXLAN- GPE VNID, VRF identification or VLAN.
2. Tenant

Tenant identification is often used for segregation within a multi-tenant environment. Orchestration system generated tenant IDs are an example of such data.

Tenant Type (TT), 4 bits:
0x0: 32 bit
0x1: 64 bit

3. Content Type

Provides explicit information about the content being carried, for example, type of video or content value for billing purposes.
4. Ingress Network Information

This data identifies ingress network node, and, if required, ingress interface.

5. Flow ID

Flow ID provides a representation of flow. Akin, but not identical to the usage described in [RFC6437]

6. Source and/or Destination Groups

Intent-based systems can use this data to express the logical grouping of source and/or destination objects. [GROUPBASEDPOLICY] and [GROUPPOLICY] provide examples of such a system.
Group type (4):
0x1: Group Based Policy (GBP) end point group (EPG)

Figure 9: End Point Group

7. Universal Resource Identifier (URI)

URI type (4):
0x1: URI in standard string format as defined in RFC 3986
0x2: URI represented in a compacted hash format

Figure 10: URI

4. Security Considerations

NSH describes the requisite security considerations for protecting NSH metadata.

5. Acknowledgments

The authors would like to thank Behcet Sarikaya, Dirk von Hugo and Mohamed Boucadair for their work regarding usage of subscriber and host information TLVs.
6. IANA Considerations

IANA is requested to create a new "Network Service Header (NSH) TLV Type" registry. TLV types 0–127 are specified in this document. New values are assigned via Standards Action [RFC5226].

7. References

7.1. Normative References

7.2. Informative References

Authors’ Addresses

Paul Quinn
Cisco Systems, Inc.

Email: paulq@cisco.com

Uri Elzur
Intel

Email: uri.elzur@intel.com
Sumandra Majee
F5

Email: S.Majee@F5.com